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Reinforcement learning (RL)

In RL, an agent learns by interacting with an unknown environment
through trial-and-error to maximize long-term total reward.

Atlast — a computer program that
can beat a champion Go player PAGE 464

ALL SYSTEMS GO

SON

‘Recalculating ... recalculating ...”




More successes of RL since AlphaGo

resource management

et |
UAV and drones

nuclear plant control

strategic games



One more: RL for foundation models

(&) chatGPT

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
anoutput.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.
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Alignment: safety, human value..

What can | help with?
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Question: If a > 1, then the sum of the real solutions of ya - ya +x = x is equal to
Response: <think>

To solve the equation ya - va +x = x, let’s start by squaring both - -
(Va=vaws) =t = a-aFx =2

Rearrange to isolate the inner square root term:

(@-¥)P=a+x = @?-2a+ ()2 =a+x = x*-2a-x+(a-a) =0

'REEE
R EEE

Wait, wait. Wait. That's an aha moment I can flag here.
Let's reevaluate this step-by-step to identify if the correct sum can be
We started with the equation:

fa-Va+x=x
First, let's square ba!h s
a-Varx=x = 2
Next, I could square both sdes again, treating the equation:

Reasoning: math, coding...



Turing Award Goes to 2 Pioneers of
Artificial Intelligence

Andrew Barto and Richard Sutton developed reinforcement
learning, a technique vital to chatbots like ChatGPT.

RL holds great promise in accelerating scientific,
engineering and societal discoveries.



Sample efficiency

However, collecting data samples might be expensive or time-consuming.

~ -

clinical trials

Prompt:
Should | add chorizo
to my paella?

Response 1: Absolutely! ...
Response 2: In Valencian...

Feedback (ranking):
Response 1is better than 2

LLM alignment

o>

autonomous driving



Sample efficiency

However, collecting data samples might be expensive or time-consuming.

i Prompt: D w

™ -~ Should | add chorizo T

| z to my paella?

] U y P

' 1
| If Response 1: Absolutely! ...
' =l Response 2: In Valencian...
I I 1 a Feedback (ranking):
Response 1is better than 2
clinical trials autonomous driving

LLM alignment

Calls for design of sample-efficient RL algorithms!



Can we harness the power of federated learning?

Server coordinating
the training of a
global Al model

Devices with
local Al models

|3

IBM Federated Learning

How Apple personalizes Siri without

Research - Extracting hoovering up your data

Machine Learning S susing privacy- inelearning o
Models FI‘Om Multiple ntwi eping your onyour phone.
Data Pools

[December 11,2019

Kevin Krewell
Tirias Research



Can we harness the power of federated learning?

——| Server coordinating
the training of a
global Al model

Devices with
local Al models

|3

IBM Federated Lea,rnlng How Apple personalizes Siri without
Research - Extracting hooveringu

Machine Learning
Models From Multiple
Data Pools

Kevin Krewell
Tirias Research

[December 11,2019

Can we harness the power of federated learning for RL?




RL meets federated learning

Central server

:?: L1y = :&: :#?:

Agent 1 Agent2 " Agentk T Agentk

Federated reinforcement learning: enables multiple agents to
collaboratively learn a global policy without sharing datasets. J




Statistical-communication trade-offs

Communication
overhead

Statistical
benefits

No. of samples

Comm. cost

Is linear speedup possible? What is the price in communication?



This talk: federated RL

Communication
overhead

Statistical
benefits

Linear speedup:

Can we achieve linear speedup when learning with multiple agents?

Communication efficiency:

What is the minimum amount of communication to achieve
speedup?

Taming heterogeneity:
What if the agents are heterogeneous?
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Backgrounds:
Markov decision processes and Q-learning




Markov decision process (MDP)

state sy action ay
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® S: state space e A: action space
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Markov decision process (MDP)

action a;
-
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environment (¢ — -

® S: state space e A: action space

® r(s,a) €[0,1]: immediate reward
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Markov decision process (MDP)

® S: state space e A: action space

® r(s,a) €[0,1]: immediate reward

® 7(+|s): policy (or action selection rule)
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Markov decision process (MDP)

action
a; ~ m(-|s¢)

L s

&

<

next state
st+1 ~ P(:|st,ar)

® S: state space e A: action space
® r(s,a)€[0,1]: immediate reward

® 7(+|s): policy (or action selection rule)

® P(:s,a): transition probabilities

12



Value function

T2 T3
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Value function
T3 T4

action
state s a; ~ 7(-|s¢) r 1 o
_______ ol agent _— -I 0
|
7 riW?(g a, I :> S.O % I 8.2 % 93— S
: ¢ Lt \\_all ;\ —’I \\_4" (\ 4” (w r"
D — ag ay az as ag

