Regularization in the Face of Uncertainty

Yuejie Chi

Yale & FAIR

Swiss CLOCK Summit September 2025

Tong Yang CMU

Shicong Cen CMU→XTX

Zixin Wen CMU

Lin Xiao Meta

Bo Dai GaTech/Google

Jincheng Mei Google

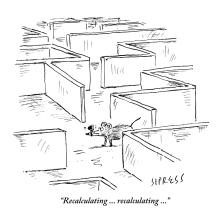


Hanjun Dai Google

Dale Schuurmans Alberta/Google

Reinforcement learning (RL)

In RL, an agent learns by interacting with an *unknown* environment through <u>trial-and-error</u> to maximize long-term total reward.



More successes of RL since AlphaGo

robotics

strategic games

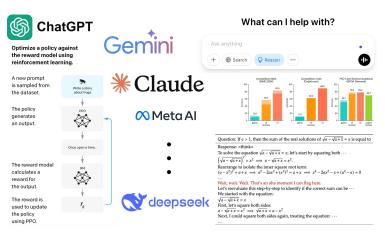
chip designs

nuclear plant control

resource management

UAV and drones

One more: RL for foundation models

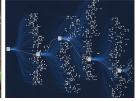


Alignment: safety, human value..

Reasoning: math, coding...

Challenges of RL

- explore or exploit: unknown or changing environments
- credit assignment problem: delayed rewards or feedback
- enormous state and action space



This talk: exploration with complex function approximation (like LLMs)

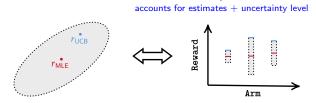
Classical wisdom

T. L. Lai

H. Robbins

Optimism via UCB in the face of uncertainty:

- explores the best optimistic estimates associated with the actions.
- a common framework: utilize upper confidence bounds (UCB)



Issue: UCB performs poorly under complex function approximation.

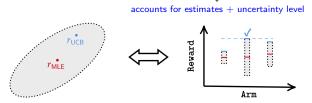
Classical wisdom

T. L. Lai

H. Robbins

Optimism via UCB in the face of uncertainty:

- explores the best optimistic estimates associated with the actions.
- a common framework: utilize upper confidence bounds (UCB)



Issue: UCB performs poorly under complex function approximation.

This talk

Goal: theoretically-grounded and optimization-friendly exploration scheme compatible with complex function approximation

Optimism via regularization in the face of uncertainty:

$$f_t = \arg\min_{f \in \mathcal{F}} \quad \underbrace{\mathcal{L}_t(f; \mathcal{D}_t)}_{\text{data consistency}} - \alpha \quad \underbrace{V^{\star}(f)}_{\text{optimal value}}$$

- f: can be either model-based or model-free.
- The key idea is inspired by the reward-biased estimation framework (Kumar and Lin, 1982 and follow-ups) for adaptive control, which is further developed recently for RL.
- This talk provides new computationally tractable and provably efficient vignettes for RLHF, RL and competitive games.

7

Value-incentivized exploration in RLHF

Shicong Cen CMU→XTX

Bo Dai GaTech/Google

Jincheng Mei Google

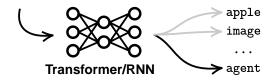
Dale Schuurmans Alberta/Google

Language models as policies

```
Prompt: Explain reinforcement learning (RL).
```

Answer: Reinforcement learning (RL) is a type of

machine learning where an ...



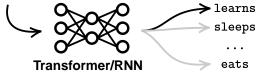
Given prompt $x \in \mathcal{X}$, a language model generates an answer:

$$y \sim \underbrace{\pi(\cdot|x)}_{\text{parameterized by LLM}}$$

Language models as policies

Prompt: Explain reinforcement learning (RL).

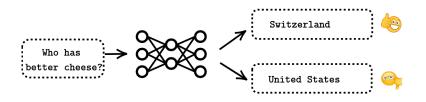
Answer: Reinforcement learning (RL) is a type of machine learning where an agent



Given prompt $x \in \mathcal{X}$, a language model generates an answer:

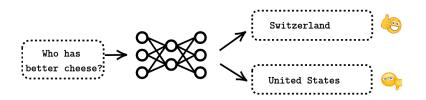
$$y \sim \underbrace{\pi(\cdot|x)}_{\text{parameterized by LLM}}$$

Reinforcement learning with human feedback (RLHF)



Goal: finetune the LLM to align with human preference

Reinforcement learning with human feedback (RLHF)



Goal: finetune the LLM to align with human preference

Prototypical pipeline:

- Reward learning: learn a reward model from preference data;
- Policy optimization: optimize the LLM to maximize the reward.

RLHF: reward learning

Bradly-Terry model

The probability of pairwise comparison i > j is modeled by

$$\mathbb{P}(i > j) = \frac{\exp(r_i^*)}{\exp(r_i^*) + \exp(r_j^*)} = \sigma(r_i^* - r_j^*),$$

where $r_i^{\star} \in \mathbb{R}$ is the score associated with item i.

RLHF: reward learning

Bradly-Terry model

The probability of pairwise comparison i > j is modeled by

$$\mathbb{P}(i > j) = \frac{\exp(r_i^*)}{\exp(r_i^*) + \exp(r_j^*)} = \sigma(r_i^* - r_j^*),$$

where $r_i^{\star} \in \mathbb{R}$ is the score associated with item i.

• Reward model: $r^*: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$, evaluating the quality of a prompt-answer pair (x,y) that aligns with human preference;

11

RLHF: reward learning

Bradly-Terry model

The probability of pairwise comparison i > j is modeled by

$$\mathbb{P}(i > j) = \frac{\exp(r_i^*)}{\exp(r_i^*) + \exp(r_j^*)} = \sigma(r_i^* - r_j^*),$$

where $r_i^{\star} \in \mathbb{R}$ is the score associated with item i.

