Non-Asymptotic Analysis for Reinforcement Learning

Yuting Wei UPenn

Yuxin Chen UPenn

Yuejie Chi CMU

SIGMETRICS Tutorial, June 2023

Non-asymptotic Analysis for Reinforcement Learning (Part 1)

Yuting Wei

Statistics & Data Science, Wharton University of Pennsylvania

SIGMETRICS, June 2023

Our wonderful collaborators

Chen Cheng Stanford

Laixi Shi $CMU \rightarrow Caltech$

Gen Li $UPenn \rightarrow CUHK$

CMU

Yuling Yan $Princeton \rightarrow MIT$

Changxiao Cai $UPenn \rightarrow UMich$

Jason Lee Princeton

Jianging Fan Princeton

Recent successes in reinforcement learning (RL)

RL holds great promise in the next era of artificial intelligence.

Recap: Supervised learning

Given i.i.d training data, the goal is to make prediction on unseen data:

— pic from internet

Reinforcement learning (RL)

In RL, an agent learns by interacting with an environment.

- no training data
- trial-and-error
- maximize total rewards
- delayed reward

"Recalculating ... recalculating ..."

Sample efficiency

Source: cbinsights.com

CBINSIGHTS

- prohibitively large state & action space
- collecting data samples can be expensive or time-consuming

Sample efficiency

Source: cbinsights.com

CBINSIGHTS

- prohibitively large state & action space
- collecting data samples can be expensive or time-consuming

Challenge: design sample-efficient RL algorithms

Computational efficiency

Running RL algorithms might take a long time ...

- enormous state-action space
- nonconvexity

Computational efficiency

Running RL algorithms might take a long time ...

- enormous state-action space
- nonconvexity

Challenge: design computationally efficient RL algorithms

Theoretical foundation of RL

Theoretical foundation of RL

Understanding sample efficiency of RL requires a modern suite of non-asymptotic analysis tools

This tutorial

(large-scale) optimization

 $(\mathsf{high-dimensional}) \ \mathsf{statistics}$

Demystify sample- and computational efficiency of RL algorithms

This tutorial

(large-scale) optimization

 $(\mathsf{high-dimensional}) \ \mathsf{statistics}$

Demystify sample- and computational efficiency of RL algorithms

- Part 1. basics, and model-based RL
- Part 2. value-based RL

Part 3. policy optimization

We will illustrate these approaches for learning standard, robust, and multi-agent RL with simulator/online/offline data.

Outline (Part 1)

- Basics: Markov decision processes
- Basic dynamic programming algorithms
- Model-based RL ("plug-in" approach)

Basics: Markov decision processes

Markov decision process (MDP)

- S: state space
- \mathcal{A} : action space

Markov decision process (MDP)

- S: state space
- \mathcal{A} : action space
- $r(s,a) \in [0,1]$: immediate reward

Infinite-horizon Markov decision process

- S: state space
- \mathcal{A} : action space
- $r(s,a) \in [0,1]$: immediate reward
- $\pi(\cdot|s)$: policy (or action selection rule)

Infinite-horizon Markov decision process

- S: state space
- \mathcal{A} : action space
- $r(s,a) \in [0,1]$: immediate reward
- $\pi(\cdot|s)$: policy (or action selection rule)
- $P(\cdot|s,a)$: unknown transition probabilities

Value function

Value of policy π : cumulative discounted reward

$$\forall s \in \mathcal{S}: \quad V^{\pi}(s) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \, \middle| \, s_{0} = s\right]$$

Value function

Value of policy π : cumulative discounted reward

$$\forall s \in \mathcal{S}: \quad V^{\pi}(s) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \, \big| \, s_{0} = s\right]$$

- $\gamma \in [0, 1)$: discount factor
 - \blacktriangleright take $\gamma \rightarrow 1$ to approximate long-horizon MDPs
 - effective horizon: $\frac{1}{1-\gamma}$

Q-function (action-value function)

Q-function of policy π :

$$\forall (s,a) \in \mathcal{S} \times \mathcal{A} : \quad Q^{\pi}(s,a) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \, \big| \, s_{0} = s, \mathbf{a}_{0} = \mathbf{a}\right]$$

• $(a_0, s_1, a_1, s_2, a_2, \cdots)$: induced by policy π

Q-function (action-value function)

Q-function of policy π :

$$\forall (s,a) \in \mathcal{S} \times \mathcal{A} : \quad Q^{\pi}(s,a) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \, \big| \, s_{0} = s, \mathbf{a}_{0} = \mathbf{a}\right]$$

• $(a_0, s_1, a_1, s_2, a_2, \cdots)$: induced by policy π

Finite-horizon MDPs

- *H*: horizon length
- S: state space with size S A: action space with size A
- $r_h(s_h, a_h) \in [0, 1]$: immediate reward in step h
- $\pi = {\pi_h}_{h=1}^H$: policy (or action selection rule)
- $P_h(\cdot \mid s, a)$: transition probabilities in step h

Finite-horizon MDPs

value function:
$$V_h^{\pi}(s) := \mathbb{E}\left[\sum_{t=h}^{H} r_h(s_h, a_h) \mid s_h = s\right]$$

Q-function: $Q_h^{\pi}(s, a) := \mathbb{E}\left[\sum_{t=h}^{H} r_h(s_h, a_h) \mid s_h = s, a_h = a\right]$

Optimal policy and optimal value

optimal policy π^* : maximizing value function $\max_{\pi} V^{\pi}$

Proposition (Puterman'94)

For infinite horizon discounted MDP, there always exists a deterministic policy π^* , such that

$$V^{\pi^{\star}}(s) \ge V^{\pi}(s), \quad \forall s, \text{ and } \pi.$$

Optimal policy and optimal value

optimal policy π^* : maximizing value function $\max_{\pi} V^{\pi}$

• optimal value / Q function: $V^{\star} := V^{\pi^{\star}}$, $Q^{\star} := Q^{\pi^{\star}}$

Optimal policy and optimal value

optimal policy π^* : maximizing value function $\max_{\pi} V^{\pi}$

- optimal value / Q function: $V^{\star} := V^{\pi^{\star}}$, $Q^{\star} := Q^{\pi^{\star}}$
- How to find this π*?

Basic dynamic programming algorithms when MDP specification is known

Policy evaluation: Given MDP $\mathcal{M} = (\mathcal{S}, \mathcal{A}, r, P, \gamma)$ and policy $\pi : \mathcal{S} \mapsto \mathcal{A}$, how good is π ? (i.e., how to compute $V^{\pi}(s), \forall s$?)

Policy evaluation: Given MDP $\mathcal{M} = (\mathcal{S}, \mathcal{A}, r, P, \gamma)$ and policy $\pi : \mathcal{S} \mapsto \mathcal{A}$, how good is π ? (i.e., how to compute $V^{\pi}(s), \forall s$?)

Possible scheme:

- execute policy evaluation for each π
- find the optimal one

• $V^{\pi} \, / \, Q^{\pi}$: value / action-value function under policy π

• $V^{\pi} \, / \, Q^{\pi}$: value / action-value function under policy π

Bellman's consistency equation

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(\cdot|s)} \left[Q^{\pi}(s, a) \right]$$
$$Q^{\pi}(s, a) = \underbrace{r(s, a)}_{\text{immediate reward}} + \gamma \underbrace{\mathbb{E}}_{s' \sim P(\cdot|s, a)} \left[\underbrace{V^{\pi}(s')}_{\text{next state's value}} \right]$$

Richard Bellman

• $V^{\pi} \, / \, Q^{\pi}$: value / action-value function under policy π

Bellman's consistency equation

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(\cdot|s)} \left[Q^{\pi}(s, a) \right]$$
$$Q^{\pi}(s, a) = \underbrace{r(s, a)}_{\text{immediate reward}} + \gamma \underbrace{\mathbb{E}}_{s' \sim P(\cdot|s, a)} \left[\underbrace{V^{\pi}(s')}_{\text{next state's value}} \right]$$

• one-step look-ahead

Richard Bellman

• $V^{\pi} \, / \, Q^{\pi}$: value / action-value function under policy π

Bellman's consistency equation

$$V^{\pi}(s) = \mathbb{E}_{a \sim \pi(\cdot|s)} \left[Q^{\pi}(s, a) \right]$$
$$Q^{\pi}(s, a) = \underbrace{r(s, a)}_{\text{immediate reward}} + \gamma \underbrace{\mathbb{E}}_{s' \sim P(\cdot|s, a)} \left[\underbrace{V^{\pi}(s')}_{\text{next state's value}} \right]$$

- one-step look-ahead
- let P^π be the state-action transition matrix induced by π:

$$Q^{\pi} = r + \gamma P^{\pi} Q^{\pi} \implies Q^{\pi} = (I - \gamma P^{\pi})^{-1} r$$

Richard Bellman
Optimal policy π^* : Bellman's optimality principle

Bellman operator

one-step look-ahead

Optimal policy π^* : Bellman's optimality principle

Bellman operator

• one-step look-ahead

Bellman equation: Q^* is *unique* solution to

$$\mathcal{T}(Q^{\star}) = Q^{\star}$$

 $\gamma\text{-contraction}$ of Bellman operator:

$$\|\mathcal{T}(Q_1) - \mathcal{T}(Q_2)\|_{\infty} \le \gamma \|Q_1 - Q_2\|_{\infty}$$

Richard Bellman

Two dynamic programming algorithms

Value iteration (VI) For t = 0, 1, ..., $Q^{(t+1)} = \mathcal{T}(Q^{(t)})$

Policy iteration (PI)

For t = 0, 1, ...,

policy evaluation: $Q^{(t)} = Q^{\pi^{(t)}}$ policy improvement: $\pi^{(t+1)}(s) = \operatorname*{argmax}_{a \in \mathcal{A}} Q^{(t)}(s, a)$

When the model is unknown

When the model is unknown ...

Need to learn optimal policy from samples w/o model specification

Three approaches

Model-based approach ("plug-in")

- 1. build an empirical estimate \widehat{P} for P
- 2. planning based on the empirical \widehat{P}

Three approaches

Model-based approach ("plug-in")

- 1. build an empirical estimate \widehat{P} for P
- 2. planning based on the empirical \widehat{P}

Tutorial Part 2: Value-based approach

- learning w/o estimating the model explicitly

Tutorial Part 3: Policy-based approach

- optimization in the space of policies

Three approaches

Model-based approach ("plug-in")

- 1. build an empirical estimate \widehat{P} for P
- 2. planning based on the empirical \widehat{P}

Tutorial Part 2: Value-based approach

- learning w/o estimating the model explicitly

Tutorial Part 3: Policy-based approach

- optimization in the space of policies

Model-based RL (a "plug-in" approach)

- 1. Sampling from a generative model (simulator)
- 2. Offline RL / batch RL
- 3. Robust RL

A generative model / simulator

• sampling: for each (s, a), collect N samples $\{(s, a, s'_{(i)})\}_{1 \le i \le N}$

A generative model / simulator

- sampling: for each (s, a), collect N samples $\{(s, a, s'_{(i)})\}_{1 \le i \le N}$
- construct $\widehat{\pi}$ based on samples (in total $|\mathcal{S}||\mathcal{A}| imes N$)

ℓ_{∞} -sample complexity: how many samples are required to learn an ε -optimal policy ? $\forall s: V^{\hat{\pi}}(s) \ge V^{\star}(s) - \varepsilon$

An incomplete list of works

- Kearns and Singh, 1999
- Kakade, 2003
- Kearns 3t al., 2002
- Azar et al., 2012
- Azar et al., 2013
- Sidford et al, 2018a, 2018b
- Wang, 2019
- Agarwal et al, 2019
- Wainwright, 2019a, 2019b
- Pananjady and Wainwright, 2019
- Yang and Wang, 2019
- Khamaru, 2020
- Mou et al., 2020
- Li et al., 2020
- Cui and Yang, 2021

• ...