(‘[st, ae)

s ~ P

Value function of policy 7:
VseS: V7(s) ZZE[Z’YLT}|8028:|
=0

Q-function of policy
V(s,0) €S x A Q“(s,co:=E[thr<st,at>|so=s,ao-a]
=0

L_ s effective horizon

® v¢€[0,1) is the discount factor; ™

® Expectation is w.r.t. the sampled trajectory under 7w



Searching for the optimal policy

Reinforcement |\
Learning

Aa Introduction

______ —_— Dynamic 'Prugramming
r and Optimal Control

fm————
1
1
A
]
1
. 1

Goal: find the optimal policy 7* that maximize V7 (s)

e optimal value / Q function: V*:= V™  Q*:= Q™
* optimal policy 7*(s) = argmax, 4 Q" (s,a)

14



Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving the Bellman equation

Robbins & Monro, 1951
Q" =T(Q")

where

—_— s'~P(|s,a) La'eA
immediate reward

T(Q)(s,a)= r(s,a) +v E [maxQ(s’,a')].

next state’s value

15



A generative model / simulator

— Kearns & Singh, 1999

generative model

Each iteration, draw an independent sample (s,a,s") for given (s,a)

16



Q-learning with a generative model

generative moolel

Stochastic approximation for solving Bellman equation Q*
using samples collected from the generative model:

Qt+1(87a) = (1 - U)Qt(saa) + nﬂ(Qt)(saa)’

draw the transition (s,a,s’) for all (s,a)

- T(@")

t>0

17



Q-learning with a generative model

generative moolel

Stochastic approximation for solving Bellman equation Q* = T(Q*)
using samples collected from the generative model:

Qr1(s,a) = (1-1)Q¢(s,a) + T (Q¢)(s,a), t20

draw the transition (s,a,s’) for all (s,a)

Te(Q)(s,a) =7(s,a) + ’YHL?F}XQ(S’, a)

T@(@sa) =r(sa)+y | B [maxQ(s’a)]

s/~P(|s,a)

17



A sharp sample complexity of Q-learning

Question: How many samples are needed for [|Q — Q* oo < ?

18



A sharp sample complexity of Q-learning
Question: How many samples are needed for [|Q — Q* oo < ?

Theorem (Li, Cai, Chen, Wei, Chi, OR 2024)
For any 0 <& <1, Q-learning yields |Q - Q* | < & with sample

complexity at most
5(_Isia Y
1-7e

Furthermore, this bound is tight for Q-learning.

® This is a factor of ﬁ away from the minimax lower bound, which is

(=)

® The lower bound is based on analyzing the dynamic of Q-learning on
a specific worst-case instance.

18



Federated Q-learning: towards linear speedup

Jiin Woo Gauri Joshi
CcMU CcMU



Federated Q-learning with local updates

Central server

® Local updates: the agent k performs 7
rounds of local Q-learning updates:

Qf < (1-0)Q; +nTi(QF)

and sends it to the server.

e

5 & &

Agent2z " Agentk T Agentk
i y b
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Federated Q-learning with local updates

Central server

® Local updates: the agent k performs 7
rounds of local Q-learning updates:

Qf < (1-0)Q; +nTi(QF)

and sends it to the server.

® Periodic averaging: the server averages the
local updates and sends it back to agents:

“ mrJm “ :#:

" Agentk

L
K {

© Agentk
I

Qi = Qf

||MN

20



Federated Q-learning with local updates

Central server

® Local updates: the agent k performs 7
rounds of local Q-learning updates:

Qf < (1-0)Q; +nTi(QF)

and sends it to the server.

® Periodic averaging: the server averages the
local updates and sends it back to agents:

“ mrJm :#:

" Agentk " AgentK
’ b

1

Q=g L&

||MN

Can we achieve faster convergence, i.e. linear speedup, with low
communication complexity? J
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Federated Q-learning with local updates

Central server

® Local updates: the agent k performs 7
rounds of local Q-learning updates:

Qf < (1-0)Q; +nTi(QF)

and sends it to the server.

® Periodic averaging: the server averages the
local updates and sends it back to agents:

“ mrJm :#:

" Agentk " AgentK
’ b

1

Q=g L&

||MN

Can we achieve faster convergence, i.e. linear speedup, with low
communication complexity? J

Yes!!
20



Linear speedup of federated Q-learning

Theorem (Jiin, Joshi, Chi, ICML 2023)

Forany0<e< ﬁ federated synchronous Q-learning yields

|Q - Q* || oo < & with sample complexity at most

~(_ ISIA

as long as T - 1< %min{%, %} and = O(K (1 -~)%?).

® Linear speedup compared with the single-agent sample complexity

O (L),

(1-7)%e?
* Communication complexity: e-independent T'/T = 5(
sufficiently small .

