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Reinforcement learning (RL)

In RL, an agent learns by interacting with an unknown environment
through trial-and-error to maximize long-term total reward.

Atlast — a computer program that
can beat a champion Go player PAGE 464

ALL SYSTEMS GO

SON

‘Recalculating ... recalculating ...”




More successes of RL since AlphaGo

resource management

et |
UAV and drones

nuclear plant control

strategic games



One more: RL for foundation models

(&) chatGPT

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
anoutput.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.
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Alignment: safety, human value..

What can | help with?
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Question: If a > 1, then the sum of the real solutions of ya - ya +x = x is equal to
Response: <think>

To solve the equation ya - va +x = x, let’s start by squaring both - -
(Va=vaws) =t = a-aFx =2

Rearrange to isolate the inner square root term:

(@-¥)P=a+x = @?-2a+ ()2 =a+x = x*-2a-x+(a-a) =0

'REEE
R EEE

Wait, wait. Wait. That's an aha moment I can flag here.
Let's reevaluate this step-by-step to identify if the correct sum can be
We started with the equation:

fa-Va+x=x
First, let's square ba!h s
a-Varx=x = 2
Next, I could square both sdes again, treating the equation:

Reasoning: math, coding...



Challenges of RL

® explore or exploit: unknown or changing environments

® credit assignment problem: delayed rewards or feedback

® enormous state and action space

This talk:
exploration with complex function approximation (like LLMs) J




Classical wisdom

Optimism via UCB in the face of uncertainty:

® explores the best optimistic estimates associated with the actions
® a common framework: utilize upper confidence bounds (UCB)

accounts for estimates + uncertainty level

-
=
Reward

Issue: UCB performs poorly under complex function approximation.
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This talk

Goal: theoretically-grounded and optimization-friendly exploration
scheme compatible with complex function approximation

Optimism via regularization in the face of uncertainty:

fe=argmin Li(f; D) —a V'(f)
feF ————— ——
data consistency optimal value

® f: can be either model-based or model-free.

® The key idea is inspired by the reward-biased estimation framework
(Kumar and Lin, 1982 and follow-ups) for adaptive control, which is
further developed recently for RL.

® This talk provides new computationally tractable and provably
efficient vignettes for RLHF, RL and competitive games.



Value-incentivized exploration in RLHF
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Language models as policies

;.Prompt: Explain reinforcement learning (RL).

Answer: Reinforcement learning (RL) is a type of

machine learning where an...
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Tran sformer/RNN¥ agent

Given prompt x € X, a language model generates an answer:

y -~ m(|z)
—
parameterized by LLM



Language models as policies

;.Prompt: Explain reinforcement learning (RL).

Answer: Reinforcement learning (RL) is a type of
machine learning where an agent :

/> learns
k’ sleeps
Transformer/RNN eats

Given prompt x € X, a language model generates an answer:

y o~ ()

—
parameterized by LLM



Reinforcement learning with human feedback (RLHF)
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! Who has > /
E‘better I \ prrreereeeen———— .
.................. ! United States &
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Goal: finetune the LLM to align with human preference
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Reinforcement learning with human feedback (RLHF)

............................

! Who has > /
E‘better I \ prrreereeeen———— .
.................. ! United States -

............................

Goal: finetune the LLM to align with human preference

Prototypical pipeline:
® Reward learning: learn a reward model from preference data;

® Policy optimization: optimize the LLM to maximize the reward.

10



RLHF: reward learning

Bradly-Terry model

The probability of pairwise comparison i > j is modeled by

exp(ry)

P(i>j)= exp(r;) +exp(ry)

= 0’(7‘; —7”;),

where r; € R is the score associated with item 1.

11



RLHF: reward learning

Bradly-Terry model

The probability of pairwise comparison i > j is modeled by

exp(r;)
exp(r;) +exp(ry)

PGi>j) = =O’(T’;—7”;),

where r; € R is the score associated with item 1.