Model estimation

Sampling: for each (s, a), collect N ind. samples $\{(s, a, s'_{(i)})\}_{1 \le i \le N}$

Model estimation

Sampling: for each (s, a), collect N ind. samples $\{(s, a, s'_{(i)})\}_{1 \le i \le N}$

Empirical estimates: $\widehat{P}(s'|s, a) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} \mathbb{1}\{s'_{(i)} = s'\}}_{\text{empirical frequency}}$

Empirical MDP + planning

- Azar et al., 2013, Agarwal et al., 2019

Challenges in the sample-starved regime

• Can't recover P faithfully if sample size $\ll |\mathcal{S}|^2 |\mathcal{A}|!$

Challenges in the sample-starved regime

- Can't recover P faithfully if sample size $\ll |\mathcal{S}|^2 |\mathcal{A}|!$
- Can we trust our policy estimate when reliable model estimation is infeasible?

$\ell_\infty\text{-based}$ sample complexity

Theorem (Agarwal, Kakade, Yang '19)

For any $0 < \varepsilon \leq \frac{1}{\sqrt{1-\gamma}}$, the optimal policy $\widehat{\pi}^*$ of empirical MDP achieves $\|V^{\widehat{\pi}^*} - V^*\|_{\infty} \leq \varepsilon$

with high prob., with sample complexity at most

$$\widetilde{O}\left(\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^3\varepsilon^2}\right)$$

Theorem (Agarwal, Kakade, Yang '19)

For any $0 < \varepsilon \leq \frac{1}{\sqrt{1-\gamma}}$, the optimal policy $\widehat{\pi}^*$ of empirical MDP achieves $\|V^{\widehat{\pi}^*} - V^*\|_{\infty} \leq \varepsilon$

with high prob., with sample complexity at most

$$\widetilde{O}\left(\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^3\varepsilon^2}\right)$$

• matches minimax lower bound: $\widetilde{\Omega}(\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^{3}\varepsilon^{2}})$ when $\varepsilon \leq \frac{1}{\sqrt{1-\gamma}}$ (equivalently, when sample size exceeds $\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^{2}}$) Azar et al., 2013

Theorem (Agarwal, Kakade, Yang '19)

For any $0 < \varepsilon \leq \frac{1}{\sqrt{1-\gamma}}$, the optimal policy $\widehat{\pi}^*$ of empirical MDP achieves $\|V^{\widehat{\pi}^*} - V^*\|_{\infty} \leq \varepsilon$

with high prob., with sample complexity at most

$$\widetilde{O}\left(\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^3\varepsilon^2}\right)$$

- matches minimax lower bound: $\widetilde{\Omega}(\frac{|S||A|}{(1-\gamma)^3\varepsilon^2})$ when $\varepsilon \leq \frac{1}{\sqrt{1-\gamma}}$ (equivalently, when sample size exceeds $\frac{|S||A|}{(1-\gamma)^2}$) Azar et al., 2013
- established upon leave-one-out analysis framework

Agarwal et al., 2019 still requires a burn-in sample size $\gtrsim \frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^2}$

Agarwal et al., 2019 still requires a burn-in sample size $\gtrsim \frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^2}$

Question: is it possible to break this sample size barrier?

Perturbed model-based approach (Li et al. '20)

Find policy based on the empirical MDP with slightly perturbed rewards

Optimal $\ell_\infty\text{-based}$ sample complexity

Theorem (Li, Wei, Chi, Chen'20)

For any $0 < \varepsilon \leq \frac{1}{1-\gamma}$, the optimal policy $\widehat{\pi}_p^{\star}$ of perturbed empirical MDP achieves

$$\|V^{\widehat{\pi}_{\mathbf{p}}^{\star}} - V^{\star}\|_{\infty} \le \varepsilon$$

with high prob., with sample complexity at most

$$\widetilde{O}\left(\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^3\varepsilon^2}\right)$$

Optimal $\ell_\infty\text{-based}$ sample complexity

Theorem (Li, Wei, Chi, Chen'20)

For any $0 < \varepsilon \leq \frac{1}{1-\gamma}$, the optimal policy $\widehat{\pi}_p^{\star}$ of perturbed empirical MDP achieves

$$\|V^{\widehat{\pi}_{\mathbf{p}}^{\star}} - V^{\star}\|_{\infty} \le \varepsilon$$

with high prob., with sample complexity at most

$$\widetilde{O}\left(\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^3\varepsilon^2}\right)$$

- matches minimax lower bound: $\widetilde{\Omega}(\frac{|S||A|}{(1-\gamma)^{3}\varepsilon^{2}})$ Azar et al., 2013
- full ε -range: $\varepsilon \in \left(0, \frac{1}{1-\gamma}\right] \longrightarrow$ no burn-in cost
- established upon more refined leave-one-out analysis and a perturbation argument

Model-based RL (a "plug-in" approach)

- 1. Sampling from a generative model (simulator)
- 2. Offline RL / batch RL
- 3. Robust RL

- Collecting new data might be expensive or time-consuming
- But we have already stored tons of historical data

medical records

data of self-driving

clicking times of ads

- · Collecting new data might be expensive or time-consuming
- But we have already stored tons of historical data

medical records

data of self-driving

clicking times of ads

Question: Can we design algorithms based solely on historical data?

A historical dataset $\mathcal{D} = \{(s^{(i)}, a^{(i)}, s'^{(i)})\}$: N independent copies of

$$s \sim \rho^{\mathsf{b}}, \qquad a \sim \pi^{\mathsf{b}}(\cdot \,|\, s), \qquad s' \sim P(\cdot \,|\, s, a)$$

for some state distribution $\rho^{\rm b}$ and behavior policy $\pi^{\rm b}$

A historical dataset $\mathcal{D} = \{(s^{(i)}, a^{(i)}, s'^{(i)})\}$: N independent copies of

$$s \sim \rho^{\mathsf{b}}, \qquad a \sim \pi^{\mathsf{b}}(\cdot \,|\, s), \qquad s' \sim P(\cdot \,|\, s, a)$$

for some state distribution $\rho^{\rm b}$ and behavior policy $\pi^{\rm b}$

Goal: given some test distribution ρ and accuracy level ε , find an ε -optimal policy $\hat{\pi}$ based on \mathcal{D} obeying

$$V^{\star}(\rho) - V^{\widehat{\pi}}(\rho) = \mathop{\mathbb{E}}_{s \sim \rho} \left[V^{\star}(s) \right] - \mathop{\mathbb{E}}_{s \sim \rho} \left[V^{\widehat{\pi}}(s) \right] \le \varepsilon$$

— in a sample-efficient manner

Challenges of offline RL

• Distribution shift:

 $\operatorname{distribution}(\mathcal{D}) \ \neq \ \operatorname{target} \ \operatorname{distribution} \ \operatorname{under} \ \pi^{\star}$

Challenges of offline RL

• Distribution shift:

distribution(\mathcal{D}) \neq target distribution under π^{\star}

Partial coverage of state-action space:

Challenges of offline RL

• Distribution shift:

distribution(\mathcal{D}) \neq target distribution under π^*

Partial coverage of state-action space:

How to quantify quality of historical dataset \mathcal{D} (induced by π^{b})?

How to quantify quality of historical dataset \mathcal{D} (induced by π^{b})?

Single-policy concentrability coefficient

$$C^{\star} \coloneqq \max_{s,a} \frac{d^{\pi^{\star}}(s,a)}{d^{\pi^{\mathsf{b}}}(s,a)}$$

where $d^{\pi}(s,a) = (1-\gamma) \sum_{t=0}^{\infty} \gamma^{t} \mathbb{P}((s^{t},a^{t}) = (s,a) \mid \pi)$

How to quantify quality of historical dataset \mathcal{D} (induced by π^{b})?

Single-policy concentrability coefficient

$$C^{\star} \coloneqq \max_{s,a} \frac{d^{\pi^{\star}}(s,a)}{d^{\pi^{\flat}}(s,a)} = \left\| \frac{\text{occupancy density of } \pi^{\star}}{\text{occupancy density of } \pi^{\flat}} \right\|_{\infty} \ge 1$$

where $d^{\pi}(s,a) = (1-\gamma) \sum_{t=0}^{\infty} \gamma^{t} \mathbb{P}((s^{t},a^{t}) = (s,a) \mid \pi)$

- captures distributional shift
- allows for partial coverage

— Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21

upper confidence bounds

— promote exploration of under-explored (s, a)

— Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21

— Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21

A model-based offline algorithm: VI-LCB

- 1. build empirical model \widehat{P}
- 2. (value iteration) for $t \leq \tau_{\max}$:

$$\widehat{Q}_t(s,a) \leftarrow \left[r(s,a) + \gamma \left\langle \widehat{P}(\cdot \,|\, s,a), \widehat{V}_{t-1} \right\rangle \right]_+$$

for all (s,a), where $\widehat{V}_t(s) = \max_a \widehat{Q}_t(s,a)$

— Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21

A model-based offline algorithm: VI-LCB

- 1. build empirical model \widehat{P}
- 2. (pessimistic value iteration) for $t \leq \tau_{max}$:

$$\widehat{Q}_{t}(s,a) \leftarrow \left[r(s,a) + \gamma \left\langle \widehat{P}(\cdot \,|\, s,a), \widehat{V}_{t-1} \right\rangle - \underbrace{b(s,a; \widehat{V}_{t-1})}_{\text{penalize poorly visited } (s,a)} \right]_{+}$$

for all (s,a), where $\widehat{V}_t(s)=\max_a \widehat{Q}_t(s,a)$

— Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21

A model-based offline algorithm: VI-LCB

- 1. build empirical model \widehat{P}
- 2. (pessimistic value iteration) for $t \leq \tau_{max}$:

$$\widehat{Q}_{t}(s,a) \leftarrow \left[r(s,a) + \gamma \left\langle \widehat{P}(\cdot \,|\, s,a), \widehat{V}_{t-1} \right\rangle - \underbrace{\frac{b(s,a; \widehat{V}_{t-1})}{\text{penalize poorly visited } (s,a)}} \right]_{+}$$

compared w/ prior works

- no need of variance reduction
- variance-aware penalty

Minimax optimality of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei'22)

For any $0 < \varepsilon \leq \frac{1}{1-\gamma}$, the policy $\widehat{\pi}$ returned by VI-LCB achieves

$$V^{\star}(\rho) - V^{\widehat{\pi}}(\rho) \le \varepsilon$$

with high prob., with sample complexity at most

$$\widetilde{O}\left(\frac{SC^{\star}}{(1-\gamma)^{3}\varepsilon^{2}}\right)$$

Minimax optimality of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei'22)

For any $0 < \varepsilon \leq \frac{1}{1-\gamma}$, the policy $\widehat{\pi}$ returned by VI-LCB achieves

$$V^{\star}(\rho) - V^{\widehat{\pi}}(\rho) \le \varepsilon$$

with high prob., with sample complexity at most

$$\widetilde{O}\left(\frac{SC^{\star}}{(1-\gamma)^{3}\varepsilon^{2}}\right)$$

- matches minimax lower bound: $\widetilde{\Omega}(\frac{SC^{\star}}{(1-\gamma)^{3}\varepsilon^{2}})$ Rashidinejad et al, 2021
- depends on distribution shift (as reflected by C^{*})
- full ε-range (no burn-in cost)

Model-based RL (a "plug-in" approach)

- 1. Sampling from a generative model (simulator)
- 2. Offline RL / batch RL
- 3. Robust RL

Safety and robustness in RL

(Zhou et al., 2021; Panaganti and Kalathil, 2022; Yang et al., 2022;)

Training environment

 \neq

Test environment

Safety and robustness in RL

(Zhou et al., 2021; Panaganti and Kalathil, 2022; Yang et al., 2022;)

Training environment

Test environment

Sim2Real Gap: Can we learn optimal policies that are robust to model perturbations?