- **Reward model:** $r^* : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$, evaluating the quality of a prompt-answer pair (x,y) that aligns with human preference;
- **Reward learning:** Given comparison data $\mathcal{D} = \{(x^i, y_+^i, y_-^i)\}_{i=1}^N$, the MLE of the reward function is given by

$$r_{\mathsf{MLE}} = \operatornamewithlimits{argmin}_r \ell(r, \mathcal{D}),$$
 where
$$\ell(r, \mathcal{D}) = -\sum_{i=1}^N \log \sigma(r(x^i, y_+^i) - r(x^i, y_-^i)).$$

11

RLHF: policy optimization

Policy optimization via reward maximization

Find π that (approximately) maximizes the objective w.r.t. r

$$J(r,\pi) = \underset{\substack{x \sim \rho, \\ y \sim \pi(\cdot|x)}}{\mathbb{E}} \left[r(x,y) \right] - \beta \underset{x \sim \rho}{\mathbb{E}} \left[\mathsf{KL} \left(\pi(\cdot|x) \parallel \pi_{\mathrm{ref}}(\cdot|x) \right) \right]$$

- $\beta > 0$: KL regularization parameter;
- $\pi_{\rm ref}$: a reference policy, typically the model after SFT;
- $\rho \in \Delta(\mathcal{X})$: prompt distribution.

— (Rafailov et al., 2023)

- 1. Reward learning: $\widehat{r} \leftarrow \operatorname*{argmin}_{r} \ell(r, \mathcal{D})$
 - 2. Policy learning: $\widehat{\pi} \leftarrow \operatorname*{argmax}_{\pi} J(\widehat{r}, \pi)$

— (Rafailov et al., 2023)

Observation: the optimal π w.r.t. r admits a closed-form solution

$$\pi_r = \operatorname*{argmax}_{\pi} J(r,\pi) \iff \pi_r(y|x) = \frac{\pi_{\mathrm{ref}}(y|x) \exp(r(x,y)/\beta)}{Z(r,x)}.$$

— (Rafailov et al., 2023)

Observation: the optimal π w.r.t. r admits a closed-form solution

$$\pi_r = \operatorname*{argmax}_{\pi} J(r,\pi) \iff \pi_r(y|x) = \frac{\pi_{\mathrm{ref}}(y|x) \exp(r(x,y)/\beta)}{Z(r,x)}.$$

ullet The reward function r in terms of its optimal π_r is

$$r(x,y) = \underbrace{\beta\Big(\log \pi_r(y|x) - \log \pi_{\mathrm{ref}}(y|x) + \log Z(r,x)\Big)}_{=:r(\pi)}.$$

— (Rafailov et al., 2023)

Observation: the optimal π w.r.t. r admits a closed-form solution

$$\pi_r = \operatorname*{argmax}_{\pi} J(r,\pi) \iff \pi_r(y|x) = \frac{\pi_{\mathrm{ref}}(y|x) \exp(r(x,y)/\beta)}{Z(r,x)}.$$

ullet The reward function r in terms of its optimal π_r is

$$r(x,y) = \underbrace{\beta \Big(\log \pi_r(y|x) - \log \pi_{\mathrm{ref}}(y|x) + \log Z(r,x) \Big)}_{=:r(\pi)}.$$

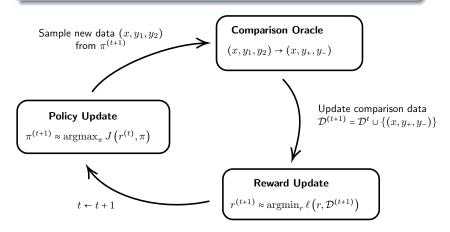
• The two-step procedure is equivalent to

$$\widehat{\pi} \leftarrow \operatorname*{argmin}_{\pi} \ell(r(\pi), \mathcal{D}) = -\sum_{i=1}^{N} \log \sigma \left(\beta \log \frac{\pi(y_{+}^{i}|x^{i})}{\pi_{\mathrm{ref}}(y_{+}^{i}|x^{i})} - \beta \log \frac{\pi(y_{-}^{i}|x^{i})}{\pi_{\mathrm{ref}}(y_{-}^{i}|x^{i})} \right).$$

Single-step and policy-only! Very popular in practice.

Online RLHF

Leverage online data collection to improve data coverage - how do we perform **exploration** in the policy space directly?



• Optimistic MLE: Bias the estimate towards the models with higher optimal objective $J^{\star}(r) = \max_{\pi} J(r,\pi)$ by

$$r^{(t+1)} \leftarrow \operatorname*{argmin}_r \{\ell(r, \mathcal{D}^{(t)}) - \alpha J^{\star}(r)\}.$$

See (Kumar & Lin, 1982) and follow-ups.

• Optimistic MLE: Bias the estimate towards the models with higher optimal objective $J^{\star}(r) = \max_{\pi} J(r,\pi)$ by

$$r^{(t+1)} \leftarrow \operatorname*{argmin}_r \{\ell(r, \mathcal{D}^{(t)}) - \alpha J^{\star}(r)\}.$$

See (Kumar & Lin, 1982) and follow-ups.

• The update is not well-defined: BT model cannot distinguish between r and $r+c\cdot 1$, while

$$J^{\star}(r+c\cdot\mathbf{1})=J^{\star}(r)+c.$$

• Optimistic MLE: Bias the estimate towards the models with higher optimal objective $J^{\star}(r) = \max_{\pi} J(r,\pi)$ by

$$r^{(t+1)} \leftarrow \underset{r \in \mathcal{R}}{\operatorname{argmin}} \{ \ell(r, \mathcal{D}^{(t)}) - \alpha J^{\star}(r) \}.$$

See (Kumar & Lin, 1982) and follow-ups.