®* Reward model: r* : X x ) — R, evaluating the quality of a
prompt-answer pair (z,y) that aligns with human preference;
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RLHF: reward learning

Bradly-Terry model

The probability of pairwise comparison i > j is modeled by

L exp(r}) .
P = 2 = =T ),
(i>7) exp(r}) + exp(r;) o(ri =rj)

where r; € R is the score associated with item 1.

®* Reward model: r* : X x ) — R, evaluating the quality of a
prompt-answer pair (z,y) that aligns with human preference;

* Reward learning: Given comparison data D = {(z%,3%,y")}Y,, the
MLE of the reward function is given by

rmLe = argmin (r, D),
T

where U(r,D) ==Y N logo(r(z’,yl) - r(zt, y')).



RLHF: policy optimization

Policy optimization via reward maximization

Find 7 that (approximately) maximizes the objective w.r.t. r

J(T‘,ﬂ') = ;cI~Ep [r(x,y)] - /Bm]]::p [KL(ﬂ'(|$) H 7Tref('|x))]

y~r (o)

® 3> 0: KL regularization parameter;
® T.f: a reference policy, typically the model after SFT;

® pe A(X): prompt distribution.

12



Direct Preference Optimization (DPO)

— (Rafailov et al., 2023)

1. Reward learning: 7 <« argmin £(r, D)

2. Policy learning: 7 « argmax J(7, )

13



Direct Preference Optimization (DPO)

— (Rafailov et al., 2023)

Observation: the optimal 7 w.r.t. 7 admits a closed-form solution

7T1ref(y|x) exp(r(x, y)/ﬂ) )

7 = argmax J(r,m) <= 7.(ylz) = Z(r,z)
- T,
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Direct Preference Optimization (DPO)

— (Rafailov et al., 2023)

Observation: the optimal 7 w.r.t. 7 admits a closed-form solution

7T1ref(y|x) exp(r(x, y)/ﬂ)
Z(r,x) ’

7 = argmax J(r,m) <= 7.(ylz) =
™

e The reward function r in terms of its optimal . is

r(z,y) = B(log 7, (ylz) - log Tret (y|z) +log Z(r,z)) .

=ir(m)
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Direct Preference Optimization (DPO)

— (Rafailov et al., 2023)

Observation: the optimal 7 w.r.t. 7 admits a closed-form solution

Wref(y|x) exp(r(x, y)/ﬁ) )

7 = argmax J(r,m) <= 7.(ylz) = Z(r,z)
- T,

e The reward function r in terms of its optimal . is

r(z,y) = B(logm,(ylz) - log mer (ylz) +log Z (7, x)) .

=ir(m)

e The two-step procedure is equivalent to

N T Q|
7 < argmin {(r(7),D) = - ) logo (,8 log 7r(y+La? ) - Blog 7r(y_|iac )
I i=1 7r1ref(y+|x1) 7r1ref(y—|xz)

Single-step and policy-only! Very popular in practice.

)

13



Online RLHF

Leverage online data collection to improve data coverage - how do we
perform exploration in the policy space directly?

Sample new data (z,y1,%2) Comparison Oracle

(t+1)
from (Lylvyz)%(zayhy—)

. Update comparison data
Policy Update DD =Dty {(z,y,,y-)}

7D x argmax, J (r®, 7)

Reward Update

t<t+1 (1) argmin, ¢ (7', D(t“))

14



Exploration via optimistic MLE

® Optimistic MLE: Bias the estimate towards the models with higher
optimal objective J*(r) = max, J(r,7) by

r*D « argmin{((r, D¥)-a.J* (r)}.

See (Kumar & Lin, 1982) and follow-ups.

15
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optimal objective J*(r) = max, J(r,7) by
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See (Kumar & Lin, 1982) and follow-ups.

® The update is not well-defined: BT model cannot distinguish
between r and r +¢- 1, while

J(r+c-1)=J(r) +ec
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Exploration via optimistic MLE
® Optimistic MLE: Bias the estimate towards the models with higher
optimal objective J*(r) = max, J(r,7) by

D argmin{(r, D) -a.J* (1)}
reR

See (Kumar & Lin, 1982) and follow-ups.