¥

Distributionally robust MDP

Uncertainty set of the norminal transition kernel P^o:

$$\mathcal{U}^{\sigma}(P^{o}) = \left\{ P : \ \rho(P, P^{o}) \le \sigma \right\}$$

Robust value/Q function of policy π :

$$\forall s \in \mathcal{S}: \qquad V^{\pi,\sigma}(s) := \inf_{\substack{P \in \mathcal{U}^{\sigma}(P^{o})}} \mathbb{E}_{\pi,P} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid s_{0} = s \right]$$
$$\forall (s,a) \in \mathcal{S} \times \mathcal{A}: \quad Q^{\pi,\sigma}(s,a) := \inf_{\substack{P \in \mathcal{U}^{\sigma}(P^{o})}} \mathbb{E}_{\pi,P} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid s_{0} = s, a_{0} = a \right]$$

The optimal robust policy π^* maximizes $V^{\pi,\sigma}(\rho)$

48 / 54

Robust Bellman's optimality equation

(Iyengar. '05, Nilim and El Ghaoui. '05)

Robust Bellman's optimality equation: the optimal robust policy π^* and optimal robust value $V^{*,\sigma} := V^{\pi^*,\sigma}$ satisfy

$$Q^{\star,\sigma}(s,a) = r(s,a) + \gamma \inf_{\substack{P_{s,a} \in \mathcal{U}^{\sigma}(P_{s,a}^{o})}} \langle P_{s,a}, V^{\star,\sigma} \rangle,$$
$$V^{\star,\sigma}(s) = \max_{a} Q^{\star,\sigma}(s,a)$$

Robust Bellman's optimality equation

(Iyengar. '05, Nilim and El Ghaoui. '05)

Robust Bellman's optimality equation: the optimal robust policy π^* and optimal robust value $V^{*,\sigma} := V^{\pi^*,\sigma}$ satisfy

$$Q^{\star,\sigma}(s,a) = r(s,a) + \gamma \inf_{\substack{P_{s,a} \in \mathcal{U}^{\sigma}(P_{s,a}^{o})}} \langle P_{s,a}, V^{\star,\sigma} \rangle,$$
$$V^{\star,\sigma}(s) = \max_{a} Q^{\star,\sigma}(s,a)$$

Robust value iteration:

$$Q(s,a) \leftarrow r(s,a) + \gamma \inf_{P_{s,a} \in \mathcal{U}^{\sigma}(P_{s,a}^{o})} \langle P_{s,a}, V \rangle,$$

where $V(s) = \max_a Q(s, a)$.

Learning distributionally robust MDPs

Learning distributionally robust MDPs

Goal of robust RL: given $\mathcal{D} := \{(s_i, a_i, s'_i)\}_{i=1}^N$ from the *nominal* environment P^0 , find an ε -optimal robust policy $\hat{\pi}$ obeying

$$V^{\star,\sigma}(\rho) - V^{\widehat{\pi},\sigma}(\rho) \le \varepsilon$$

— in a sample-efficient manner

A curious question

empirical MDP

A curious question

Robustness-statistical trade-off? Is there a statistical premium that one needs to pay in quest of additional robustness?

When the uncertainty set is TV

When the uncertainty set is TV

RMDPs are easier to learn than standard MDPs.

When the uncertainty set is χ^2 divergence

When the uncertainty set is χ^2 divergence

RMDPs can be harder to learn than standard MDPs.

Summary of this part

Model-based RL (a "plug-in" approach)

- Sampling from a generative model (simulator)
- Offline RL / batch RL
- Robust RL

Papers:

"Breaking the sample size barrier in model-based reinforcement learning with a generative model," G Li, Y Wei, Y Chi, Y Chen, *NeurIPS'20, Operators Research'23* "Settling the sample complexity of model-based offline reinforcement learning," G Li, L Shi, Y

Chen, Y Chi, Y Wei, 2022

"The curious price of distributional robustness in reinforcement learning with a generative model," L Shi, G Li, Y Wei, Y Chen, M Geist, Y Chi, 2023

Non-Asymptotic Analysis for Reinforcement Learning (Part 2)

Yuxin Chen

Wharton Statistics & Data Science, SIGMETRICS 2023

Multi-agent RL with a generative model

Multi-agent reinforcement learning (MARL)

- *H*: horizon
- S = [S]: state space A = [A]: action space of max-player
 - $\mathcal{B} = [B]$: action space of min-player

• S = [S]: state space • A = [A]: action space of max-player

- $\mathcal{B} = [B]$: action space of min-player • H: horizon
- immediate reward: max-player $r(s, a, b) \in [0, 1]$ min-player -r(s, a, b)

- S = [S]: state space A = [A]: action space of max-player
- H: horizon • $\mathcal{B} = [B]$: action space of min-player
- immediate reward: max-player $r(s, a, b) \in [0, 1]$ min-player -r(s, a, b)
- $\mu : \mathcal{S} \times [H] \to \Delta(\mathcal{A})$: policy of max-player $\nu: \mathcal{S} \times [H] \to \Delta(\mathcal{B})$: policy of min-player

- $\mathcal{S} = [S]$: state space $\mathcal{A} = [A]$: action space of max-player
- H: horizon $\mathcal{B} = [B]$: action space of min-player
- immediate reward: max-player $r(s, a, b) \in [0, 1]$ min-player -r(s, a, b)
- $\mu: \mathcal{S} \times [H] \to \Delta(\mathcal{A})$: policy of max-player $\nu: \mathcal{S} \times [H] \to \Delta(\mathcal{B})$: policy of min-player
- $P_h(\cdot | s, a, b)$: unknown transition probabilities

Value function under *independent* policies (μ, ν) (no coordination)

$$V^{\mu,\nu}(s) := \mathbb{E}\left[\sum_{h=1}^{H} r_h(s_h, a_h, b_h) \,\middle|\, s_1 = s\right]$$

Value function under *independent* policies (μ, ν) (no coordination)

• Each agent seeks optimal policy maximizing her own value
Value function under *independent* policies (μ, ν) (no coordination)

- Each agent seeks optimal policy maximizing her own value
- But two agents have conflicting goals ...

John von Neumann

John Nash

An NE policy pair $(\mu^{\star}, \nu^{\star})$ obeys

$$\max_{\mu} V^{\mu,\nu^{\star}} = V^{\mu^{\star},\nu^{\star}} = \min_{\nu} V^{\mu^{\star},\nu}$$

John von Neumann

John Nash

An NE policy pair $(\mu^{\star}, \nu^{\star})$ obeys

$$\max_{\mu} V^{\mu,\nu^{\star}} = V^{\mu^{\star},\nu^{\star}} = \min_{\nu} V^{\mu^{\star},\nu}$$

• no unilateral deviation is beneficial

John von Neumann

John Nash

An NE policy pair $(\mu^{\star}, \nu^{\star})$ obeys

$$\max_{\mu} V^{\mu,\nu^{\star}} = V^{\mu^{\star},\nu^{\star}} = \min_{\nu} V^{\mu^{\star},\nu}$$

- no unilateral deviation is beneficial
- no coordination between two agents (they act *independently*)

John von Neumann

John Nash

An ε -NE policy pair $(\widehat{\mu}, \widehat{\nu})$ obeys

$$\max_{\mu} V^{\mu, \widehat{\nu}} - \varepsilon \leq V^{\widehat{\mu}, \widehat{\nu}} \leq \min_{\nu} V^{\widehat{\mu}, \nu} + \varepsilon$$

- no unilateral deviation is beneficial
- no coordination between two agents (they act *independently*)

Learning NEs with a simulator

input: any (s, a, b, h)output: an independent sample $s' \sim P_h(\cdot | s, a, b)$

Learning NEs with a simulator

input: any (s, a, b, h)output: an independent sample $s' \sim P_h(\cdot | s, a, b)$

Question: how many samples are sufficient to learn an ε -Nash policy pair?

— Zhang, Kakade, Başar, Yang '20

1. for each (s, a, b, h), call simulator N times

— Zhang, Kakade, Başar, Yang '20

1. for each (s, a, b, h), call simulator N times

— Zhang, Kakade, Başar, Yang '20

- 1. for each (s, a, b, h), call simulator N times
- 2. build empirical model \widehat{P}

— Zhang, Kakade, Başar, Yang '20

- 1. for each (s, a, b, h), call simulator N times
- 2. build empirical model \widehat{P} , and run "plug-in" methods

— Zhang, Kakade, Başar, Yang '20

- 1. for each (s, a, b, h), call simulator N times
- 2. build empirical model \widehat{P} , and run "plug-in" methods

sample complexity:
$$\frac{H^4SAB}{arepsilon^2}$$

1 player: A

Let's look at the size of joint action space ...

Let's look at the size of joint action space ...

Let's look at the size of joint action space ...

joint actions blows up geometrically in # players!

Theorem 1 (Li, Chi, Wei, Chen '22)

For any $0 < \varepsilon \leq H$, one can design an algorithm that finds an ε -Nash policy pair $(\hat{\mu}, \hat{\nu})$ with high prob., with sample complexity at most

$$\widetilde{O}\left(\frac{H^4S(A+B)}{\varepsilon^2}\right)$$

(minimax-optimal $\forall \varepsilon$)

Model-free / value-based RL

- 1. Basics of Q-learning
- 2. Synchronous Q-learning and variance reduction (simulator)
- 3. Asynchronous Q-learning (Markovian data)
- 4. Q-learning with lower confidence bounds (offline RL)
- 5. Q-learning with upper confidence bounds (online RL)

Model-based vs. model-free RL

Model-based approach ("plug-in")

- 1. build empirical estimate \widehat{P} for P
- 2. planning based on empirical \widehat{P}

Model-free / value-based approach

- learning w/o modeling & estimating environment explicitly
- memory-efficient, online, ...

Focus of this part: classical $\ensuremath{\textbf{Q}}\xspace$ algorithm and its variants

A starting point: Bellman optimality principle

Bellman operator

$$\mathcal{T}(Q)(s,a) := \underbrace{r(s,a)}_{\text{immediate reward}} + \gamma \mathop{\mathbb{E}}_{s' \sim P(\cdot|s,a)} \left[\underbrace{\max_{a' \in \mathcal{A}} Q(s',a')}_{\text{next state's value}} \right]$$

• one-step look-ahead

A starting point: Bellman optimality principle

Bellman operator

$$\mathcal{T}(Q)(s,a) := \underbrace{r(s,a)}_{\text{immediate reward}} + \gamma \mathop{\mathbb{E}}_{s' \sim P(\cdot|s,a)} \left[\underbrace{\max_{a' \in \mathcal{A}} Q(s',a')}_{\text{next state's value}} \right]$$

• one-step look-ahead

Bellman equation: Q^* is *unique* solution to

$$\mathcal{T}(Q^{\star}) = Q^{\star}$$

A starting point: Bellman optimality principle

Bellman operator

$$\mathcal{T}(Q)(s,a) := \underbrace{r(s,a)}_{\text{immediate reward}} + \gamma \mathop{\mathbb{E}}_{s' \sim P(\cdot|s,a)} \left[\underbrace{\max_{a' \in \mathcal{A}} Q(s',a')}_{\text{next state's value}} \right]$$

• one-step look-ahead

Bellman equation: Q^* is *unique* solution to

$$\mathcal{T}(Q^{\star}) = Q^{\star}$$

- takeaway message: it suffices to solve the Bellman equation
- **challenge:** how to solve it using stochastic samples?