• The update is not well-defined: BT model cannot distinguish between r and $r + c \cdot 1$, while

$$J^{\star}(r+c\cdot\mathbf{1})=J^{\star}(r)+c.$$

 We can resolve the shift ambiguity by focusing on the following equivalent class of reward functions:

$$\mathcal{R} = \left\{ r : \underset{x \sim \rho, y \sim \pi_{\text{cal}}(\cdot \mid x)}{\mathbb{E}} \left[r(x, y) \right] = 0 \right\}.$$

• Optimistic MLE: Bias the estimate towards the models with higher optimal objective $J^{\star}(r) = \max_{\pi} J(r,\pi)$ by

$$r^{(t+1)} \leftarrow \underset{r \in \mathcal{R}}{\operatorname{argmin}} \{ \ell(r, \mathcal{D}^{(t)}) - \alpha J^{\star}(r) \}.$$

See (Kumar & Lin, 1982) and follow-ups.

• The update is not well-defined: BT model cannot distinguish between r and $r + c \cdot 1$, while

$$J^{\star}(r+c\cdot\mathbf{1})=J^{\star}(r)+c.$$

 We can resolve the shift ambiguity by focusing on the following equivalent class of reward functions:

$$\mathcal{R} = \left\{ r : \underset{x \sim \rho, y \sim \pi_{\text{cal}}(\cdot | x)}{\mathbb{E}} \left[r(x, y) \right] = 0 \right\}.$$

Can we avoid solving a bilevel optimization problem?

• The optimal policy admits the following closed-form solution:

$$\pi_r = \operatorname*{argmax}_{\pi} J(r,\pi) \iff \pi_r(y|x) = \frac{\pi_{\mathrm{ref}}(y|x) \exp(r(x,y)/\beta)}{Z(r,x)}.$$

• The optimal policy admits the following closed-form solution:

$$\pi_r = \operatorname*{argmax}_{\pi} J(r,\pi) \iff \pi_r(y|x) = \frac{\pi_{\mathrm{ref}}(y|x) \exp(r(x,y)/\beta)}{Z(r,x)}.$$

• We can write the $J^{\star}(r)$ as

$$J^{\star}(r) = \mathbb{E}_{x \sim \rho, y \sim \pi_{r}(\cdot|x)} \left[r(x, y) - \beta \log \frac{\pi_{r}(y|x)}{\pi_{ref}(y|x)} \right]$$
$$= \mathbb{E}_{x \sim \rho, y \sim \pi_{r}(\cdot|x)} \left[\log Z(r, x) \right]$$

• The optimal policy admits the following closed-form solution:

$$\pi_r = \operatorname*{argmax}_{\pi} J(r,\pi) \iff \pi_r(y|x) = \frac{\pi_{\mathrm{ref}}(y|x) \exp(r(x,y)/\beta)}{Z(r,x)}.$$

• We can write the $J^{\star}(r)$ as

$$J^{\star}(r) = \underset{x \sim \rho, y \sim \pi_{r}(\cdot|x)}{\mathbb{E}} \left[r(x, y) - \beta \log \frac{\pi_{r}(y|x)}{\pi_{ref}(y|x)} \right]$$
$$= \underset{x \sim \rho, y \sim \pi_{r}(\cdot|x)}{\mathbb{E}} \left[\log Z(r, x) \right]$$
$$= \underset{x \sim \rho, y \sim \pi_{cal}(\cdot|x)}{\mathbb{E}} \left[\log Z(r, x) \right]$$

• The optimal policy admits the following closed-form solution:

$$\pi_r = \operatorname*{argmax}_{\pi} J(r,\pi) \iff \pi_r(y|x) = \frac{\pi_{\mathrm{ref}}(y|x) \exp(r(x,y)/\beta)}{Z(r,x)}.$$

• We can write the $J^*(r)$ as

$$J^{\star}(r) = \underset{x \sim \rho, y \sim \pi_r(\cdot|x)}{\mathbb{E}} \left[r(x, y) - \beta \log \frac{\pi_r(y|x)}{\pi_{\text{ref}}(y|x)} \right]$$
$$= \underset{x \sim \rho, y \sim \pi_r(\cdot|x)}{\mathbb{E}} \left[\log Z(r, x) \right]$$
$$= \underset{x \sim \rho, y \sim \pi_{\text{cal}}(\cdot|x)}{\mathbb{E}} \left[\log Z(r, x) \right]$$
$$= \underset{x \sim \rho, y \sim \pi_{\text{cal}}(\cdot|x)}{\mathbb{E}} \left[r(x, y) - \beta \log \frac{\pi_r(y|x)}{\pi_{\text{ref}}(y|x)} \right]$$

• The optimal policy admits the following closed-form solution:

$$\pi_r = \operatorname*{argmax}_{\pi} J(r,\pi) \iff \pi_r(y|x) = \frac{\pi_{\mathrm{ref}}(y|x) \exp(r(x,y)/\beta)}{Z(r,x)}.$$

• We can write the $J^{\star}(r)$ as

$$J^{\star}(r) = \underset{x \sim \rho, y \sim \pi_r(\cdot|x)}{\mathbb{E}} \left[r(x, y) - \beta \log \frac{\pi_r(y|x)}{\pi_{\text{ref}}(y|x)} \right]$$
$$= \underset{x \sim \rho, y \sim \pi_r(\cdot|x)}{\mathbb{E}} \left[\log Z(r, x) \right]$$
$$= \underset{x \sim \rho, y \sim \pi_{\text{cal}}(\cdot|x)}{\mathbb{E}} \left[\log Z(r, x) \right]$$
$$= \underset{x \sim \rho, y \sim \pi_{\text{cal}}(\cdot|x)}{\mathbb{E}} \left[r(x, y) - \beta \log \frac{\pi_r(y|x)}{\pi_{\text{ref}}(y|x)} \right]$$