® The update is not well-defined: BT model cannot distinguish
between r and 7 + ¢- 1, while

J(r+c-1)=J(r) +ec

® We can resolve the shift ambiguity by focusing on the following
equivalent class of reward functions:

R:{r: E [r(x,y)]:()}.

T~ p,Y~Teal (o)
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Exploration via optimistic MLE
® Optimistic MLE: Bias the estimate towards the models with higher
optimal objective J*(r) = max, J(r,7) by

D argmin{(r, D) -a.J* (1)}
reR

See (Kumar & Lin, 1982) and follow-ups.

® The update is not well-defined: BT model cannot distinguish
between r and 7 + ¢- 1, while

J(r+c-1)=J(r) +ec

® We can resolve the shift ambiguity by focusing on the following
equivalent class of reward functions:

R:{r: E [r(x,y)]:()}.

Tp,y~Teal (-|2)

Can we avoid solving a bilevel optimization problem? J

15



Exploiting the structure of J(r, )

® The optimal policy admits the following closed-form solution:

Wref(ykv) exp(r(x, y)/ﬁ)

. = argmax J(r, ) <= m.(ylz) = Z(r,x)
- T, T

16



Exploiting the structure of J(r, )

® The optimal policy admits the following closed-form solution:

m = argmax J(r, ) <= m,(
™

Z(r,x)

® We can write the J*(r) as

T (ylr)

J(r) = E r(z,y) - Blog
) Tret (Y|2)

z~p Yy~ (T
= E  [logZ(rz)]

x~p,y~m (o)

y|£l') _ Wref(y|m) eXp(T‘((E, y)/ﬁ) )

16



Exploiting the structure of J(r, )

® The optimal policy admits the following closed-form solution:

meet () exp(r(2,9)/8)

7, = argmax J(r,7) < 7.(ylx) =

Z(r,x)

® We can write the J*(r) as
P E ey - giop W
a~pyy, (o) et (/)

= E [log Z(r,z)]

z~p Yy~ ()

= E  [logZ(r2)]

Top,y~Teal (o)
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Exploiting the structure of J(r, )

® The optimal policy admits the following closed-form solution:

Wref(ykr) exp(r(x, y)/ﬁ)

. = argmax J(r, ) <= m.(ylz) =
T

Z(r,z)
* We can write the J*(r) as
* _ 7r7" (ylx)
JH(r) = E r(x,y) - Blog ——
z~py~7,(|z) Wref(y|-77)
= E [log Z(r,z)]
x~p, Yy~ ()
= E [log Z(r,z)]
TP, Y~Teal (-|T)
- E [r(w)—mog“(y'”]
o~ p,yrea (f2) Tref (Y] )
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Exploiting the structure of J(r, )

® The optimal policy admits the following closed-form solution:

Wref(ykr) exp(r(x y)/ﬁ)

7 = argmax J (r,m) <= w.(y|z) =
s

Z(r,z)
* We can write the J*(r) as
* _ ﬂ-’l"(y|x)
J(r)= E r(z,y) - Blog — =
z~py~7,(|z) Wref(y|-77)

= E [log Z(r,z)]

x~p, Yy~ ()

E  [logZ(rz)]

QJNP’yNTFcal('IQJ)

[m o 7T7(y|x)]

T py~ea (|7) Tref (Y|2)

16



Value-incentivized preference optimization (VPO)
7D argmin{€(r(n), DM) - aJ* (r(m))}.

® The negative log-likelihood term reformulates into DPO loss:

((r(m), D)
-— > loga(ﬁ(log W) log m(y-Ir) ))

(2,94 ,y-)eD® Wrcf(y+|x) Wrcf(y*kn)

® The reward bias term can be written as:

J(r(m)=-f E  [logm(ylr) - logmer(ylz)],

TP, Y~Teal ()

which is essentially becomes a reverse-KL regularization that
maximizes KL(7cal (-[z) | 7(:|z)).

17



Main results - online VPO

Theorem (Cen et al., ICLR 2025)

Assume that reward estimates ||, < B and |r*| . < B for some
B > 0. With high probability we have

T
S [T (*) - T, 7®)] < O(VT).