Richard Bellman

Q-learning: a stochastic approximation algorithm

-

Chris Watkins

Peter Dayan

Stochastic approximation for solving the **Bellman equation**

Robbins & Monro, 1951

$$\mathcal{T}(Q) - Q = 0$$

where

$$\mathcal{T}(Q)(s,a) := \underbrace{r(s,a)}_{\text{immediate reward}} + \gamma \mathop{\mathbb{E}}_{s' \sim P(\cdot|s,a)} \Big[\underbrace{\max_{a' \in \mathcal{A}} Q(s',a')}_{\text{part static value}} \Big].$$

next state s value

Q-learning: a stochastic approximation algorithm

Chris Watkins

Peter Dayan

Stochastic approximation for solving Bellman equation $\mathcal{T}(Q) - Q = 0$

$$Q_{t+1}(s,a) = Q_t(s,a) + \eta_t \big(\mathcal{T}_t(Q_t)(s,a) - Q_t(s,a) \big), \quad t \ge 0$$

sample transition (s,a,s')

Q-learning: a stochastic approximation algorithm

Chris Watkins

Peter Dayan

Stochastic approximation for solving Bellman equation $\mathcal{T}(Q) - Q = 0$

$$\underbrace{Q_{t+1}(s,a) = Q_t(s,a) + \eta_t \left(\mathcal{T}_t(Q_t)(s,a) - Q_t(s,a)\right)}_{\text{sample transition } (s,a,s')}, \quad t \ge 0$$

$$\mathcal{T}_t(Q)(s,a) = r(s,a) + \gamma \max_{a'} Q(s',a')$$
$$\mathcal{T}(Q)(s,a) = r(s,a) + \gamma \mathop{\mathbb{E}}_{s' \sim P(\cdot|s,a)} \left[\max_{a'} Q(s',a') \right]$$

Model-free RL

- 1. Basics of Q-learning
- 2. Synchronous Q-learning and variance reduction (simulator)
- 3. Asynchronous Q-learning (Markovian data)
- 4. Q-learning with lower confidence bounds (offline RL)
- 5. Q-learning with upper confidence bounds (online RL)

A generative model / simulator

Each iteration, draw an independent sample (s, a, s') for given (s, a)

Synchronous Q-learning

Chris Watkins

Peter Dayan

for $t = 0, 1, \dots, T$ for each $(s, a) \in S \times A$ draw a sample (s, a, s'), run $Q_{t+1}(s, a) = (1 - \eta_t)Q_t(s, a) + \eta_t \Big\{ r(s, a) + \gamma \max_{a'} Q_t(s', a') \Big\}$

synchronous: all state-action pairs are updated simultaneously

• total sample size: $T|\mathcal{S}||\mathcal{A}|$

Sample complexity of synchronous Q-learning

Theorem 2 (Li, Cai, Chen, Wei, Chi'21)

For any $0 < \varepsilon \leq 1$, synchronous Q-learning yields $\|\widehat{Q} - Q^{\star}\|_{\infty} \leq \varepsilon$ with high prob. and $\mathbb{E}[\|\widehat{Q} - Q^{\star}\|_{\infty}] \leq \varepsilon$, with sample size at most

$$\begin{cases} \widetilde{O}\left(\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^{4}\varepsilon^{2}}\right) & \text{if } |\mathcal{A}| \geq 2\\ \widetilde{O}\left(\frac{|\mathcal{S}|}{(1-\gamma)^{3}\varepsilon^{2}}\right) & \text{if } |\mathcal{A}| = 1 \end{cases} \quad (\textit{TD learning})$$

Sample complexity of synchronous Q-learning

Theorem 2 (Li, Cai, Chen, Wei, Chi'21)

For any $0 < \varepsilon \leq 1$, synchronous Q-learning yields $\|\widehat{Q} - Q^{\star}\|_{\infty} \leq \varepsilon$ with high prob. and $\mathbb{E}[\|\widehat{Q} - Q^{\star}\|_{\infty}] \leq \varepsilon$, with sample size at most

$$\begin{cases} \widetilde{O}\left(\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^{4}\varepsilon^{2}}\right) & \text{if } |\mathcal{A}| \geq 2\\ \widetilde{O}\left(\frac{|\mathcal{S}|}{(1-\gamma)^{3}\varepsilon^{2}}\right) & \text{if } |\mathcal{A}| = 1 \end{cases} \quad (\textit{TD learning})$$

• Covers both constant and rescaled linear learning rates:

$$\eta_t \equiv \frac{1}{1 + \frac{c_1(1-\gamma)T}{\log^2 T}} \quad \text{or} \quad \eta_t = \frac{1}{1 + \frac{c_2(1-\gamma)t}{\log^2 T}}$$

Sample complexity of synchronous Q-learning

Theorem 2 (Li, Cai, Chen, Wei, Chi'21)

For any $0 < \varepsilon \leq 1$, synchronous Q-learning yields $\|\widehat{Q} - Q^{\star}\|_{\infty} \leq \varepsilon$ with high prob. and $\mathbb{E}[\|\widehat{Q} - Q^{\star}\|_{\infty}] \leq \varepsilon$, with sample size at most

$$\begin{cases} \widetilde{O}\left(\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^{4}\varepsilon^{2}}\right) & \text{if } |\mathcal{A}| \geq 2 \qquad (?)\\ \widetilde{O}\left(\frac{|\mathcal{S}|}{(1-\gamma)^{3}\varepsilon^{2}}\right) & \text{if } |\mathcal{A}| = 1 \qquad (\text{minimax optimal}) \end{cases}$$

other papers	sample complexity
Even-Dar & Mansour '03	$2^{\frac{1}{1-\gamma}} \frac{ \mathcal{S} \mathcal{A} }{(1-\gamma)^4 \varepsilon^2}$
Beck & Srikant '12	$\frac{ \mathcal{S} ^2 \mathcal{A} ^2}{(1-\gamma)^5\varepsilon^2}$
Wainwright '19	$\frac{ \mathcal{S} \mathcal{A} }{(1-\gamma)^5\varepsilon^2}$
Chen, Maguluri, Shakkottai, Shanmugam '20	$\frac{ \mathcal{S} \mathcal{A} }{(1-\gamma)^5\varepsilon^2}$

Question: Is Q-learning sub-optimal, or is it an analysis artifact?
A numerical example: $\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^{4}\varepsilon^{2}}$ samples seem necessary ...

- observed in Wainwright '19

Q-learning is NOT minimax optimal

Theorem 3 (Li, Cai, Chen, Wei, Chi, 2021)

For any $0 < \varepsilon \le 1$, there exists an MDP with $|\mathcal{A}| \ge 2$ such that to achieve $\|\widehat{Q} - Q^*\|_{\infty} \le \varepsilon$, synchronous Q-learning needs at least

$$\widetilde{\Omega}\left(rac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^4arepsilon^2}
ight)$$
 samples

Q-learning is NOT minimax optimal

Theorem 3 (Li, Cai, Chen, Wei, Chi, 2021)

For any $0 < \varepsilon \le 1$, there exists an MDP with $|\mathcal{A}| \ge 2$ such that to achieve $\|\widehat{Q} - Q^*\|_{\infty} \le \varepsilon$, synchronous Q-learning needs at least

$$\widetilde{\Omega}\left(rac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^4arepsilon^2}
ight) \quad \textit{samples}$$

- Tight algorithm-dependent lower bound
- · Holds for both constant and rescaled linear learning rates

Q-learning is NOT minimax optimal

Theorem 3 (Li, Cai, Chen, Wei, Chi, 2021)

For any $0 < \varepsilon \le 1$, there exists an MDP with $|\mathcal{A}| \ge 2$ such that to achieve $\|\widehat{Q} - Q^*\|_{\infty} \le \varepsilon$, synchronous Q-learning needs at least

$$\widetilde{\Omega}\left(rac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^4arepsilon^2}
ight)$$
 samples

23/53

Improving sample complexity via variance reduction

- a powerful idea from finite-sum stochastic optimization

Variance-reduced Q-learning updates (Wainwright '19)

— inspired by SVRG (Johnson & Zhang '13)

$$Q_t(s,a) = (1-\eta)Q_{t-1}(s,a) + \eta \Big(\mathcal{T}_t(Q_{t-1}) \underbrace{-\mathcal{T}_t(\overline{Q}) + \widetilde{\mathcal{T}}(\overline{Q})}_{-\mathcal{T}_t(\overline{Q})}\Big)(s,a)$$

use \overline{Q} to help reduce variability

Variance-reduced Q-learning updates (Wainwright '19)

— inspired by SVRG (Johnson & Zhang '13)

$$Q_t(s,a) = (1-\eta)Q_{t-1}(s,a) + \eta \Big(\mathcal{T}_t(Q_{t-1}) \underbrace{-\mathcal{T}_t(\overline{Q}) + \widetilde{\mathcal{T}}(\overline{Q})}_{\text{use } \overline{Q} \text{ to help reduce variability}} \Big)(s,a)$$

- \overline{Q} : some <u>reference</u> Q-estimate
- $\widetilde{\mathcal{T}}$: empirical Bellman operator (using a <u>batch</u> of samples)

$$\begin{aligned} \mathcal{T}_t(Q)(s,a) &= r(s,a) + \gamma \max_{a'} Q(s',a') \\ \widetilde{\mathcal{T}}(Q)(s,a) &= r(s,a) + \gamma \mathop{\mathbb{E}}_{s' \sim \widetilde{\mathcal{P}}(\cdot|s,a)} \left[\max_{a'} Q(s',a') \right] \end{aligned}$$

An epoch-based stochastic algorithm

- inspired by Johnson & Zhang '13

for each epoch

- 1. update \overline{Q} and $\widetilde{\mathcal{T}}(\overline{Q})$ (which stay fixed in the rest of the epoch)
- 2. run variance-reduced Q-learning updates iteratively

Theorem 4 (Wainwright '19)

For any $0 < \varepsilon \leq 1$, sample complexity for variance-reduced synchronous *Q*-learning to yield $\|\hat{Q} - Q^{\star}\|_{\infty} \leq \varepsilon$ is at most

$$\widetilde{O}\left(\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^3\varepsilon^2}\right)$$

• allows for more aggressive learning rates

Theorem 4 (Wainwright '19)

For any $0 < \varepsilon \le 1$, sample complexity for variance-reduced synchronous *Q*-learning to yield $\|\widehat{Q} - Q^{\star}\|_{\infty} \le \varepsilon$ is at most

$$\widetilde{O}\left(\frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)^3\varepsilon^2}
ight)$$

- allows for more aggressive learning rates
- minimax-optimal for $0 < \varepsilon \leq 1$

 $\circ~$ remains suboptimal if $1 < \varepsilon < \frac{1}{1-\gamma}$

Model-free RL

- 1. Basics of Q-learning
- 2. Synchronous Q-learning and variance reduction (simulator)
- 3. Asynchronous Q-learning (Markovian data)
- 4. Q-learning with lower confidence bounds (offline RL)
- 5. Q-learning with upper confidence bounds (online RL)

Markovian samples and behavior policy

Observed: $\{s_t, a_t, r_t\}_{t \ge 0}$ generated by behavior policy π_b stationary Markovian trajectory

Goal: learn optimal value V^* and Q^* based on sample trajectory

Markovian samples and behavior policy

Key quantities of sample trajectory

• minimum state-action occupancy probability (uniform coverage)

$$\mu_{\min} := \min \underbrace{\mu_{\pi_{b}}(s, a)}_{\text{stationary distribution}} \in \left[0, \frac{1}{|\mathcal{S}||\mathcal{A}|}\right]$$

mixing time: t_{mix}

Chris Watkins

Peter Dayan

$$\underbrace{Q_{t+1}(s_t, a_t) = (1 - \eta_t)Q_t(s_t, a_t) + \eta_t \mathcal{T}_t(Q_t)(s_t, a_t)}_{\text{only update } (s_t, a_t) - \text{th entry}}, \quad t \ge 0$$

Peter Dayan

$$\underbrace{Q_{t+1}(s_t, a_t) = (1 - \eta_t)Q_t(s_t, a_t) + \eta_t \mathcal{T}_t(Q_t)(s_t, a_t)}_{\text{only update } (s_t, a_t) - \text{th entry}}, \quad t \ge 0$$

$$\mathcal{T}_t(Q)(s_t, a_t) = r(s_t, a_t) + \gamma \max_{a'} Q(s_{t+1}, a')$$

• asynchronous: only a single entry is updated each iteration

- asynchronous: only a single entry is updated each iteration
- off-policy: target policy $\pi^* \neq$ behavior policy π_b

Sample complexity of asynchronous Q-learning

Theorem 5 (Li, Cai, Chen, Wei, Chi'21)