Value-incentivized preference optimization (VPO)

$$\pi^{(t+1)} \leftarrow \underset{\pi}{\operatorname{argmin}} \{ \ell(r(\pi), \mathcal{D}^{(t)}) - \alpha J^{\star}(r(\pi)) \}.$$

• The negative log-likelihood term reformulates into DPO loss:

$$\ell(r(\pi), \mathcal{D}^{(t)}) = -\sum_{(x, y_+, y_-) \in \mathcal{D}^{(t)}} \log \sigma \left(\beta \left(\log \frac{\pi(y_+|x)}{\pi_{\text{ref}}(y_+|x)} - \log \frac{\pi(y_-|x)}{\pi_{\text{ref}}(y_-|x)} \right) \right).$$

• The reward bias term can be written as:

$$J^{\star}(r(\pi)) = -\beta \mathop{\mathbb{E}}_{x \sim \rho, y \sim \pi_{\text{cal}}(\cdot \mid x)} \left[\log \pi(y \mid x) - \log \pi_{\text{ref}}(y \mid x) \right],$$

which is essentially becomes a reverse-KL regularization that maximizes $\mathsf{KL}\big(\pi_{\mathrm{cal}}(\cdot|x)\,\|\,\pi(\cdot|x)\big)$.

Main results - online VPO

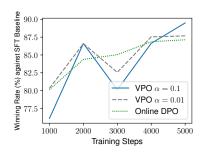
Theorem (Cen et al., ICLR 2025)

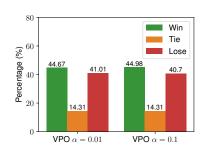
Assume that reward estimates $\|r^{(t)}\|_{\infty} \leq B$ and $\|r^{\star}\|_{\infty} \leq B$ for some B > 0. With high probability we have

$$\sum_{t=1}^{T} \left[J^{\star}(r^{\star}) - J(r^{\star}, \pi^{(t)}) \right] \leq \widetilde{O}(\sqrt{T}).$$

- We can obtain similar regret bounds under general function approximation of the reward model.
- Consistent with the $\widetilde{O}(\sqrt{T})$ regret for online RL with UCB-type bonus.
- Offline RL: flipping the sign of α leads to a pessimistic algorithm.

Toy experiments on LLM





Left: Win rate of VPO and Online DPO against the SFT baseline on TL;DR task.

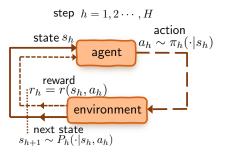
Right: Win/tie/loss rate of VPO with different exploration rate α = {0.01, 0.1}, directly against Online DPO.

Value-incentivized exploration for online RL

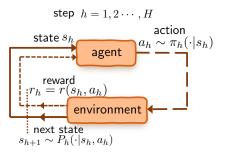
Tong Yang CMU

Bo Dai GaTech/Google

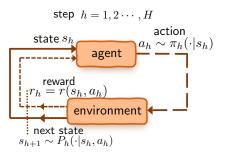
Lin Xiao Meta



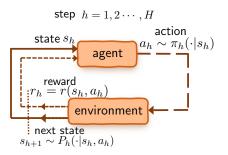
ullet H: horizon length; \mathcal{S} : state space; \mathcal{A} : action space



- H: horizon length; S: state space; A: action space
- $P_h(\cdot|s,a)$: transition probability in step h; $r_h(s_h,a_h) \in [0,1]$: immediate reward in step h



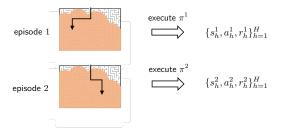
- H: horizon length; S: state space; A: action space
- $P_h(\cdot|s,a)$: transition probability in step h; $r_h(s_h,a_h) \in [0,1]$: immediate reward in step h
- $\pi = \{\pi_h\}_{1 \le h \le H}$: policy



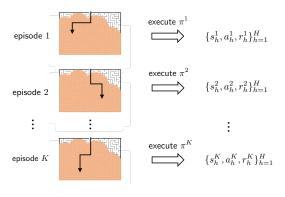
- H: horizon length; S: state space; A: action space
- $P_h(\cdot|s,a)$: transition probability in step h; $r_h(s_h,a_h) \in [0,1]$: immediate reward in step h
- $\pi = {\{\pi_h\}_{1 < h < H}}$: policy
- value and Q-functions: $V_h^{\pi}(s) = \mathbb{E}\left[\sum_{t=h}^H r_t(s_t, a_t) \,\middle|\, s_h = s\right]$ and $Q_h^{\pi}(s, a) = \mathbb{E}\left[\sum_{t=h}^H r_t(s_t, a_t) \,\middle|\, s_h = s, \frac{a_h = a}{a}\right]$.