~
[

® We can obtain similar regret bounds under general function
approximation of the reward model.

* Consistent with the O(v/T) regret for online RL with UCB-type
bonus.

e Offline RL: flipping the sign of « leads to a pessimistic algorithm.



Toy experiments on LLM

Winning Rate (%) against SFT Baseline
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X
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hi]
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i —— VPOa =01 8
== VPO a =0.01 &

........ Online DPO

1000

3000 4000 5000
Training Steps

44.67

VPO o = 0.01

B Win

m Tie

B |ose
44.98

VPO a =0.1

Left: Win rate of VPO and Online DPO against the SFT baseline on

TL ;DR task.

Right: Win/tie/loss rate of VPO with different exploration rate
a ={0.01,0.1}, directly against Online DPO.
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Value-incentivized exploration for online RL

Tong Yang Bo Dai Lin Xiao
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Finite-horizon Markov decision process (MDP)

step h=1,2--- | H

action
state sy,

S
-------- ~]

rF=======7
=
(0]
=
[
=
o

i next state
Sha1 ~ Pu(:[sn,an)

® H: horizon length; S: state space; A: action space

21



Finite-horizon Markov decision process (MDP)

step h=1,2--- | H

action
state sp

S
-------- ~]

rF=======7
=
(0]
=
[
=
o

i next state
Sha1 ~ Pu(:[sn,an)

® H: horizon length; S: state space; A: action space

® P,(-|s,a): transition probability in step h; 7, (sp,an) € [0,1]:

immediate reward in step h
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action
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® H: horizon length; S: state space; A: action space

® P,(-|s,a): transition probability in step h; 7, (sp,an) € [0,1]:

immediate reward in step h

® 7 ={mh}iepep: POlicy
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Finite-horizon Markov decision process (MDP)

step h=1,2--- | H

action
state sp

S
-------- ~]

rF=======7
=
(0]
=
[
=
o

i next state
Sha1 ~ Pu(:[sn,an)

® H: horizon length; S: state space; A: action space

Py, (-] s,a): transition probability in step h; rp(sp,an) € [0,1]:
immediate reward in step h

T ={Th}1cpep: POlicy

value and Q-functions: V;"(s) =E [z,{ih r1(St, at) | Sp = s] and
Qy(s,a)=E [zfih r1(St, at) | Sp = S,ap = a]

21



Online episodic RL

Sequentially execute MDP for K episodes, each consisting of H steps

= .
LT execute T

) 11 IH
episode 1 |::> {80 @hs Th =1

22



Online episodic RL

Sequentially execute MDP for K episodes, each consisting of H steps

= .
LT execute T

) 11 IH
episode 1 |::> {80 @hs Th =1

P e execute 72
i

il 2 2 o\H
episode 2 |:> {8hs ahsTh M
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Online episodic RL

Sequentially execute MDP for K episodes, each consisting of H steps

= .
LT execute T

) 11 IH
episode 1 |::> {80 @hs Th =1

= e I execute 72

il 2 2 oVH
episode 2 |:> {8hs ahsTh M

i 1\” execute 7
s

episode K |:> {s;[f,a;[f,rf}le

22



Online episodic RL

Sequentially execute MDP for K episodes, each consisting of H steps

[=reesa pennr .
LT execute T

H
::> {57117 a}ﬂ’rll}h:l

episode 1

=T E execute 72

il 2 2 2\H
episode 2 :> {sh> @y Thth=1

HEJ TR 1\“ execute 7
s
) . K K  K\H
episode K |:> {8k »an T3 Yhet

Goal: given initial states s’f ~ p, minimize

K k
Regret(T) = 3, (Ve () -V ().