For any $0 < \varepsilon \leq \frac{1}{1-\gamma}$, sample complexity of async Q-learning to yield $\|\widehat{Q} - Q^{\star}\|_{\infty} \leq \varepsilon$ with high prob. (or $\mathbb{E}[\|\widehat{Q} - Q^{\star}\|_{\infty}] \leq \varepsilon$) is at most $\frac{1}{\mu_{\min}(1-\gamma)^{4}\varepsilon^{2}} + \frac{t_{\max}}{\mu_{\min}(1-\gamma)}$ (up to log factor)

Sample complexity of asynchronous Q-learning

Theorem 5 (Li, Cai, Chen, Wei, Chi'21)

For any $0 < \varepsilon \leq \frac{1}{1-\gamma}$, sample complexity of async Q-learning to yield $\|\widehat{Q} - Q^{\star}\|_{\infty} \leq \varepsilon$ with high prob. (or $\mathbb{E}[\|\widehat{Q} - Q^{\star}\|_{\infty}] \leq \varepsilon$) is at most $\frac{1}{\mu_{\min}(1-\gamma)^{4}\varepsilon^{2}} + \frac{t_{\max}}{\mu_{\min}(1-\gamma)}$ (up to log factor)

other papers	sample complexity
Even-Dar, Mansour '03	$\frac{(t_{\text{cover}})^{\frac{1}{1-\gamma}}}{(1-\gamma)^4 \varepsilon^2}$
Even-Dar, Mansour '03	$\big(\tfrac{t_{\mathrm{cover}}^{1+3\omega}}{(1-\gamma)^{4}\varepsilon^{2}}\big)^{\frac{1}{\omega}} + \big(\tfrac{t_{\mathrm{cover}}}{1-\gamma}\big)^{\frac{1}{1-\omega}}, \omega \in (\tfrac{1}{2},1)$
Beck & Srikant '12	$\frac{t_{\text{cover}}^3 \mathcal{S} \mathcal{A} }{(1 - \gamma)^5 \varepsilon^2}$
Qu & Wierman '20	$\frac{t_{\text{mix}}}{\mu_{\text{min}}^2(1-\gamma)^5\varepsilon^2}$
Li, Wei, Chi, Gu, Chen '20	$\frac{1}{\mu_{\min}(1-\gamma)^5\varepsilon^2} + \frac{t_{\min}}{\mu_{\min}(1-\gamma)}$
Chen, Maguluri, Shakkottai, Shanmugam '21	$\frac{1}{\mu_{\min}^3(1-\gamma)^5\varepsilon^2} + other-term(t_{mix})$

if we take $\mu_{\min}\asymp \frac{1}{|\mathcal{S}||\mathcal{A}|}$, $t_{\rm cover}\asymp \frac{t_{\rm mix}}{\mu_{\rm min}}$ 33/ 53

Effect of mixing time on sample complexity

$$\frac{1}{\mu_{\min}(1-\gamma)^4\varepsilon^2} + \frac{t_{\max}}{\mu_{\min}(1-\gamma)}$$

• reflects cost taken to reach steady state

Effect of mixing time on sample complexity

$$\frac{1}{\mu_{\min}(1-\gamma)^4\varepsilon^2} + \frac{t_{\max}}{\mu_{\min}(1-\gamma)}$$

- reflects cost taken to reach steady state
- one-time expense (almost independent of ε)

— it becomes amortized as algorithm runs

— prior art: $\frac{t_{\text{mix}}}{\mu_{\min}^2(1-\gamma)^5\varepsilon^2}$ (Qu & Wierman '20)

Model-free RL

- 1. Basics of Q-learning
- 2. Synchronous Q-learning and variance reduction (simulator)
- 3. Asynchronous Q-learning (Markovian data)
- 4. Q-learning with lower confidence bounds (offline RL)
- 5. Q-learning with upper confidence bounds (online RL)

Historical dataset $\mathcal{D} = \{(s^{(i)}, a^{(i)}, s'^{(i)})\}$: N independent copies of

$$s \sim \rho^{\mathsf{b}}, \qquad a \sim \pi^{\mathsf{b}}(\cdot \,|\, s), \qquad s' \sim P(\cdot \,|\, s, a)$$

for some state distribution $\rho^{\rm b}$ and behavior policy $\pi^{\rm b}$

Historical dataset $\mathcal{D} = \{(s^{(i)}, a^{(i)}, s'^{(i)})\}$: N independent copies of

$$s \sim \rho^{\mathsf{b}}, \qquad a \sim \pi^{\mathsf{b}}(\cdot \,|\, s), \qquad s' \sim P(\cdot \,|\, s, a)$$

for some state distribution $\rho^{\rm b}$ and behavior policy $\pi^{\rm b}$

Single-policy concentrability

$$C^{\star} \coloneqq \max_{s,a} \frac{d^{\pi^{\star}}(s,a)}{d^{\pi^{\flat}}(s,a)} \ge 1$$

where $d^{\pi} :$ occupancy distribution under π

- captures distributional shift
- allows for partial coverage

How to design offline model-free algorithms with optimal sample efficiency?

How to design offline model-free algorithms with optimal sample efficiency?

LCB-Q: Q-learning with LCB penalty

— Shi et al. '22, Yan et al. '22

$$Q_{t+1}(s_t, a_t) \leftarrow \underbrace{(1 - \eta_t)Q_t(s_t, a_t) + \eta_t \mathcal{T}_t(Q_t)(s_t, a_t)}_{\text{classical Q-learning}} - \eta_t \underbrace{b_t(s_t, a_t)}_{\text{LCB penalty}}$$

classical Q-learning

LCB-Q: Q-learning with LCB penalty

— Shi et al. '22, Yan et al. '22

$$Q_{t+1}(s_t, a_t) \leftarrow \underbrace{\left(1 - \eta_t\right)Q_t(s_t, a_t) + \eta_t \mathcal{T}_t\left(Q_t\right)\left(s_t, a_t\right)}_{\text{classical Q-learning}} - \eta_t \underbrace{b_t(s_t, a_t)}_{\text{LCB penalty}}$$

- $b_t(s, a)$: Hoeffding-style confidence bound
- pessimism in the face of uncertainty

LCB-Q: Q-learning with LCB penalty

— Shi et al. '22, Yan et al. '22

$$Q_{t+1}(s_t, a_t) \leftarrow \underbrace{(1 - \eta_t)Q_t(s_t, a_t) + \eta_t \mathcal{T}_t\left(Q_t\right)\left(s_t, a_t\right)}_{\text{classical Q-learning}} - \underbrace{\eta_t \underbrace{b_t(s_t, a_t)}_{\text{LCB penalty}}$$

- $b_t(s, a)$: Hoeffding-style confidence bound
- pessimism in the face of uncertainty

sample size:
$$\widetilde{O}(\frac{SC^{\star}}{(1-\gamma)^{5}\varepsilon^{2}}) \implies$$
 sub-optimal by a factor of $\frac{1}{(1-\gamma)^{2}}$

Issue: large variability in stochastic update rules

Q-learning with LCB and variance reduction

— Shi et al. '22, Yan et al. '22

$$\begin{split} Q_{t+1}(s_t, a_t) \leftarrow (1 - \eta_t) Q_t(s_t, a_t) - \eta_t \underbrace{b_t(s_t, a_t)}_{\text{LCB penalty}} \\ &+ \eta_t \Big(\underbrace{\mathcal{T}_t(Q_t) - \mathcal{T}_t(\overline{Q})}_{\text{advantage}} + \underbrace{\widehat{\mathcal{T}}(\overline{Q})}_{\text{reference}} \Big)(s_t, a_t) \end{split}$$

Q-learning with LCB and variance reduction

— Shi et al. '22, Yan et al. '22

$$\begin{split} Q_{t+1}(s_t, a_t) \leftarrow (1 - \eta_t) Q_t(s_t, a_t) - \eta_t \underbrace{b_t(s_t, a_t)}_{\text{LCB penalty}} \\ &+ \eta_t \Big(\underbrace{\mathcal{T}_t(Q_t) - \mathcal{T}_t(\overline{Q})}_{\text{advantage}} + \underbrace{\widehat{\mathcal{T}}(\overline{Q})}_{\text{reference}} \Big)(s_t, a_t) \end{split}$$

• incorporates variance reduction into LCB-Q

Q-learning with LCB and variance reduction

— Shi et al. '22, Yan et al. '22

$$\begin{aligned} Q_{t+1}(s_t, a_t) \leftarrow (1 - \eta_t) Q_t(s_t, a_t) - \eta_t \underbrace{b_t(s_t, a_t)}_{\mathsf{LCB penalty}} \\ &+ \eta_t \Big(\underbrace{\mathcal{T}_t(Q_t) - \mathcal{T}_t(\overline{Q})}_{\mathsf{advantage}} + \underbrace{\widehat{\mathcal{T}}(\overline{Q})}_{\mathsf{reference}} \Big)(s_t, a_t) \end{aligned}$$

incorporates variance reduction into LCB-Q

Theorem 6 (Yan, Li, Chen, Fan '22, Shi, Li, Wei, Chen, Chi '22)

For $\varepsilon \in (0, 1 - \gamma]$, LCB-Q-Advantage achieves $V^{\star}(\rho) - V^{\widehat{\pi}}(\rho) \leq \varepsilon$ with optimal sample complexity $\widetilde{O}(\frac{SC^{\star}}{(1-\gamma)^{3}\varepsilon^{2}})$

Model-free offline RL attains sample optimality too! — with some burn-in cost though ...

Model-free RL

- 1. Basics of Q-learning
- 2. Synchronous Q-learning and variance reduction (simulator)
- 3. Asynchronous Q-learning (Markovian data)
- 4. Q-learning with lower confidence bounds (offline RL)
- 5. Q-learning with upper confidence bounds (online RL)

Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each consisting of H steps

Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each consisting of H steps

Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each consisting of H steps

Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each consisting of H steps — sample size: T = KH

exploration (exploring unknowns) vs. exploitation (exploiting learned info)

Regret: gap between learned policy & optimal policy

Regret: gap between learned policy & optimal policy

Regret: gap between learned policy & optimal policy

Performance metric: given initial states $\{s_1^k\}_{k=1}^K$, define

chosen by nature/adversary

$$\operatorname{Regret}(T) := \sum_{k=1}^{K} \left(V_1^{\star}(s_1^k) - V_1^{\pi^k}(s_1^k) \right)$$

Lower bound (Domingues et al. '21)

 ${\rm Regret}(T)\gtrsim \sqrt{H^2SAT}$

Existing algorithms

- UCB-VI: Azar et al. '17
- UBEV: Dann et al. '17
- UCB-Q-Hoeffding: Jin et al. '18
- UCB-Q-Bernstein: Jin et al. '18
- UCB2-Q-Bernstein: Bai et al. '19
- EULER: Zanette et al. '19
- UCB-Q-Advantage: Zhang et al. '20
- UCB-M-Q: Menard et al. '21
- Q-EarlySettled-Advantage: Li et al. '21

Which model-free algorithms are sample-efficient for online RL?

Which model-free algorithms are sample-efficient for online RL?