Sequentially execute MDP for K episodes, each consisting of H steps

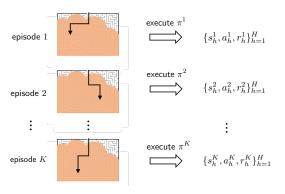
Sequentially execute MDP for K episodes, each consisting of H steps



Sequentially execute MDP for K episodes, each consisting of H steps



Sequentially execute MDP for K episodes, each consisting of H steps



Goal: given initial states $s_1^k \sim \rho$, minimize

$$\mathsf{Regret}(T) \coloneqq \sum_{k=1}^K \left(V_1^{\star}(\rho) - V_1^{\pi^k}(\rho) \right).$$

Optimistic regularization via MEX

MEX (maximize to explore) (Liu et al, 2024) optimizes $f \coloneqq Q_f$ via

$$f_t = \arg\sup_{f \in \mathcal{Q}} \ \underbrace{\mathbb{E}_{s_1 \sim \rho} \Big[\max_{a \in \mathcal{A}} Q_{f,1}(s_1, a) \Big]}_{\text{optimal value}} - \alpha \ \underbrace{\mathcal{L}_t(f)}_{\text{data consistency}} \ .$$

• $\mathcal{L}_t(f)$ is the data consistency term that minimizes the Bellman error using the collected data $\{\mathcal{D}_{t-1,h}\}_{h=1}^H$:

$$\mathcal{L}_{t}(f) = \sum_{h=1}^{H} \left[\sum_{\xi_{h} \in \mathcal{D}_{t-1,h}} \left(r_{h}(s_{h}, a_{h}) + \max_{a \in \mathcal{A}} Q_{f,h+1}(s_{h+1}, a) - Q_{f,h}(s_{h}, a_{h}) \right)^{2} - \inf_{g_{h} \in \mathcal{Q}_{h}} \sum_{\xi_{h} \in \mathcal{D}_{t-1,h}} \left(r_{h}(s_{h}, a_{h}) + \max_{a \in \mathcal{A}} Q_{f,h+1}(s_{h+1}, a) - g_{h}(s_{h}, a_{h}) \right)^{2} \right],$$

where $\xi_h = (s_h, a_h, s_{h+1})$ is the transition tuple.

Optimistic regularization via MEX

MEX (maximize to explore) (Liu et al, 2024) optimizes $f := Q_f$ via

$$f_t = \arg\sup_{f \in \mathcal{Q}} \ \underbrace{\mathbb{E}_{s_1 \sim \rho} \Big[\max_{a \in \mathcal{A}} Q_{f,1}(s_1, a) \Big]}_{\text{optimal value}} - \alpha \ \underbrace{\mathcal{L}_t(f)}_{\text{data consistency}} \ .$$

• $\mathcal{L}_t(f)$ is the data consistency term that minimizes the Bellman error using the collected data $\{\mathcal{D}_{t-1,h}\}_{h=1}^H$:

$$\mathcal{L}_{t}(f) = \sum_{h=1}^{H} \left[\sum_{\xi_{h} \in \mathcal{D}_{t-1,h}} \left(r_{h}(s_{h}, a_{h}) + \max_{a \in \mathcal{A}} Q_{f,h+1}(s_{h+1}, a) - Q_{f,h}(s_{h}, a_{h}) \right)^{2} - \inf_{g_{h} \in \mathcal{Q}_{h}} \sum_{\xi_{h} \in \mathcal{D}_{t-1,h}} \left(r_{h}(s_{h}, a_{h}) + \max_{a \in \mathcal{A}} Q_{f,h+1}(s_{h+1}, a) - g_{h}(s_{h}, a_{h}) \right)^{2} \right],$$

where $\xi_h = (s_h, a_h, s_{h+1})$ is the transition tuple.

- ✓ Near-optimal regret without explicit uncertainty estimation
- **X** The optimization is intractable.

A primal-dual perspective of MEX

How do we understand MEX? Introducing the primal problem:

$$\begin{split} \sup_{f \in \mathcal{Q}} & \mathbb{E}_{s_1 \sim \rho} \Big[\max_{a \in \mathcal{A}} Q_{f,1}(s_1, a) \Big] \\ \text{s.t.} & Q_{f,h}(s, a) = r_h(s, a) + \mathbb{E}_{s' \sim P_h(\cdot | s, a)} \Big[\max_{a \in \mathcal{A}} Q_{f,h+1}(s', a) \Big] \quad \forall (s, a, h). \end{split}$$

Bellman's optimality equation

A primal-dual perspective of MEX

How do we understand MEX? Introducing the primal problem:

$$\sup_{f \in \mathcal{Q}} \mathbb{E}_{s_1 \sim \rho} \Big[\max_{a \in \mathcal{A}} Q_{f,1}(s_1, a) \Big]$$

$$\text{s.t.} \ \ Q_{f,h}(s,a) = r_h(s,a) + \mathbb{E}_{s' \sim P_h(\cdot \mid s,a)} \Big[\max_{a \in \mathcal{A}} Q_{f,h+1}(s',a) \Big] \quad \forall (s,a,h).$$

Bellman's optimality equation

• With the dual variables $\{\lambda_h\}_{h\in[H]}$, its regularized Lagrangian can be written as

$$\sup_{f \in \mathcal{Q}} \inf_{\{\lambda_h\}_{h \in [H]}} \mathbb{E}_{s_1 \sim \rho} \Big[\max_{a \in \mathcal{A}} Q_{f,1}(s_1, a) \Big]$$

$$+ \sum_{h=1}^{H} \mathbb{E}_{(s,a,s') \sim \mathcal{D}_h} \Big\{ \lambda_h(s, a) \Big(r_h(s, a) + \max_{a \in \mathcal{A}} Q_{f,h+1}(s', a) - Q_{f,h}(s, a) \Big) + \frac{\beta}{2} \lambda_h(s, a)^2 \Big\},$$

where $\beta > 0$ is the regularization parameter of the dual variable.

• Reparameterizing $\lambda_h \coloneqq (Q_{f,h} - g_h)/\beta$ leads to (population) of MEX.