Optimistic regularization via MEX

MEX (maximize to explore) (Liu et al, 2024) optimizes f := Qy via

fi = argsup s, maxQpa(s1,a)| — o Lo(f)
feQ acA ——
data consistency

optimal value

® Li(f) is the data consistency term that minimizes the Bellman error
using the collected data {Dt—l,h};lili

h=1| £€n€Dy_1,n

H
Lt(f):Z[ > (Th(sh,ah)+I£1€5§(Qf,h+l(5h+lya)_Qf,h(3h7ah))2

. 2
- g}:gh ghEDZt:—l,h (ra(sn,an) + max Qr.ne1(sne1,a) = gn(sn,an)) |,

where &, = (sp, ap, Sp+1) is the transition tuple.
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Optimistic regularization via MEX

MEX (maximize to explore) (Liu et al, 2024) optimizes f := Qy via

fi = argsup s, maxQpa(s1,a)| — o Lo(f)
feQ acA ——
data consistency

optimal value

® Li(f) is the data consistency term that minimizes the Bellman error
using the collected data {Dt_lyh}le:

h=1| £€n€Dy_1,n

H
Lt(f):Z[ > (Th(sh,ah)+I£1€5§(Qf,h+l(5h+lya)_Qf,h(3h7ah))2

. 2
- g}:gh ghEDZt:—l,h (ra(sn,an) + max Qy.ne1(She1,a) = gn(sn,an)) ],

where &, = (sp, ap, Sp+1) is the transition tuple.

v Near-optimal regret without explicit uncertainty estimation
X The optimization is intractable. J

23



A primal-dual perspective of MEX
How do we understand MEX? Introducing the primal problem:
it:g Eswp[r;lgi(Qf,l(Slaa)]

s.t. Qf,h(sua) = Th(S,(l) +Eerph(.|S7a)|:I&%X(Qf’h+1(8,,G)] V(S7a, h)

Bellman’s optimality equation

24



A primal-dual perspective of MEX
How do we understand MEX? Introducing the primal problem:
it:g E31~p|:1513i(62f,1(51aa):|

s.t. Qf,h(sua) = Th(S,(l) +Eerph(.|S7a)|:I&%X(Qf’thl(S,,G)] V(S7a, h)

Bellman’s optimality equation

* With the dual variables { Ay } e[, its regularized Lagrangian can be
written as

sup inf Eg . [maXQ. 1(s1,a }
feQ {Antherm] 1P aca 47 (s1,a)

H
+ Z E(s,a,5')~Dy, {)\;L(s, a)(rh(s, a) + mi}i(Qf,thl(S’, a) - Qysn(s, a)) + g An (s, a)Q}’
h=1 as
where 8> 0 is the regularization parameter of the dual variable.
* Reparameterizing s, := (Qf., — gn)/ leads to (population) of MEX.

24



An exploratory actor-critic framework

Actor-critic framework: introduce an equivalent primal problem that
jointly optimizes over both the Q-function and the policy :

feg,lfr)ep ES1NP7a1~W1('|Sl)[Qfa1(81»a1)]
st Qpn(s,a)=rp(s,a) +E vp, o [Qf,hﬂ (s',a')], Y (s,a,h).

al~mp i1 (ls")

Bellman’s consistency equation

25



An exploratory actor-critic framework

Actor-critic framework: introduce an equivalent primal problem that
jointly optimizes over both the Q-function and the policy 7:

feS,lEr)eP ES1NP7 a1~W1('|Sl)[Qf’1(81»a1)]

st Qrn(s,a) =rn(s,0) +E vop, o [Qrna1(s',a)], ¥ (s,a,h).

al~mp .y (ls!

Bellman’s consistency equation

Following similar arguments gives rise to a (population-level) actor-critic
method that optimizes jointly over the Q-function @ and policy 7:

sup {]Es~p,a~m<~\s> [Qr,1(s,0)]
fymeP

2
Z 25 QSUP ]E(s,a,s’)NDh]Ea/Nﬂ'h+1(»\s’) [(Th(sv a) + Qf,h+1(5,7 a,) - Qf,h(s7 a’))

he€ln

_ (rh(s, a)+ QN]“(S', a') - gn(s, a))Q]},

25



Value-incentivized actor-critic method

Value-incentivized actor-critic (VAC) method
Fort=1,---,T,
1. Update Q-function estimation and policy:
(fe, ) < argf sup { VfW(P) —a Li(f,m) }

€Q s TeP N— — N———
value incentive data consistency

2. Data collection: run T to obtain a trajectory {s; n,asn}i,, and
update the dataset Dy, = Dy—1.p U {(St.n, Geh, St,pe1) ), Yhe [H].