Q-learning with UCB exploration (Jin et al., 2018)

$$Q_h(s_h, a_h) \leftarrow \underbrace{(1 - \eta_k)Q_h(s_h, a_h) + \eta_k \mathcal{T}_k(Q_{h+1})(s_h, a_h)}_{\text{relation}} + \eta_k \underbrace{\mathbf{b}_h(s_h, a_h)}_{\text{relation}} + \underbrace{\mathbf{b}_h(s_h, a_h)}_{\text{relation}}$$

classical Q-learning

exploration bonus

$$Q_{h}(s_{h}, a_{h}) \leftarrow \underbrace{(1 - \eta_{k})Q_{h}(s_{h}, a_{h}) + \eta_{k}\mathcal{T}_{k}\left(Q_{h+1}\right)\left(s_{h}, a_{h}\right)}_{\text{classical Q-learning}} + \underbrace{\eta_{k}\underbrace{b_{h}(s_{h}, a_{h})}_{\text{exploration bounds}}$$

- $b_h(s, a)$: upper confidence bound; encourage exploration — optimism in the face of uncertainty
- inspired by UCB bandit algorithm (Lai, Robbins '85)

$$Q_{h}(s_{h}, a_{h}) \leftarrow \underbrace{(1 - \eta_{k})Q_{h}(s_{h}, a_{h}) + \eta_{k}\mathcal{T}_{k}\left(Q_{h+1}\right)\left(s_{h}, a_{h}\right)}_{\text{classical Q-learning}} + \eta_{k}\underbrace{b_{h}(s_{h}, a_{h})}_{\text{exploration bounds}}$$

- $b_h(s, a)$: upper confidence bound; encourage exploration — optimism in the face of uncertainty
- inspired by UCB bandit algorithm (Lai, Robbins '85)

 $\operatorname{Regret}(T) \lesssim \sqrt{H^3 SAT} \implies \text{sub-optimal by a factor of } \sqrt{H}$

$$Q_{h}(s_{h}, a_{h}) \leftarrow \underbrace{(1 - \eta_{k})Q_{h}(s_{h}, a_{h}) + \eta_{k}\mathcal{T}_{k}\left(Q_{h+1}\right)\left(s_{h}, a_{h}\right)}_{\text{classical Q-learning}} + \eta_{k}\underbrace{b_{h}(s_{h}, a_{h})}_{\text{exploration bounds}}$$

- $b_h(s, a)$: upper confidence bound; encourage exploration — optimism in the face of uncertainty
- inspired by UCB bandit algorithm (Lai, Robbins '85)

 $\operatorname{Regret}(T) \lesssim \sqrt{H^3 SAT} \implies \text{sub-optimal by a factor of } \sqrt{H}$

Issue: large variability in stochastic update rules

UCB Q-learning with UCB and variance reduction

Incorporates variance reduction into UCB-Q: — Zhang, Zhou, Ji '20

• asymptotically regret-optimal

UCB Q-learning with UCB and variance reduction

Incorporates variance reduction into UCB-Q:

— Zhang, Zhou, Ji'20

- asymptotically regret-optimal
- Issue: high burn-in cost $O(S^6 A^4 H^{28})$

Incorporates variance reduction into UCB-Q: — Zhang, Zhou, Ji '20

- asymptotically regret-optimal
- Issue: high burn-in cost $O(S^6 A^4 H^{28})$

One additional idea: early settlement of reference updates — *Li, Shi, Chen, Chi '23*

Incorporates variance reduction into UCB-Q: — Zhang, Zhou, Ji '20

- asymptotically regret-optimal
- Issue: high burn-in cost $O(S^6 A^4 H^{28})$

One additional idea: early settlement of reference updates — *Li, Shi, Chen, Chi '23*

- regret-optimal w/ near-minimal burn-in cost in ${\cal S}$ and ${\cal A}$
- memory-efficient O(SAH)
- computationally efficient: runtime O(T)

Summary of this part

Model-free RL can achieve memory efficiency, computational efficiency, and sample efficiency at once! — with some burn-in cost though

Reference I

- "Model-based multi-agent RL in zero-sum Markov games with near-optimal sample complexity," K. Zhang, S. Kakade, T. Basar, L. Yang, NeurIPS, 2020
- "When can we learn general-sum Markov games with a large number of players sample-efficiently?" Z. Song, S. Mei, Y. Bai, *ICLR* 2022
- "V-learning: A simple, efficient, decentralized algorithm for multiagent RL," C. Jin, Q. Liu, Y. Wang, T. Yu, 2021
- "Minimax-optimal multi-agent RL in markov games with a generative model," G. Li, Y. Chi, Y. Wei, Y. Chen, NeurIPS, 2022
- "The complexity of Markov equilibrium in stochastic games," C. Daskalakis, N. Golowich, K. Zhang, COLT, 2023
- "A stochastic approximation method," H. Robbins, S. Monro, Annals of mathematical statistics, 1951

Reference II

- "Robust stochastic approximation approach to stochastic programming," A. Nemirovski, A. Juditsky, G. Lan, A. Shapiro, SIAM Journal on optimization, 2009
- "Learning from delayed rewards," C. Watkins, 1989
- "Q-learning," C. Watkins, P. Dayan, Machine learning, 1992
- "Learning to predict by the methods of temporal differences," R. Sutton, Machine learning, 1988
- "Analysis of temporal-diffference learning with function approximation," B. van Roy, J. Tsitsiklis, IEEE transactions on automatic control, 1997
- "Learning Rates for Q-learning," E. Even-Dar, Y. Mansour, Journal of machine learning Research, 2003
- "The asymptotic convergence-rate of Q-learning," C. Szepesvari, NeurIPS, 1998

Reference III

- "Stochastic approximation with cone-contractive operators: Sharp ℓ_{∞} bounds for Q-learning," M. Wainwright, arXiv:1905.06265, 2019
- "Is Q-Learning minimax optimal? A tight sample complexity analysis," G. Li, Y. Wei, Y. Chi, Y. Chen, accepted to Operations Research, 2023
- "Accelerating stochastic gradient descent using predictive variance reduction," R. Johnson, T. Zhang, NeurIPS, 2013
- "Variance-reduced Q-learning is minimax optimal," M. Wainwright, arXiv:1906.04697, 2019
- "Asynchronous stochastic approximation and Q-learning," J. Tsitsiklis, Machine learning, 1994
- "On the convergence of stochastic iterative dynamic programming algorithms," T. Jaakkola, M. Jordan, S. Singh, Neural computation, 1994

Reference IV

- "Error bounds for constant step-size Q-learning," C. Beck, R. Srikant, Systems and control letters, 2012
- "Sample complexity of asynchronous Q-learning: sharper analysis and variance reduction," G. Li, Y. Wei, Y. Chi, Y. Gu, Y. Chen, NeurIPS 2020
- "Finite-time analysis of asynchronous stochastic approximation and *Q*-learning," G. Qu, A. Wierman, *COLT* 2020.
- "Pessimistic Q-learning for offline reinforcement learning: Towards optimal sample complexity," L. Shi, G. Li, Y. Wei, Y. Chen, Y. Chi, *ICML* 2022.
- "The efficacy of pessimism in asynchronous Q-learning," Y. Yan, G. Li, Y. Chen, J. Fan, arXiv:2203.07368, 2022.
- "Asymptotically efficient adaptive allocation rules," T. L. Lai, H. Robbins, Advances in applied mathematics, vol. 6, no. 1, 1985.

Reference V

- "Is Q-learning provably efficient?" C. Jin, Z. Allen-Zhu, S. Bubeck, and M. Jordan, NeurIPS 2018.
- "Almost optimal model-free reinforcement learning via reference-advantage decomposition," Z. Zhang, Y. Zhou, X. Ji, NeurIPS 2020.
- "Breaking the sample complexity barrier to regret-optimal model-free reinforcement learning," G. Li, L. Shi, Y. Chen, Y. Chi, Information and Inference: A Journal of the IMA, 2023.

Non-asymptotic Analysis for Reinforcement Learning (Part 3)

Yuejie Chi

Carnegie Mellon University

Sigmetrics Tutorial June 2023

A triad of RL approaches

- Figure credit: D. Silver

Policy optimization in practice

maximize_{θ} value(policy(θ))

- directly optimize the policy, which is the quantity of interest;
- allow flexible differentiable parameterizations of the policy;
- work with both continuous and discrete problems.

Theoretical challenges: non-concavity

Little understanding on the global convergence of policy gradient methods until very recently, e.g. (Fazel et al., 2018; Bhandari and Russo, 2019; Agarwal et al., 2019; Mei et al. 2020), and many more.

Our goal:

- understand finite-time convergence rates of popular heuristics;
- design fast-convergent algorithms that scale for finding policies with desirable properties.

Outline

- Backgrounds and basics
 - policy gradient method
- Convergence guarantees of single-agent policy optimization
 - (natural) policy gradient methods
 - finite-time rate of global convergence
 - entropy regularization and beyond
- Multi-agent policy optimization: two-player zero-sum games
 - Matrix game
 - Markov game
- Concluding remarks and further pointers

Backgrounds: policy optimization in tabular Markov decision processes

Searching for the optimal policy

Goal: find the optimal policy π^* that maximize $V^{\pi}(s)$

• optimal value / Q function: $V^{\star} := V^{\pi^{\star}}$, $Q^{\star} := Q^{\pi^{\star}}$

Policy gradient methods

Given an initial state distribution $s \sim \rho$, find policy π such that

Policy gradient method (Sutton et al., 2000)

For $t = 0, 1, \cdots$ $\theta^{(t+1)} = \theta^{(t)} + \eta \nabla_{\theta} V^{\pi^{(t)}_{\theta}}(\rho)$

where η is the learning rate.

Softmax policy gradient methods

Given an initial state distribution $s \sim \rho$, find policy π such that

$$\mathsf{maximize}_{\theta} \quad V^{\pi_{\theta}}(\rho) := \mathbb{E}_{s \sim \rho} \left[V^{\pi_{\theta}}(s) \right]$$

Policy gradient method (Sutton et al., 2000)

For $t = 0, 1, \cdots$ $\theta^{(t+1)} = \theta^{(t)} + \eta \nabla_{\theta} V^{\pi^{(t)}_{\theta}}(\rho)$

where η is the learning rate.

Finite-time global convergence guarantees

Global convergence of the PG method?

- (Agarwal et al., 2019) showed that softmax PG converges asymptotically to the global optimal policy.
- (Mei et al., 2020) Softmax PG converges to global opt in $c(|\mathcal{S}|, |\mathcal{A}|, \frac{1}{1-\gamma}, \cdots) O(\frac{1}{\epsilon})$ iterations

Is the rate of PG good, bad or ugly?

A negative message

Theorem (Li, Wei, Chi, Chen, 2021)

There exists an MDP s.t. it takes softmax PG at least

$$rac{1}{\eta} \left| \mathcal{S}
ight|^{2^{\Theta(rac{1}{1-\gamma})}}$$
 iterations

to achieve $||V^{(t)} - V^*||_{\infty} \le 0.15$.

- Softmax PG can take (super)-exponential time to converge (in problems w/ large state space & long effective horizon)!
- Also hold for average sub-opt gap $\frac{1}{|S|} \sum_{s \in S} \left[V^{(t)}(s) V^{\star}(s) \right]$.

MDP construction for our lower bound

Key ingredients: for $3 \le s \le H \asymp \frac{1}{1-\gamma}$,

• $\pi^{(t)}(a_{\mathsf{opt}}\,|\,s)$ keeps decreasing until $\pi^{(t)}(a_{\mathsf{opt}}\,|\,s-2)\approx 1$
What is happening in our constructed MDP?

Convergence time for state \boldsymbol{s} grows geometrically as \boldsymbol{s} increases

convergence-time
$$(s) \gtrsim (\text{convergence-time}(s-2))^{1.5}$$

"Seriously, lady, at this hour you'd make a lot better time taking the subway."

Booster #1: natural policy gradient

Natural policy gradient (NPG) method (Kakade, 2002) For $t = 0, 1, \cdots$

$$\theta^{(t+1)} = \theta^{(t)} + \eta (\mathcal{F}^{\theta}_{\rho})^{\dagger} \nabla_{\theta} V^{\pi^{(t)}_{\theta}}(\rho)$$

where η is the learning rate and $\mathcal{F}^{\theta}_{\rho}$ is the Fisher information matrix:

$$\mathcal{F}_{\rho}^{\theta} := \mathbb{E}\left[\left(\nabla_{\theta} \log \pi_{\theta}(a|s)\right) \left(\nabla_{\theta} \log \pi_{\theta}(a|s)\right)^{\top}\right]$$

Connection with TRPO/PPO

TRPO/PPO (Schulman et al., 2015; 2017) are popular heuristics in training RL algorithms, with **KL regularization**

$$\mathsf{KL}(\pi_{\theta}^{(t)} \| \pi_{\theta}) \approx \frac{1}{2} (\theta - \theta^{(t)})^{\top} \mathcal{F}_{\rho}^{\theta} (\theta - \theta^{(t)})$$

via constrained or proximal terms:

$$\begin{aligned} \theta^{(t+1)} &= \operatorname*{argmax}_{\theta} V^{\pi^{(t)}_{\theta}}(\rho) + (\theta - \theta^{(t)})^{\top} \nabla_{\theta} V^{\pi^{(t)}_{\theta}}(\rho) - \eta \mathsf{KL}(\pi^{(t)}_{\theta} \| \pi_{\theta}) \\ &\approx \theta^{(t)} + \eta (\mathcal{F}^{\theta}_{\rho})^{\dagger} \nabla_{\theta} V^{\pi^{(t)}_{\theta}}(\rho), \end{aligned}$$

leading to exactly NPG!