1=y

) for

21



Comparison with prior art

sample“
complexity /

S7AS
K1 =)

SA
K(1—y)é

5 single-agent
Q-learning

»

K=1 1/K
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Comparison with prior art

sample“
complexity /

S7AS
K1 =)

SA
K(1—7)5e
SA
(1=t . _’single»agent
Q-learning
‘ >
K=1 1/K
Linear speedup with near-optimal parameter dependencies! J
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The statistical-communication complexity trade-off
in federated Q-Learning

Sudeep Salgia
CMU



Communication bottleneck

Central server

Agent 1 Agent2 " Agentk T Agentk

24



A communication lower bound

Theorem (Salgia and Chi, NeurlPS 2024; informal)

For a wide family of federated Q-learning algorithm with intermittent
communication, regardless of the choice of synchronization schedules, the
number of communication rounds needs to be at least

(i)

in order to achieve any speedup with respect to the number of agents.

® A similar lower bound holds for the number of communication bits.

® This is the first communication complexity barrier established for
federated RL algorithms.




Key idea

E[(Q-Q")*]=E[(E[Q] - Q")*] +E[(Q - E[Q])*]

Bias Variance

® Variance exhibits linear speedup on average.

® Bias increases between two communication rounds. Averaging has a
small compensating effect, but the overall bias is independent of K.

26



Key idea

E[(Q-Q")*]=E[(E[Q] - Q")*] +E[(Q - E[Q])*]

Bias Variance

® Variance exhibits linear speedup on average.

® Bias increases between two communication rounds. Averaging has a
small compensating effect, but the overall bias is independent of K.

Bias

Bias o< 7 = Q(T'(1 - 7)) /
|
bias dominates the variance

no collaboration gain
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Key idea

E[(Q-Q")*]=E[(E[Q] - Q")*] +E[(Q - E[Q])*]

Bias Variance

® Variance exhibits linear speedup on average.

® Bias increases between two communication rounds. Averaging has a
small compensating effect, but the overall bias is independent of K.

Bias o< 7= Q(T(1-7))

bias dominates the variance /

y

no collaboration gain /
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Near-optimal algorithm design

27



Near-optimal algorithm design

Yes!!

27



Near-optimal algorithm design

Can one design a federated Q-learning algorithm that simultaneously
offers optimal-order sample and communication complexities?

J

Yes!!

* Fed-DVR-Q (Salgia and Chi, NeurlPS 2024): achieves
near-optimal statistical and communication complexities with
communication compression and variance reduction:

5( Il

~ 1
K(1—7)352) samples, O(l—) rounds.

-

See our paper for details!

27



Dealing with heterogeneity in federated RL

Jiin Woo Gauri Joshi
CcMU CcMU



Q-learning following a behavior policy

S0
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mo(-[s0) m(-|s1) mb([s2) b(-[ss) o(-lsa) mo(|ss5)

Stochastic approximation for solving Bellman equation Q* = T(Q*)
using samples collected from a behavior policy mp:

Qei1(st,at) = (1 =1)Qe(s¢,at) +nTe(Qr)(s¢,at), 20

only update (s¢,a)-th entry

29



Q-learning following a behavior policy
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mo(-[s0) m(-|s1) mb([s2) b(-[ss) o(-lsa) mo(|ss5)

Stochastic approximation for solving Bellman equation Q* = T(Q*)
using samples collected from a behavior policy mp:

Qei1(st,at) = (1 =1)Qe(s¢,at) +nTe(Qr)(s¢,at), 20

A only update (s¢,a)-th entry
| [
N
| I I( | }

SI | ’Ir’Tsz\a» Te(Q)(s¢,ar) = r(se,ar) + ymax Q(ses1,a’)
FENCTL : ,,
|<:\?\(yl(| I T(Q)(s,a) =r(s,a)+~ , E [ma,xQ(s,a)]
[ oA S I s'~P(ls,a) " @
FEEEEE

Q(s,a)
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Tackling data heterogeneity

Central server
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Tackling data heterogeneity

Central server

30



The benefit of collaboration?

Prior art requires full coverage of every agent over the entire
state-action space...
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Agent 1 Agent2 " Agentk 7 AgentkK




The benefit of collaboration?
Prior art requires full coverage of every agent over the entire

state-action space...
[y

LEL.

A

' W,

[

Agent 1 Agent2 " Agentk 7 AgentkK
However, the power of collaboration really shines if we only need
= [ ] —|-; l
== F 0l ﬂﬁ — ey
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Agent2 7 Agentk T AgentkK

Agent 1

31



The benefit of collaboration?
Prior art requires full coverage of every agent over the entire

state-action space...
[y

LEL.

A

Agent2 " Agentk 7 AgentkK

Agent 1

However, the power of collaboration really shines if we only need

[

LLY

= | —|-; l
£ = 18

Agent k Agent K

Agent 1 Agent 2

Is collaborative coverage enough for federated Q-learning?