* VI(p) = Eqpamm (1s) [@r,1(5,a)] is the optimistic regularization;
® Li(f,m) is the data consistency term

H

2

Li(f,m)=Y, { Y EaremprCsnen) (Th(shyan) + Qpns1 (she1,0") = Q n(sh,an))
h=1 L&reDi_1,pn

. 2
- 1215 Y EarempyClonan) (Ta(Shoan) + Qphe1 (sne1,a”) = gn(sn,an)) }7
IhEZh ¢, eDy_y gy

where &, = (Sp, ap, Sp+1) is the transition tuple.
26



Theoretical guarantees

Theorem (Yang et al, 2025)

Under the linear MDP model, with linear function approximation on the
Q function and the policy class, with high probability, the regret of VAC

is bounded by
9] (dH2\/T) ,

where d is the dimension of the linear MDP.

® The regret bound is near-optimal for linear MDP up to a factor of
v H, matching UCB-type guarantees.

® We also achieve comparable statistical guarantees as MEX in the
more general function approximation setting.

An optimization-friendly actor-critic framework with provably-efficient
exploration without explicit uncertainty estimation!

27



Value-incentivized exploration for competitive games
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Zero-sum two-player matrix game

Scissors
@ beats paper @

2
%O
%4

o«
er

s
§

W,

Q

“"O"f @
m@

Zero-sum two-player matrix game

bogg
[y
o
1
[y

.
na | min j Av = BKL(p | pure ) + BKL(V || ref)

® A, B: action space of the two players;

weA(A), ve A(B): policies of the two players;

® siref € A(A), vier € A(B): reference policies of the two players;
A e RHAXIBL: payoff matrix.

29



Motivation: game-theoretic view of RLHF

RLHF suffers from reward hacking. Call for a game-theoretic
view!(Swamy et al., 2023, Munos et al., 2023, Gui et al., 2024)

® Given a policy pair w,n’, the win rate of 7 over 7’ is given as

P(r>a')i= B Po(y)=Eapn (o) Po()n (o).
Y/~ ()

bilinear

where P, : Y x ) is a symmetric payoff matrix between (y,y’) for
prompt x.
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Motivation: game-theoretic view of RLHF

RLHF suffers from reward hacking. Call for a game-theoretic
view!(Swamy et al., 2023, Munos et al., 2023, Gui et al., 2024)

® Given a policy pair w,n’, the win rate of 7 over 7’ is given as

P(r>a')i= B Po(y)=Eapn (o) Po()n (o).
Y/~ ()

bilinear

where P, : Y x ) is a symmetric payoff matrix between (y,y’) for
prompt x.

® Consider the two-player win-rate game:
maxmin P(7 > ') = BKL(7 | myer ) + BKL(7" | et )
™ il

which is an KL-regularized matrix game.

30



Self-play and win rate dominance

Theorem (Yang et al., AISTATS 2025)

The Nash equilibrium of the win-rate game (mj;,7}) exists. Moreover,
when (>0, (75, 75) is the unique Nash equilibrium. We have

T € argmgxP(w >T5) = BKL(?T l 7Tref)

31



Self-play and win rate dominance

Theorem (Yang et al., AISTATS 2025)

The Nash equilibrium of the win-rate game (mj;,7}) exists. Moreover,
when (>0, (75, 75) is the unique Nash equilibrium. We have

T € argmgxP(w >T5) = BKL(?T l 7Tref)

Win rate dominance: the fixed-point equation identifies a policy with a
higher winning probability against any other policy. When 3 =0,

my € argmax P(w > w()) = P(r>my)<1/2 V.