NPG \approx TRPO/PPO!

Natural policy gradient (NPG) method (Tabular setting) For $t = 0, 1, \dots$, NPG updates the policy via $\pi^{(t+1)}(\cdot|s) \propto \underbrace{\pi^{(t)}(\cdot|s)}_{\text{current policy}} \underbrace{\exp\left(\frac{\eta Q^{(t)}(s, \cdot)}{1 - \gamma}\right)}_{\text{soft greedy}}$ where $Q^{(t)} := Q^{\pi^{(t)}}$ is the Q-function of $\pi^{(t)}$, and $\eta > 0$.

- invariant with the choice of ho
- Reduces to policy iteration (PI) when $\eta = \infty$.

Global convergence of NPG

Theorem (Agarwal et al., 2019)

Set $\pi^{(0)}$ as a uniform policy. For all $t \ge 0$, we have

$$V^{(t)}(\rho) \ge V^{\star}(\rho) - \left(\frac{\log |\mathcal{A}|}{\eta} + \frac{1}{(1-\gamma)^2}\right) \frac{1}{t}.$$

Implication: set $\eta \ge (1 - \gamma)^2 \log |\mathcal{A}|$, we find an ϵ -optimal policy within at most

$$\frac{2}{(1-\gamma)^2\epsilon}$$
 iterations.

Global convergence at a sublinear rate independent of |S|, |A|!

Booster #2: entropy regularization

To encourage exploration, promote the stochasticity of the policy using the **"soft"** value function (Williams and Peng, 1991):

$$\forall s \in \mathcal{S}: \qquad V_{\tau}^{\pi}(s) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \left(r_{t} + \tau \mathcal{H}(\pi(\cdot|s_{t})) \mid s_{0} = s\right]\right]$$

where \mathcal{H} is the Shannon entropy, and $\tau \geq 0$ is the reg. parameter.

 $\mathsf{maximize}_{\theta} \quad V_{\tau}^{\pi_{\theta}}(\rho) := \mathbb{E}_{s \sim \rho} \left[V_{\tau}^{\pi_{\theta}}(s) \right]$

Entropy-regularized natural gradient helps!

Toy example: a bandit with 3 arms of rewards 1, 0.9 and 0.1.

Can we justify the efficacy of entropy-regularized NPG?

Entropy-regularized NPG in the tabular setting

Entropy-regularized NPG (Tabular setting) For $t = 0, 1, \dots$, the policy is updated via $\pi^{(t+1)}(\cdot|s) \propto \underbrace{\pi^{(t)}(\cdot|s)}_{current \ policy} \underbrace{1 - \frac{\eta\tau}{1 - \gamma}}_{soft \ greedy} \underbrace{\exp(Q_{\tau}^{(t)}(s, \cdot)/\tau)}_{soft \ greedy} \underbrace{\frac{\eta\tau}{1 - \gamma}}_{\tau}$ where $Q_{\tau}^{(t)} := Q_{\tau}^{\pi^{(t)}}$ is the soft Q-function of $\pi^{(t)}$, and $0 < \eta \leq \frac{1 - \gamma}{\tau}$.

- invariant with the choice of ρ
- Reduces to soft policy iteration (SPI) when $\eta = \frac{1-\gamma}{\tau}$.

Linear convergence with exact gradient

Exact oracle: perfect evaluation of $Q_{\tau}^{\pi^{(t)}}$ given $\pi^{(t)}$;

-Read the paper for the inexact case

Theorem (Cen, Cheng, Chen, Wei, Chi, 2020)

For any learning rate $0<\eta\leq (1-\gamma)/\tau$, the entropy-regularized NPG updates satisfy

• Linear convergence of soft Q-functions:

$$||Q_{\tau}^{\star} - Q_{\tau}^{(t+1)}||_{\infty} \le C_1 \gamma (1 - \eta \tau)^t$$

for all $t \geq 0$, where Q^{\star}_{τ} is the optimal soft Q-function, and

$$C_1 = \|Q_{\tau}^{\star} - Q_{\tau}^{(0)}\|_{\infty} + 2\tau \left(1 - \frac{\eta\tau}{1 - \gamma}\right) \|\log \pi_{\tau}^{\star} - \log \pi^{(0)}\|_{\infty}.$$

Implications

To reach $\|Q_{ au}^{\star} - Q_{ au}^{(t+1)}\|_{\infty} \leq \epsilon$, the iteration complexity is at most

• General learning rates ($0 < \eta < \frac{1-\gamma}{\tau}$):

$$\frac{1}{\eta\tau}\log\left(\frac{C_1\gamma}{\epsilon}\right)$$

• Soft policy iteration $(\eta = \frac{1-\gamma}{\tau})$:

$$\frac{1}{1-\gamma} \log \left(\frac{\|Q_{\tau}^{\star} - Q_{\tau}^{(0)}\|_{\infty} \gamma}{\epsilon} \right)$$

Global linear convergence of entropy-regularized NPG at a rate independent of |S|, |A|!

Comparisons with entropy-regularized PG

(Mei et al., 2020) showed entropy-regularized PG achieves $V_{\tau}^{\star}(\rho) - V_{\tau}^{(t)}(\rho) \leq \left(V_{\tau}^{\star}(\rho) - V_{\tau}^{(0)}(\rho)\right)$ $\cdot \exp\left(-\frac{(1-\gamma)^{4}t}{(8/\tau + 4 + 8\log|\mathcal{A}|)|\mathcal{S}|} \left\|\frac{d_{\rho}^{\pi^{\star}}}{\rho}\right\|_{\infty}^{-1} \min_{s} \rho(s) \underbrace{\left(\inf_{0 \leq k \leq t-1} \min_{s,a} \pi^{(k)}(a|s)\right)^{2}}_{\text{can be exponential in } |\mathcal{S}| \text{ and } \frac{1}{1-\gamma}\right)$

> Much faster convergence of entropy-regularized NPG at a **dimension-free** rate!

Comparison with unregularized NPG

A key operator: soft Bellman operator

Soft Bellman operator

Soft Bellman equation: Q_{τ}^{\star} is *unique* solution to

$$\mathcal{T}_{\tau}(Q_{\tau}^{\star}) = Q_{\tau}^{\star}$$

 $\gamma\text{-contraction of soft Bellman operator:}$

$$\|\mathcal{T}_{\tau}(Q_1) - \mathcal{T}_{\tau}(Q_2)\|_{\infty} \leq \gamma \|Q_1 - Q_2\|_{\infty}$$

Richard Bellman

Analysis of soft policy iteration $(\eta = \frac{1-\gamma}{\tau})$

Policy iteration

Bellman operator

Soft policy iteration

Soft Bellman operator

A key linear system: general learning rates

Let
$$x_t := \begin{bmatrix} \|Q_{\tau}^{\star} - Q_{\tau}^{(t)}\|_{\infty} \\ \|Q_{\tau}^{\star} - \tau \log \xi^{(t)}\|_{\infty} \end{bmatrix}$$
 and $y := \begin{bmatrix} \|Q_{\tau}^{(0)} - \tau \log \xi^{(0)}\|_{\infty} \\ 0 \end{bmatrix}$,

where $\xi^{(t)} \propto \pi^{(t)}$ is an auxiliary sequence, then

$$x_{t+1} \le Ax_t + \gamma \left(1 - \frac{\eta \tau}{1 - \gamma}\right)^{t+1} y,$$

where

$$A := \begin{bmatrix} \gamma \\ 1 \end{bmatrix} \cdot \begin{bmatrix} \frac{\eta \tau}{1-\gamma} & 1 - \frac{\eta \tau}{1-\gamma} \end{bmatrix}$$

is a rank-1 matrix with a non-zero eigenvalue $\underbrace{1-\eta\tau}_{\text{contraction ratel}}$

Beyond entropy regularization

Leverage regularization to promote structural properties of the learned policy.

For further details, see: (Lan, PMD 2021) and (Zhan et al, GPMD 2021)

Policy optimization for games

Policy optimization: saddle-point optimization

Zero-sum two-player Markov game

Given an initial state distribution $s \sim \rho$, find policy π such that

$$\max_{\mu \in \Delta(\mathcal{A})^{|\mathcal{S}|}} \min_{\nu \in \Delta(\mathcal{B})^{|\mathcal{S}|}} V^{\mu,\nu}(\rho) := \mathbb{E}_{s \sim \rho}[V^{\mu,\nu}(s)]$$

Can we design a policy optimization method that guarantees fast *last-iterate* convergence?

Entropy regularization in MARL

Promote the stochasticity of the policy pair using the **"soft"** value function (Williams and Peng, 1991; Cen et al., 2020):

$$V_{\tau}^{\mu,\nu}(s) := \mathbb{E}\left[\sum_{h=1}^{H} \left(r_h + \tau \mathcal{H}(\mu_h(\cdot|s_h)) - \tau \mathcal{H}(\nu_h(\cdot|s_h))\right) \middle| s_0 = s\right],$$

where \mathcal{H} is the Shannon entropy, and $\tau \geq 0$ is the reg. parameter.

$$\max_{\mu \in \Delta(\mathcal{A})^{|\mathcal{S}|}} \min_{\nu \in \Delta(\mathcal{B})^{|\mathcal{S}|}} V^{\mu,\nu}_{\tau}(\rho)$$

Quantal response equilibrium (QRE)

Quantal response equilibrium (McKelvey and Palfrey, 1995)

The quantal response equilibrium (QRE) is the policy pair $(\mu_{\tau}^{\star}, \nu_{\tau}^{\star})$ that is the unique solution to

 $\max_{\mu \in \Delta(\mathcal{A})^{|\mathcal{S}|}} \min_{\nu \in \Delta(\mathcal{B})^{|\mathcal{S}|}} V_{\tau}^{\mu,\nu}(\rho).$

• Unlike NE, QRE assumes bounded rationality: action probability follows the logit function.

Translating to an ϵ -NE: setting $\tau \asymp \widetilde{O}(\epsilon/H)$.

Soft value iteration

Soft value iteration: for $h = H, \ldots, 1$

$$Q_h(s, a, b) \leftarrow r_h(s, a, b) + \\ \cdot \underset{s' \sim P_h(\cdot|s, a, b)}{\mathbb{E}} \left[\underbrace{\max_{\mu} \min_{\nu} \mu(s')^\top Q_{h+1}(s')\nu(s') + \tau \mathcal{H}(\mu(s')) - \tau \mathcal{H}(\nu(s'))}_{\mu} \right],$$

Entropy-regularized matrix game

where
$$Q_h(s) = [Q_h(s, \cdot, \cdot)] \in \mathbb{R}^{A \times B}$$
.

