
Federated Reinforcement Learning:
Statistical and Communication Trade-offs

Yuejie Chi

L4DC
June 5, 2025

Jiin Woo Sudeep Salgia Gauri Joshi

CMU CMU CMU

1

Reinforcement learning (RL)

In RL, an agent learns by interacting with an unknown environment
through trial-and-error to maximize long-term total reward.

2

More successes of RL since AlphaGo

robotics

strategic games

chip designs

nuclear plant control

resource management

UAV and drones

3

One more: RL for foundation models

Alignment: safety, human value.. Reasoning: math, coding…

4

RL holds great promise in accelerating scientific,
engineering and societal discoveries.

5

Sample efficiency

However, collecting data samples might be expensive or time-consuming.

clinical trials

LLM alignment

autonomous driving

Calls for design of sample-efficient RL algorithms!

6

Sample efficiency

However, collecting data samples might be expensive or time-consuming.

clinical trials

LLM alignment

autonomous driving

Calls for design of sample-efficient RL algorithms!

6

Can we harness the power of federated learning?

Can we harness the power of federated learning for RL?

7

Can we harness the power of federated learning?

Can we harness the power of federated learning for RL?

7

RL meets federated learning

Central server

… …
Agent 1 Agent 2 Agent 𝐾Agent 𝑘

Federated reinforcement learning: enables multiple agents to
collaboratively learn a global policy without sharing datasets.

8

Statistical-communication trade-offs

Statistical
benefits

Communication
overhead

N
o.

 o
f s

am
pl

es

Comm. cost

Is linear speedup possible? What is the price in communication?

9

This talk: federated RL

Statistical
benefits

Communication
overhead

Linear speedup:

Can we achieve linear speedup when learning with multiple agents?

Communication efficiency:

What is the minimum amount of communication to achieve
speedup?

Taming heterogeneity:

What if the agents are heterogeneous?

10

Backgrounds:
Markov decision processes and Q-learning

Markov decision process (MDP)

● S: state space ● A: action space

● r(s, a) ∈ [0,1]: immediate reward

● π(⋅∣s): policy (or action selection rule)

● P (⋅∣s, a): transition probabilities

12

Markov decision process (MDP)

● S: state space ● A: action space

● r(s, a) ∈ [0,1]: immediate reward

● π(⋅∣s): policy (or action selection rule)

● P (⋅∣s, a): transition probabilities

12

Markov decision process (MDP)

● S: state space ● A: action space

● r(s, a) ∈ [0,1]: immediate reward

● π(⋅∣s): policy (or action selection rule)

● P (⋅∣s, a): transition probabilities

12

Markov decision process (MDP)

● S: state space ● A: action space

● r(s, a) ∈ [0,1]: immediate reward

● π(⋅∣s): policy (or action selection rule)

● P (⋅∣s, a): transition probabilities

12

Value function

Value function of policy π:

∀s ∈ S ∶ V π
(s) ∶= E [

∞
∑
t=0

γtrt ∣ s0 = s]

Q-function of policy π:

∀(s, a) ∈ S ×A ∶ Qπ
(s, a) ∶= E [

∞
∑
t=0

γtr(st, at) ∣ s0 = s, a0 = a]

● γ ∈ [0,1) is the discount factor; 1
1−γ is effective horizon

● Expectation is w.r.t. the sampled trajectory under π

13

Value function

Value function of policy π:

∀s ∈ S ∶ V π
(s) ∶= E [

∞
∑
t=0

γtrt ∣ s0 = s]

Q-function of policy π:

∀(s, a) ∈ S ×A ∶ Qπ
(s, a) ∶= E [

∞
∑
t=0

γtr(st, at) ∣ s0 = s, a0 = a]

● γ ∈ [0,1) is the discount factor; 1
1−γ is effective horizon

● Expectation is w.r.t. the sampled trajectory under π

13

Searching for the optimal policy

agent environment st at st+1 rt

1

agent environment st at st+1 rt

1

P, r

Goal: find the optimal policy π⋆ that maximize V π(s)

● optimal value /Q function: V ⋆ ∶= V π⋆ , Q⋆ ∶= Qπ⋆

● optimal policy π⋆(s) = argmaxa∈AQ⋆(s, a)

14

Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation
´¹¹¸¹¹¶

Robbins & Monro, 1951

for solving the Bellman equation

Q⋆ = T (Q⋆)

where

T (Q)(s, a) ∶= r(s, a)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶

immediate reward

+ γ E
s′∼P (⋅∣s,a)

[max
a′∈A

Q(s′, a′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
next state’s value

].