)

31



Key metrics

Collaborative coverage: minimum entry of the average stationary
distribution

1 E
Havg = 1111 K Z H (8, @).
s,a =1

32



Key metrics
Collaborative coverage: minimum entry of the average stationary

distribution
1K,
povg = min - 3" b (s,0)
s,a =1

Heterogeneity of local behavior policies: density ratio of individual /

average behavior policies
5 (s, )

k
pip (s, a)
Chet = K max Kb(k’ = .
kosia 3 ket My (57 a) k,s,a Mavg(s’ a)
2 o A I A [N == | = I T
Nlgd | (@l j: :—'-,F [t HPE |
K< 7 j —y
3 "% A i 0. *%
Agent 1 Agent2 " Agentk © AgentK Agent 1 Agent2 " Agentk T Agentk
Chet = K

C’het =1

32



Our theorem

Theorem (Woo, Joshi, Chi, JMLR 2025)

For sufficiently small € > 0, federated asynchronous Q-learning yields
[Q - Q* | < € with sample complexity at most

~ Chet
O\ ————
( Kﬂavg(l - ’7)552 )

ignoring the burn-in cost that depends on the mixing times.
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Our theorem

Theorem (Woo, Joshi, Chi, JMLR 2025)

For sufficiently small € > 0, federated asynchronous Q-learning yields
[Q - Q* | < € with sample complexity at most

~ C(het
O\ ————
( Kﬂavg(l - ’7)552 )

ignoring the burn-in cost that depends on the mixing times.

® Near-optimal linear speedup when the local behavior policies are
similar, Chet ~ 1.

® Key idea: leave-one-out arguments to decouple statistical
dependencies due to Markovian sampling and local updates.

33



Our theorem

Theorem (Woo, Joshi, Chi, JMLR 2025)

For sufficiently small € > 0, federated asynchronous Q-learning yields
[Q - Q* | < € with sample complexity at most

-~ C(het )
O —r
( Kﬂan(l - 7)052

ignoring the burn-in cost that depends on the mixing times.

® Near-optimal linear speedup when the local behavior policies are
similar, Chet ~ 1.
® Key idea: leave-one-out arguments to decouple statistical

dependencies due to Markovian sampling and local updates.

Curse of heterogeneity? Performance degenerates when local behavior
policies are heterogeneous (i.e. 1 << Chet). ®

33



Importance averaging

Key observation: not all updates are of same quality due to limited
visits induced by the behavior policy.
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Importance averaging

Key observation: not all updates are of same quality due to limited
visits induced by the behavior policy.

higher weights

1

T
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1
1
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Importance averaging: the server averages the local updates based on
importance via

1 X k k
Qt(saa) = ? kz: A (S,G)Qt (S7a)7
=1

where
(1- U)_N’i”(s’a) number of visits

af =
in the sync period °

t _ s.a)’
R

Ntk—T,t(S7 a) =
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Our theorem
Theorem (Woo, Joshi, Chi, JMLR 2025)

For sufficiently small € > 0, federated asynchronous Q-learning with
importance averaging yields |Q — Q* | < € with at most

~ 1
o — =~
(KNBVg(l —7)5e? )

samples, ignoring the burn-in cost that depends on the mixing times.
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Our theorem

Theorem (Woo, Joshi, Chi, JMLR 2025)

For sufficiently small € > 0, federated asynchronous Q-learning with
importance averaging yields |Q — Q* | < € with at most

~ 1
o — =~
(KNBVg(l —7)5e? )

samples, ignoring the burn-in cost that depends on the mixing times.

® Similar results can be developed for the offline setting, too.
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Our theorem
Theorem (Woo, Joshi, Chi, JMLR 2025)

For sufficiently small € > 0, federated asynchronous Q-learning with
importance averaging yields |Q — Q* | < € with at most

~ 1
o — =~
(KNBVg(l —7)5e? )

samples, ignoring the burn-in cost that depends on the mixing times.

® Similar results can be developed for the offline setting, too.

A
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complexity Citet
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Summary

Central server
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Summary

Central server
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Synergy of statistics and RL: federated RL unleashes the collaborative
power of agents even under heterogeneity! J

AR

1]

Future work:

® Multi-environment and personalized RL.
® Other MDP settings.

36



Thanks!

® The Blessing of Heterogeneity in Federated Q-Learning: Linear Speedup
and Beyond, JMLR 2025. Preliminary version at ICML 2023.

® The Sample-Communication Complexity Trade-off in Federated
Q-Learning, NeurlPS 2024, oral.

® Federated Offline Reinforcement Learning: Collaborative Single-Policy
Coverage Suffices, ICML 2024.

https://users.ece.cmu.edu/~yuejiec/
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