Entropy-regularized matrix game

$$\max_{\mu \in \Delta(\mathcal{A})} \min_{\nu \in \Delta(\mathcal{B})} \mu^{\top} A \nu + \tau \mathcal{H}(\mu) - \tau \mathcal{H}(\nu)$$

Failure of NPG/MWU methods

$$\max_{\mu \in \Delta(\mathcal{A})} \min_{\nu \in \Delta(\mathcal{B})} f_{\tau}(\mu, \nu) := \mu^{\top} A \nu + \tau \mathcal{H}(\mu) - \tau \mathcal{H}(\nu)$$

• Multiplicative Weights Update (**MWU**):

$$\begin{cases} \mu^{(t+1)}(a) \propto \mu^{(t)}(a)^{1-\eta\tau} \exp\left(\eta [A\nu^{(t)}]_a\right) \\ \nu^{(t+1)}(b) \propto \nu^{(t)}(b)^{1-\eta\tau} \exp\left(-\eta [A^\top \mu^{(t)}]_b\right) \end{cases}$$

- $\eta > 0$: step size;
- The trajectory may cycle/diverge!

Motivation: an implicit update method

Implicit update (IU) method

For
$$t=0,1,\cdots$$
 ,

$$\begin{cases} \mu^{(t+1)} \propto [\mu^{(t)}]^{1-\eta\tau} \exp\left([A\nu^{(t+1)}]/\tau\right)^{\eta\tau} \\ \nu^{(t+1)} \propto [\nu^{(t)}]^{1-\eta\tau} \exp\left(-[A^{\top}\mu^{(t+1)}]/\tau\right)^{\eta\tau} \end{cases}$$

Theorem (Cen, Wei, Chi, 2021)

Suppose that $0 < \eta \leq 1/\tau$, then for all $t \geq 0$,

$$\mathsf{KL}(\zeta_{\tau}^{\star} \| \zeta^{(t)}) \leq (1 - \eta \tau)^{t} \mathsf{KL}(\zeta_{\tau}^{\star} \| \zeta^{(0)}),$$

where $\mathsf{KL}(\zeta_{\tau}^{\star} \| \zeta^{(t)}) = \mathsf{KL}(\mu_{\tau}^{\star} \| \mu^{(t)}) + \mathsf{KL}(\nu_{\tau}^{\star} \| \nu^{(t)}).$

Can we make this practical?

From implicit updates to policy extragradient methods

Optimistic multiplicative weights update (OMWU) method (Related to OMD, Rakhlin and Sridharan, 2013): for $t = 0, 1, \cdots$,

$$\begin{array}{ll} \text{predict}: & \begin{cases} \bar{\mu}^{(t+1)} \propto [\mu^{(t)}]^{1-\eta\tau} \exp\left([A\bar{\nu}^{(t)}]/\tau\right)^{\eta\tau} \\ \bar{\nu}^{(t+1)} \propto [\nu^{(t)}]^{1-\eta\tau} \exp\left(-[A^{\top}\bar{\mu}^{(t)}]/\tau\right)^{\eta\tau} \end{cases} \\ \text{update}: & \begin{cases} \mu^{(t+1)} \propto [\mu^{(t)}]^{1-\eta\tau} \exp\left([A\bar{\nu}^{(t+1)}]/\tau\right)^{\eta\tau} \\ \nu^{(t+1)} \propto [\nu^{(t)}]^{1-\eta\tau} \exp\left(-[A^{\top}\bar{\mu}^{(t+1)}]/\tau\right)^{\eta\tau} \end{cases} \end{cases}$$

Theorem (Cen, Wei, Chi, 2021)

Suppose that $\eta \leq \min\left\{\frac{1}{2\tau+2\|A\|_{\infty}}, \frac{1}{4\|A\|_{\infty}}\right\}$, then for all $t \geq 0$, the last-iterate converges to ϵ -QRE within $\widetilde{O}\left(\frac{1}{\eta\tau}\log\frac{1}{\epsilon}\right)$ iterations.

Linear, last-iterate convergence to the QRE!

Soft value iteration via nested-loop OMWU

Soft value iteration: for $h = H, \ldots, 1$

$$Q_h(s, a, b) \leftarrow r_h(s, a, b) + \\ \cdot \underset{s' \sim P_h(\cdot|s, a, b)}{\mathbb{E}} \left[\underbrace{\max_{\mu} \min_{\nu} \mu(s')^\top Q_{h+1}(s')\nu(s') + \tau \mathcal{H}(\mu(s')) - \tau \mathcal{H}(\nu(s'))}_{\mu} \right],$$

Entropy-regularized matrix game

where
$$Q_h(s) = [Q_h(s, \cdot, \cdot)] \in \mathbb{R}^{A \times B}$$

However, not easy to use in online settings...

A two-timescale single-loop approach?

Soft value iteration: for $h = H, \ldots, 1$

$$Q_h(s, a, b) \leftarrow r_h(s, a, b) + \\ \cdot \underset{s' \sim P_h(\cdot|s, a, b)}{\mathbb{E}} \left[\underbrace{\max_{\mu} \min_{\nu} \mu(s')^\top Q_{h+1}(s')\nu(s') + \tau \mathcal{H}(\mu(s')) - \tau \mathcal{H}(\nu(s'))}_{\mathbb{E}} \right],$$

Entropy-regularized matrix game

where $Q_h(s) = [Q_h(s, \cdot, \cdot)] \in \mathbb{R}^{A \times B}$.

Single-loop, two-timescale approach:

Theorem (Cen, Chi, Du, Xiao, 2022)

The last-iterate of the two-timescale single-loop algorithm finds an $\epsilon\text{-}QRE$ in

$$\widetilde{O}\left(\frac{H^2}{\tau}\log\frac{1}{\epsilon}\right)$$

iterations, corresponding to $\widetilde{O}\left(\frac{H^3}{\epsilon}\right)$ iterations for finding an ϵ -NE.

- First last-iterate convergence result for the episodic setting.
- Almost dimension-free: independent of the size of the state-action space.

Main result: discounted setting

Theorem (Cen, Chi, Du, Xiao, 2022)

For the infinite-horizon γ -discounted setting, the last-iterate of the single-loop algorithm finds an ϵ -QRE in

$$\widetilde{O}\left(\frac{S}{(1-\gamma)^4\tau}\log\frac{1}{\epsilon}\right)$$

iterations, and in $\widetilde{O}\left(\frac{S}{(1-\gamma)^{5}\epsilon}\right)$ iterations for finding an ϵ -NE.

• This significantly improves upon the prior art $\widetilde{O}\left(\frac{S^5(A+B)^{1/2}}{(1-\gamma)^{16}c^4\epsilon^2}\right)$ of (Wei et al., 2021) and $\widetilde{O}\left(\frac{S^2||1/\rho||^5}{(1-\gamma)^{14}c^4\epsilon^3}\right)$ of (Zeng et al., 2022) in *all* parameter dependencies.

Concluding Remarks

Concluding remarks

Understanding non-asymptotic performances of RL algorithms is a fruitful playground!

Promising directions:

- function approximation
- multi-agent/federated RL

- hybrid RL
- many more...

Beyond the tabular setting

Figure credit: (Silver et al., 2016)

- function approximation for dimensionality reduction
- Provably efficient RL algorithms under minimal assumptions

(Osband and Van Roy, 2014; Dai et al., 2018; Du et al., 2019; Jin et al., 2020)

Multi-agent RL

- Competitive setting: finding Nash equilibria for Markov games
- **Collaborative setting:** multiple agents jointly optimize the policy to maximize the total reward

(Zhang, Yang, and Basar, 2021; Cen, Wei, and Chi, 2021)

Hybrid RL

Online RL

- interact with environment
- actively collect new data

Offline/Batch RL

- no interaction
- data is given

Can we achieve the best of both worlds?

(Wagenmaker and Pacchiano, 2022; Song et al., 2022; Li et al., 2023)

RL meets federated learning

Federated reinforcement learning enables multiple agents to collaboratively learn a global model without sharing datasets.

Can we achieve linear speedup via federated learning? (Khodadadian et al., 2022; Woo et al., 2023)

Bibliography I

Disclaimer: this straw-man list is by no means exhaustive (in fact, it is quite the opposite given the fast pace of the field), and biased towards materials most related to this tutorial; readers are invited to further delve into the references therein to gain a more complete picture.

Books and monographs:

- Sutton and Barto. *Reinforcement learning: An introduction, 2nd edition.* MIT press, 2018.
- Agarwal, Jiang, Kakade, and Sun. *Reinforcement learning: Theory and algorithms*, monograph, 2021+.
- Bertsekas. *Reinforcement learning and optimal control*. Athena Scientific, 2019.
- Szepesvári. *Algorithms for reinforcement learning*. Synthesis lectures on artificial intelligence and machine learning, 2010.
- Bertsekas and Tsitsiklis. *Neuro-dynamic programming*. Athena Scientific, 1996.

Policy optimization:

- Williams. "Simple statistical gradient-following algorithms for connectionist reinforcement learning." Machine Learning, 1992.
- Sutton, McAllester, Singh, and Mansour. "Policy gradient methods for reinforcement learning with function approximation." NeurIPS 1999.
- Kakade. "A natural policy gradient." NeurIPS 2001.
- Fazel, Ge, Kakade, and Mesbahi. "Global convergence of policy gradient methods for the linear quadratic regulator." ICML 2018.
- Agarwal, Kakade, Lee, and Mahajan. "On the theory of policy gradient methods: Optimality, approximation, and distribution shift." Journal of Machine Learning Research, 2021.
- Mei, Xiao, Szepesvári, and Schuurmans. "On the global convergence rates of softmax policy gradient methods." ICML 2020.
- Bhandari and Russo. "Global optimality guarantees for policy gradient methods." arXiv preprint arXiv:1906.01786, 2019.

Bibliography III

- Cai, Yang, Jin, and Wang. "Provably efficient exploration in policy optimization." ICML 2020.
- Shani, Efroni, and Mannor. "Adaptive trust region policy optimization: Global convergence and faster rates for regularized MDPs." AAAI 2020.
- Li, Gen, Wei, Chi, and Chen. "Softmax policy gradient methods can take exponential time to converge." arXiv preprint arXiv:2102.11270, 2021.
- Cen, Cheng, Chen, Wei, and Chi. "Fast global convergence of natural policy gradient methods with entropy regularization." Operations Research, 2021+.
- Zhan, Cen, Huang, Chen, Lee, and Chi. "Policy mirror descent for regularized reinforcement learning: A generalized framework with linear convergence." arXiv preprint arXiv:2105.11066, 2021.
- Lan. "Policy mirror descent for reinforcement learning: Linear convergence, new sampling complexity, and generalized problem classes." arXiv preprint arXiv:2102.00135, 2021.
- Liu, Zhang, Basar, and Yin. "An improved analysis of (variance-reduced) policy gradient and natural policy gradient methods." NeurIPS 2020.

Bibliography IV

- Zhang, Koppel, Bedi, Szepesvári, and Wang. "Variational policy gradient method for reinforcement learning with general utilities." NeurIPS 2020.
- Cen, Wei, and Chi. "Fast policy extragradient methods for competitive games with entropy regularization." arXiv preprint arXiv:2105.15186, 2021.
- Cen, Chi, Du, and Xiao, "Faster last-iterate convergence of policy optimization in zero-sum Markov games." arXiv preprint arXiv:2210.01050, 2022.

Additional ad-hoc pointers:

- Neu, Jonsson, and Gómez. "A unified view of entropy-regularized Markov Decision Processes." arXiv preprint arXiv:1705.07798, 2017.
- Dai, Shaw, Li, Xiao, He, Liu, Chen, and Song. "SBEED: Convergent reinforcement learning with nonlinear function approximation." ICML 2018.
- Geist, Scherrer, and Pietquin. "A theory of regularized Markov Decision Processes." ICML 2019.

Bibliography V

- Du, Kakade, Wang, and Yang. "Is a good representation sufficient for sample efficient reinforcement learning?" ICLR 2019.
- Jin, Yang, Wang, and Jordan. "Provably efficient reinforcement learning with linear function approximation." COLT 2020.
- Zhang, Yang, and Basar. "Multi-agent reinforcement learning: A selective overview of theories and algorithms." Handbook of Reinforcement Learning and Control, 2021.
- Woo, Joshi, and Chi. "The Blessing of Heterogeneity in Federated *Q-learning: Linear Speedup and Beyond.*" ICML 2023.

Thanks!

https://users.ece.cmu.edu/~yuejiec/