15

A generative model / simulator

— Kearns & Singh, 1999

Each iteration, draw an independent sample (s, a, s′) for given (s, a)

16

Q-learning with a generative model

Stochastic approximation for solving Bellman equation Q⋆ = T (Q⋆)
using samples collected from the generative model:

Qt+1(s, a) = (1 − η)Qt(s, a) + ηTt(Qt)(s, a)
´¹¹¸¹¹¹¶

draw the transition (s,a,s′) for all (s,a)

, t ≥ 0

Tt(Q)(s, a) = r(s, a) + γmax
a′

Q(s′, a′)

T (Q)(s, a) = r(s, a) + γ E
s′∼P (⋅∣s,a)

[max
a′

Q(s′, a′)]

17

Q-learning with a generative model

Stochastic approximation for solving Bellman equation Q⋆ = T (Q⋆)
using samples collected from the generative model:

Qt+1(s, a) = (1 − η)Qt(s, a) + ηTt(Qt)(s, a)
´¹¹¸¹¹¹¶

draw the transition (s,a,s′) for all (s,a)

, t ≥ 0

Tt(Q)(s, a) = r(s, a) + γmax
a′

Q(s′, a′)

T (Q)(s, a) = r(s, a) + γ E
s′∼P (⋅∣s,a)

[max
a′

Q(s′, a′)]

17

A sharp sample complexity of Q-learning

Question: How many samples are needed for ∥Q̂ −Q⋆∥∞ ≤ ε?

Theorem (Li, Cai, Chen, Wei, Chi, OR 2024)

For any 0 < ε ≤ 1, Q-learning yields ∥Q̂ −Q⋆∥∞ ≤ ε with sample
complexity at most

Õ (
∣S ∣∣A∣

(1 − γ)4ε2
) .

Furthermore, this bound is tight for Q-learning.

● This is a factor of 1
1−γ away from the minimax lower bound, which is

(
∣S∣∣A∣
(1−γ)3ε2).

● The lower bound is based on analyzing the dynamic of Q-learning on
a specific worst-case instance.

18

A sharp sample complexity of Q-learning

Question: How many samples are needed for ∥Q̂ −Q⋆∥∞ ≤ ε?

Theorem (Li, Cai, Chen, Wei, Chi, OR 2024)

For any 0 < ε ≤ 1, Q-learning yields ∥Q̂ −Q⋆∥∞ ≤ ε with sample
complexity at most

Õ (
∣S ∣∣A∣

(1 − γ)4ε2
) .

Furthermore, this bound is tight for Q-learning.

● This is a factor of 1
1−γ away from the minimax lower bound, which is

(
∣S∣∣A∣
(1−γ)3ε2).

● The lower bound is based on analyzing the dynamic of Q-learning on
a specific worst-case instance.

18

Federated Q-learning: towards linear speedup

Jiin Woo Gauri Joshi

CMU CMU

Federated Q-learning with local updates

● Local updates: the agent k performs τ
rounds of local Q-learning updates:

Qk
t+1 ← (1 − η)Q

k
t + ηTt(Q

k
t)

and sends it to the server.

● Periodic averaging: the server averages the
local updates and sends it back to agents:

Qt =
1

K

K

∑
k=1

Qk
t

Central server

… …
Agent 1 Agent 2 Agent 𝐾Agent 𝑘

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Can we achieve faster convergence, i.e. linear speedup, with low
communication complexity?

Yes!!

20

Federated Q-learning with local updates

● Local updates: the agent k performs τ
rounds of local Q-learning updates:

Qk
t+1 ← (1 − η)Q

k
t + ηTt(Q

k
t)

and sends it to the server.

● Periodic averaging: the server averages the
local updates and sends it back to agents:

Qt =
1

K

K

∑
k=1

Qk
t

Central server

… …
Agent 1 Agent 2 Agent 𝐾Agent 𝑘

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Can we achieve faster convergence, i.e. linear speedup, with low
communication complexity?

Yes!!

20

Federated Q-learning with local updates

● Local updates: the agent k performs τ
rounds of local Q-learning updates:

Qk
t+1 ← (1 − η)Q

k
t + ηTt(Q

k
t)

and sends it to the server.

● Periodic averaging: the server averages the
local updates and sends it back to agents:

Qt =
1

K

K

∑
k=1

Qk
t

Central server

… …
Agent 1 Agent 2 Agent 𝐾Agent 𝑘

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Can we achieve faster convergence, i.e. linear speedup, with low
communication complexity?

Yes!!

20

Federated Q-learning with local updates

● Local updates: the agent k performs τ
rounds of local Q-learning updates:

Qk
t+1 ← (1 − η)Q

k
t + ηTt(Q

k
t)

and sends it to the server.

● Periodic averaging: the server averages the
local updates and sends it back to agents:

Qt =
1

K

K

∑
k=1

Qk
t

Central server

… …
Agent 1 Agent 2 Agent 𝐾Agent 𝑘

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix

15/ 25

Can we achieve faster convergence, i.e. linear speedup, with low
communication complexity?

Yes!!

20

Linear speedup of federated Q-learning

Theorem (Jiin, Joshi, Chi, ICML 2023)

For any 0 < ε ≤ 1
1−γ , federated synchronous Q-learning yields

∥Q̂ −Q⋆∥∞ ≤ ε with sample complexity at most

Õ (
∣S ∣∣A∣

K(1 − γ)5ε2
)

as long as τ − 1 ≤ 1
η
min{ 1−γ

8γ
, 1
K
} and η = Õ(K(1 − γ)4ε2).