An exploratory actor-critic framework

Actor-critic framework: introduce an equivalent primal problem that jointly optimizes over both the Q-function and the policy π :

$$\sup_{f \in \mathcal{Q}, \, \pi \in \mathcal{P}} \mathbb{E}_{s_1 \sim \rho, \, a_1 \sim \pi_1(\cdot \mid s_1)} \left[Q_{f,1}(s_1, a_1) \right]$$
s.t.
$$Q_{f,h}(s, a) = r_h(s, a) + \mathbb{E}_{\substack{s' \sim P_h(\cdot \mid s, a) \\ a' \sim \pi_{h+1}(\cdot \mid s')}} \left[Q_{f,h+1}(s', a') \right], \, \, \forall \, (s, a, h).$$

Bellman's consistency equation

An exploratory actor-critic framework

Actor-critic framework: introduce an equivalent primal problem that jointly optimizes over both the Q-function and the policy π :

$$\sup_{f \in \mathcal{Q}, \, \pi \in \mathcal{P}} \mathbb{E}_{s_1 \sim \rho, \, a_1 \sim \pi_1(\cdot \mid s_1)} \left[Q_{f,1}(s_1, a_1) \right]$$
s.t.
$$Q_{f,h}(s, a) = r_h(s, a) + \mathbb{E}_{\substack{s' \sim P_h(\cdot \mid s, a) \\ a' \sim \pi_{h+1}(\cdot \mid s')}} \left[Q_{f,h+1}(s', a') \right], \, \forall \, (s, a, h).$$
Bellman's consistency equation

Following similar arguments gives rise to a (population-level) actor-critic method that optimizes jointly over the Q-function Q_f and policy π :

$$\sup_{f,\pi\in\mathcal{P}} \left\{ \mathbb{E}_{s\sim\rho,a\sim\pi_{1}(\cdot|s)} \left[Q_{f,1}(s,a) \right] - \sum_{h=1}^{H} \frac{1}{2\beta} \sup_{g_{h}\in\mathcal{Q}_{h}} \mathbb{E}_{(s,a,s')\sim\mathcal{D}_{h}} \mathbb{E}_{a'\sim\pi_{h+1}(\cdot|s')} \left[\left(r_{h}(s,a) + Q_{f,h+1}(s',a') - Q_{f,h}(s,a) \right)^{2} - \left(r_{h}(s,a) + Q_{f,h+1}(s',a') - g_{h}(s,a) \right)^{2} \right] \right\}.$$

Value-incentivized actor-critic method

Value-incentivized actor-critic (VAC) method

For $t = 1, \dots, T$,

1. Update Q-function estimation and policy:

$$(f_t, \pi_t) \leftarrow \arg \sup_{f \in \mathcal{Q}, \pi \in \mathcal{P}} \Big\{ \underbrace{V_f^{\pi}(\rho)}_{value \ incentive} - \alpha \underbrace{\mathcal{L}_t(f, \pi)}_{data \ consistency} \Big\}.$$

- 2. Data collection: run π_t to obtain a trajectory $\{s_{t,h}, a_{t,h}\}_{h=1}^H$, and update the dataset $\mathcal{D}_{t,h} = \mathcal{D}_{t-1,h} \cup \{(s_{t,h}, a_{t,h}, s_{t,h+1})\}$, $\forall h \in [H]$.
- $V_f^{\pi}(\rho) = \mathbb{E}_{s \sim \rho, a \sim \pi_1(\cdot | s)} \left[Q_{f,1}(s, a) \right]$ is the optimistic regularization;
- $\mathcal{L}_t(f,\pi)$ is the data consistency term

$$\mathcal{L}_{t}(f,\pi) = \sum_{h=1}^{H} \left\{ \sum_{\xi_{h} \in \mathcal{D}_{t-1,h}} \mathbb{E}_{a' \sim \pi_{h+1}(\cdot|s_{h+1})} \left(r_{h}(s_{h},a_{h}) + Q_{f,h+1}(s_{h+1},a') - Q_{f,h}(s_{h},a_{h}) \right)^{2} \right\}$$

$$-\inf_{g_h \in \mathcal{Q}_h} \sum_{\xi_h \in \mathcal{D}_{t-1,h}} \mathbb{E}_{a' \sim \pi_{h+1}(\cdot | s_{h+1})} \Big(r_h(s_h, a_h) + Q_{f,h+1}(s_{h+1}, a') - g_h(s_h, a_h) \Big)^2 \bigg\},$$

where $\xi_h = (s_h, a_h, s_{h+1})$ is the transition tuple.

Theoretical guarantees

Theorem (Yang et al, 2025)

Under the linear MDP model, with linear function approximation on the Q function and the policy class, with high probability, the regret of VAC is bounded by

$$\widetilde{\mathcal{O}}\left(dH^2\sqrt{T}\right)$$
,

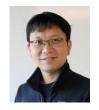
where d is the dimension of the linear MDP.

- The regret bound is near-optimal for linear MDP up to a factor of \sqrt{H} , matching UCB-type guarantees.
- We also achieve comparable statistical guarantees as MEX in the more general function approximation setting.

An optimization-friendly actor-critic framework with provably-efficient exploration without explicit uncertainty estimation!