NE of win rate matrix game = win rate dominance policy J

31



Value-incentivized matrix game with bandit feedback
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Value-incentivized matrix game with bandit feedback

How do we optimistically optimize the payoff matrix
with bandit feedback? J

Value-incentivized model update:

. .. =~ )2 *, Ut £y%
wt = argmin > (Au(i,5) = A(4,5)) —af """ (Ay) + af " (Ay),
W (6.3, A(1.0)) D1

duality gap

where (i, ;) is the NE of the matrix game with the param. w;_1.
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Value-incentivized matrix game with bandit feedback

How do we optimistically optimize the payoff matrix
with bandit feedback? J

Value-incentivized model update:

wg = argmin 2. (Au (i) = A(i,))” U (AL) + af T (Ay),

W (3,5, A(1,§))eDi

duality gap

where (g, ;) is the NE of the matrix game with the param. w;_;.

Computational tractability: the regularization term can be computed
in closed form:

-5 llog (i Href i €XP (Aw(;)yt)) + log(i Vref,j €XP (_”tTAW(’J)))

+C,
i=1 j=1 B

allowing single-loop gradient-based updates on the model parameter.
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Regret for value-incentivized matrix game

T
regret(T) := ) Dualgap(us, v¢)
t=1

T
Z o7 (A) = 7 (A) + Z(f (A) - 17 (4))

regret for min-player regret for max-player

Theorem (Yang et al., ICML 2025)

Under the linear function approximation of dimension d and realizability
assumption, with high probability, the regret is on the order of

O(dVT).

* near-optimal regret as it matches with the Q(d\/T') lower bound.
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Value-incentivized exploration for Markov games
® The algorithm can be generalized to the Markov game setting for
finding both NE and CCEs:

N -n
fe=argmin Li(f)—a X Vi (p)
feF n=1 ’

Here, n is the number of agents,
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Here, n is the number of agents,
® L.(f), is the negative log-likehood of sample transitions,

° Vf*”:; (p) is the best-response values of each agent when other
agents’ policies are fixed.

34



Value-incentivized exploration for Markov games

® The algorithm can be generalized to the Markov game setting for
finding both NE and CCEs:

N -n
fo=argmin L) =0 3 Vi ()

Here, n is the number of agents,
® L.(f), is the negative log-likehood of sample transitions,

° Vf*”:; (p) is the best-response values of each agent when other
agents’ policies are fixed.

34



Value-incentivized exploration for Markov games

® The algorithm can be generalized to the Markov game setting for
finding both NE and CCEs:

N -n
fo=argmin L) =0 3 Vi ()

Here, n is the number of agents,
o L’t(f) is the negative log-likehood of sample transitions,

° V* ™ (p) is the best-response values of each agent when other
agents policies are fixed.

® Achieves near-optimal regret, and much easier to implement than
using the optimal game value as in previous work (Liu et al., 2024).
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Summary

Optimism via regularization in the face of uncertainty:

fr=argmin L(f;Dy) —a V(f)
feF . N _
data consistency optimal value

What makes it tractable: smoothing and actor-critic frameworks.

Theoretically-principled and practically-performant exploration via
optimistic regularization under complex function approximation

J

35



Summary

Optimism via regularization in the face of uncertainty:

fr=argmin L(f;Dy) —a V(f)
feF . N _
data consistency optimal value

What makes it tractable: smoothing and actor-critic frameworks.

Theoretically-principled and practically-performant exploration via
optimistic regularization under complex function approximation

Future work:

® Break the curse of multi-agency in the game setting.

® Applications to finetuning LLMs.
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Thanks!

® Value-Incentivized Preference Optimization: A Unified Approach to Online and
Offline RLHF, ICLR, 2025.

® Faster WIND: Accelerating Iterative Best-of-N Distillation for LLM Alignment,
AISTATS, 2025.

® Incentivize without Bonus: Provably Efficient Model-based Online Multi-agent
RL for Markov Games, ICML, 2025.

® Exploration from a Primal-Dual Lens: Value-Incentivized Actor-Critic Methods
for Sample-Efficient Online RL, arXiv:2506.22401, 2025.
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https://yuejiechi.github.io/
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