Value-incentivized exploration for competitive games

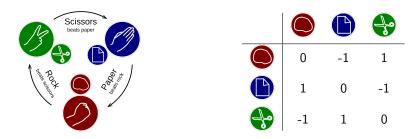
Tong Yang CMU



Bo Dai GaTech/Google

Lin Xiao Meta

Zero-sum two-player matrix game



Zero-sum two-player matrix game

$$\max_{\mu \in \Delta(\mathsf{A})} \min_{\nu \in \Delta(\mathsf{B})} \mu^{\mathsf{T}} A \nu - \beta \mathsf{KL} \big(\mu \parallel \mu_{\mathsf{ref}} \big) + \beta \mathsf{KL} \big(\nu \parallel \nu_{\mathsf{ref}} \big)$$

- \mathcal{A} , \mathcal{B} : action space of the two players;
- $\mu \in \Delta(\mathcal{A})$, $\nu \in \Delta(\mathcal{B})$: policies of the two players;
- $\mu_{\text{ref}} \in \Delta(\mathcal{A})$, $\nu_{\text{ref}} \in \Delta(\mathcal{B})$: reference policies of the two players;
- $A \in \mathbb{R}^{|\mathcal{A}| \times |\mathcal{B}|}$: payoff matrix.

Motivation: game-theoretic view of RLHF

RLHF suffers from reward hacking. Call for a game-theoretic view! (Swamy et al., 2023, Munos et al., 2023, Gui et al., 2024)

• Given a policy pair π, π' , the win rate of π over π' is given as

$$P(\pi > \pi') \coloneqq \underset{\substack{x \sim \rho, y \sim \pi(\cdot|x), \\ y' \sim \pi'(\cdot|x)}}{\mathbb{E}} P_x(y, y') = \mathbb{E}_{x \sim \rho} \underbrace{\pi^{\mathsf{T}}(\cdot|x) P_x(\cdot, \cdot) \pi'(\cdot|x)}_{\text{bilinear}}.$$

where $P_x : \mathcal{Y} \times \mathcal{Y}$ is a *symmetric* payoff matrix between (y, y') for prompt x.

Motivation: game-theoretic view of RLHF

RLHF suffers from reward hacking. Call for a game-theoretic view! (Swamy et al., 2023, Munos et al., 2023, Gui et al., 2024)

• Given a policy pair π, π' , the win rate of π over π' is given as

$$P(\pi > \pi') \coloneqq \underset{\substack{x \sim \rho, y \sim \pi(\cdot|x), \\ y' \sim \pi'(\cdot|x)}}{\mathbb{E}} P_x(y, y') = \mathbb{E}_{x \sim \rho} \underbrace{\pi^{\mathsf{T}}(\cdot|x) P_x(\cdot, \cdot) \pi'(\cdot|x)}_{\text{bilinear}}.$$

where $P_x : \mathcal{Y} \times \mathcal{Y}$ is a *symmetric* payoff matrix between (y, y') for prompt x.

• Consider the two-player win-rate game:

$$\max_{\pi} \min_{\pi'} P(\pi \succ \pi') - \beta \mathsf{KL} \big(\pi \, \| \, \pi_{\mathrm{ref}} \big) + \beta \mathsf{KL} \big(\pi' \, \| \, \pi_{\mathrm{ref}} \big)$$

which is an KL-regularized matrix game.

Self-play and win rate dominance

Theorem (Yang et al., AISTATS 2025)

The Nash equilibrium of the win-rate game $(\pi_{\beta}^{\star}, \pi_{\beta}^{\star})$ exists. Moreover, when $\beta > 0$, $(\pi_{\beta}^{\star}, \pi_{\beta}^{\star})$ is the unique Nash equilibrium. We have

$$\pi_{\beta}^{\star} \in \arg\max_{\pi} P(\pi > \pi_{\beta}^{\star}) - \beta \mathsf{KL}(\pi \parallel \pi_{\mathrm{ref}})$$

Self-play and win rate dominance

Theorem (Yang et al., AISTATS 2025)

The Nash equilibrium of the win-rate game $(\pi_{\beta}^{\star}, \pi_{\beta}^{\star})$ exists. Moreover, when $\beta > 0$, $(\pi_{\beta}^{\star}, \pi_{\beta}^{\star})$ is the unique Nash equilibrium. We have

$$\pi_{\beta}^{\star} \in \arg\max_{\pi} P(\pi > \pi_{\beta}^{\star}) - \beta \mathsf{KL}(\pi \parallel \pi_{\mathrm{ref}})$$

Win rate dominance: the fixed-point equation identifies a policy with a higher winning probability against any other policy. When $\beta = 0$,

$$\pi_0^\star \in \arg\max_{\pi} P(\pi \succ \pi_0^\star) \qquad \Longrightarrow \qquad P(\pi \succ \pi_0^\star) \leq 1/2 \quad \forall \pi.$$

NE of win rate matrix game = win rate dominance policy

Value-incentivized matrix game with bandit feedback

How do we optimistically optimize the payoff matrix with bandit feedback?

Value-incentivized matrix game with bandit feedback

How do we optimistically optimize the payoff matrix with bandit feedback?

Value-incentivized model update:

$$\omega_t = \underset{\omega \in \Omega}{\operatorname{argmin}} \sum_{(i,j,\widehat{A}(i,j)) \in \mathcal{D}_{t-1}} \left(A_{\omega}(i,j) - \widehat{A}(i,j) \right)^2 \underbrace{-\alpha f^{\star,\nu_t}(A_{\omega}) + \alpha f^{\mu_t,\star}(A_{\omega})}_{\text{duality gap}},$$

where (μ_t, ν_t) is the NE of the matrix game with the param. ω_{t-1} .

Value-incentivized matrix game with bandit feedback

How do we optimistically optimize the payoff matrix with bandit feedback?

Value-incentivized model update:

$$\omega_t = \underset{\omega \in \Omega}{\operatorname{argmin}} \sum_{(i,j,\widehat{A}(i,j)) \in \mathcal{D}_{t-1}} \left(A_{\omega}(i,j) - \widehat{A}(i,j) \right)^2 \underbrace{-\alpha f^{\star,\nu_t}(A_{\omega}) + \alpha f^{\mu_t,\star}(A_{\omega})}_{\text{duality gap}},$$

where (μ_t, ν_t) is the NE of the matrix game with the param. ω_{t-1} .

Computational tractability: the regularization term can be computed in closed form:

$$-\beta \Bigg[\log \Bigg(\sum_{i=1}^n \mu_{\mathsf{ref},i} \exp \Bigg(\frac{A_\omega(i,:)\nu_t}{\beta} \Bigg) \Bigg) + \log \Bigg(\sum_{j=1}^m \nu_{\mathsf{ref},j} \exp \Bigg(-\frac{\mu_t^\intercal A_\omega(:,j)}{\beta} \Bigg) \Bigg) \Bigg] + C,$$

allowing single-loop gradient-based updates on the model parameter.

Regret for value-incentivized matrix game

$$\begin{split} \operatorname{regret}(T) \coloneqq \sum_{t=1}^{T} \operatorname{Dualgap}(\mu_t, \nu_t) \\ = \underbrace{\sum_{t=1}^{T} \left(f^{\star, \nu_t}(A) - f^{\star}(A) \right)}_{\text{regret for min-player}} + \underbrace{\sum_{t=1}^{T} \left(f^{\star}(A) - f^{\mu_t, \star}(A) \right)}_{\text{regret for max-player}} \end{split}$$

Theorem (Yang et al., ICML 2025)

Under the linear function approximation of dimension d and realizability assumption, with high probability, the regret is on the order of

$$\widetilde{\mathcal{O}}(d\sqrt{T}).$$

• near-optimal regret as it matches with the $\Omega(d\sqrt{T})$ lower bound.

 The algorithm can be generalized to the Markov game setting for finding both NE and CCEs:

$$f_t = \arg\min_{f \in \mathcal{F}} \mathcal{L}_t(f) - \alpha \sum_{n=1}^N V_{f,n}^{\star, \boldsymbol{\pi}_t^{-n}}(\rho)$$

 The algorithm can be generalized to the Markov game setting for finding both NE and CCEs:

$$f_t = \arg\min_{f \in \mathcal{F}} \mathcal{L}_t(f) - \alpha \sum_{n=1}^N V_{f,n}^{\star, \boldsymbol{\pi}_t^{-n}}(\rho)$$

Here, n is the number of agents,

• $\mathcal{L}_t(f)$, is the negative log-likehood of sample transitions,

 The algorithm can be generalized to the Markov game setting for finding both NE and CCEs:

$$f_t = \arg\min_{f \in \mathcal{F}} \mathcal{L}_t(f) - \alpha \sum_{n=1}^N V_{f,n}^{\star, \boldsymbol{\pi}_t^{-n}}(\rho)$$

- $\mathcal{L}_t(f)$, is the negative log-likehood of sample transitions,
- $V_{f,n}^{\star,\pi_t^{-n}}(\rho)$ is the **best-response** values of each agent when other agents' policies are fixed.

 The algorithm can be generalized to the Markov game setting for finding both NE and CCEs:

$$f_t = \arg\min_{f \in \mathcal{F}} \mathcal{L}_t(f) - \alpha \sum_{n=1}^N V_{f,n}^{\star, \boldsymbol{\pi}_t^{-n}}(\rho)$$

- $\mathcal{L}_t(f)$, is the negative log-likehood of sample transitions,
- $V_{f,n}^{\star,\pi_t^{-n}}(\rho)$ is the **best-response** values of each agent when other agents' policies are fixed.

 The algorithm can be generalized to the Markov game setting for finding both NE and CCEs:

$$f_t = \arg\min_{f \in \mathcal{F}} \mathcal{L}_t(f) - \alpha \sum_{n=1}^N V_{f,n}^{\star, \boldsymbol{\pi}_t^{-n}}(\rho)$$

- $\mathcal{L}_t(f)$, is the negative log-likehood of sample transitions,
- $V_{f,n}^{\star,\pi_t^{-n}}(\rho)$ is the **best-response** values of each agent when other agents' policies are fixed.
- Achieves near-optimal regret, and much easier to implement than using the optimal game value as in previous work (Liu et al., 2024).

Summary

Optimism via regularization in the face of uncertainty:

$$f_t = \arg\min_{f \in \mathcal{F}} \ \underbrace{\mathcal{L}_t(f; \mathcal{D}_t)}_{\text{data consistency}} - \alpha \ \underbrace{V^*(f)}_{\text{optimal value}}$$

What makes it tractable: smoothing and actor-critic frameworks.

Theoretically-principled and practically-performant exploration via optimistic regularization under complex function approximation

Summary

Optimism via regularization in the face of uncertainty:

$$f_t = \arg\min_{f \in \mathcal{F}} \quad \underbrace{\mathcal{L}_t(f; \mathcal{D}_t)}_{\text{data consistency}} - \alpha \quad \underbrace{V^{\star}(f)}_{\text{optimal value}}$$

What makes it tractable: smoothing and actor-critic frameworks.

Theoretically-principled and practically-performant exploration via optimistic regularization under complex function approximation

Future work:

- Break the curse of multi-agency in the game setting.
- Applications to finetuning LLMs.

Thanks!

- Value-Incentivized Preference Optimization: A Unified Approach to Online and Offline RLHF, ICLR, 2025.
- Faster WIND: Accelerating Iterative Best-of-N Distillation for LLM Alignment, AISTATS, 2025.
- Incentivize without Bonus: Provably Efficient Model-based Online Multi-agent RL for Markov Games, ICML, 2025.
- Exploration from a Primal-Dual Lens: Value-Incentivized Actor-Critic Methods for Sample-Efficient Online RL, arXiv:2506.22401, 2025.

https://yuejiechi.github.io/