● Linear speedup compared with the single-agent sample complexity

Õ (∣S∣∣A∣
(1−γ)4ε2).

● Communication complexity: ε-independent T /τ = Õ (K
1−γ) for

sufficiently small ε.

21

Comparison with prior art

Prior art for asynchronous Q-learning

Question: how many samples are needed to ensure Î ‚Q≠QıÎŒ Æ Á?

paper sample complexity learning rate

Even-Dar & Mansour ’03 (tcover)
1

1≠“

(1≠“)4Á2 linear: 1
t

Even-Dar & Mansour ’03
!

t1+3Ê
cover

(1≠“)4Á2

" 1
Ê +

!
tcover
1≠“

" 1
1≠Ê poly: 1

tÊ , Ê œ (1
2 , 1)

Beck & Srikant ’12 t3cover|S||A|
(1≠“)5Á2 constant

Qu & Wierman ’20 tmix
µ2

min(1≠“)5Á2 rescaled linear

paper sample complexity learning rate

Even-Dar & Mansour ’03 (tmix|S||A|)
1

1≠“

(1≠“)4Á2 linear: 1
t

Even-Dar & Mansour ’03 (tmix|S||A|)4.29
(1≠“)5Á2 poly: 1

tÊ , Ê œ (1
2 , 1)

Beck & Srikant ’12 t3mix|S|
3|A|3

(1≠“)5Á2 constant

Qu & Wierman ’20 tmix|S|2|A|2
(1≠“)5Á2 rescaled linear

if we take µmin ® 1
|S||A| , tcover ® tmix

µmin

All prior results require a sample size of at least tmix|S|2|A|2!

19/ 28

Prior art for asynchronous Q-learning

Question: how many samples are needed to ensure Î ‚Q≠QıÎŒ Æ Á?

paper sample complexity learning rate

Even-Dar & Mansour ’03 (tcover)
1

1≠“

(1≠“)4Á2 linear: 1
t

Even-Dar & Mansour ’03
!

t1+3Ê
cover

(1≠“)4Á2

" 1
Ê +

!
tcover
1≠“

" 1
1≠Ê poly: 1

tÊ , Ê œ (1
2 , 1)

Beck & Srikant ’12 t3cover|S||A|
(1≠“)5Á2 constant

Qu & Wierman ’20 tmix
µ2

min(1≠“)5Á2 rescaled linear

paper sample complexity learning rate

Even-Dar & Mansour ’03 (tmix|S||A|)
1

1≠“

(1≠“)4Á2 linear: 1
t

Even-Dar & Mansour ’03 (tmix|S||A|)4.29
(1≠“)5Á2 poly: 1

tÊ , Ê œ (1
2 , 1)

Beck & Srikant ’12 t3mix|S|
3|A|3

(1≠“)5Á2 constant

Qu & Wierman ’20 tmix|S|2|A|2
(1≠“)5Á2 rescaled linear

if we take µmin ® 1
|S||A| , tcover ® tmix

µmin

All prior results require a sample size of at least tmix|S|2|A|2!

19/ 28

<latexit sha1_base64="Pq+35hNDvIgMbC1n5n66gc9PU8I=">AAACCnicbVC7TsMwFHXKq5RXgJElUCGVgSqpymMssDAWQR9Sk1aO67RWbSeyHaQqyszCr7AwgBArX8DG3+C2GaBwpCsdnXOv7r3HjyiRyra/jNzC4tLySn61sLa+sbllbu80ZRgLhBsopKFo+1BiSjhuKKIobkcCQ+ZT3PJHVxO/dY+FJCG/U+MIewwOOAkIgkpLPXPfDQREye1FmpScY3cAGYNH3aqLI0loyLuVtGcW7bI9hfWXOBkpggz1nvnp9kMUM8wVolDKjmNHykugUARRnBbcWOIIohEc4I6mHDIsvWT6SmodaqVvBaHQxZU1VX9OJJBJOWa+7mRQDeW8NxH/8zqxCs69hPAoVpij2aIgppYKrUkuVp8IjBQdawKRIPpWCw2hzkbp9Ao6BGf+5b+kWSk7p+WTm2qxdpnFkQd74ACUgAPOQA1cgzpoAAQewBN4Aa/Go/FsvBnvs9ackc3sgl8wPr4BQN6aAQ==</latexit>

SA

(1 � �)4✏2
single-agent
Q-learning

Linear speedup with near-optimal parameter dependencies!

22

Comparison with prior art

Prior art for asynchronous Q-learning

Question: how many samples are needed to ensure Î ‚Q≠QıÎŒ Æ Á?

paper sample complexity learning rate

Even-Dar & Mansour ’03 (tcover)
1

1≠“

(1≠“)4Á2 linear: 1
t

Even-Dar & Mansour ’03
!

t1+3Ê
cover

(1≠“)4Á2

" 1
Ê +

!
tcover
1≠“

" 1
1≠Ê poly: 1

tÊ , Ê œ (1
2 , 1)

Beck & Srikant ’12 t3cover|S||A|
(1≠“)5Á2 constant

Qu & Wierman ’20 tmix
µ2

min(1≠“)5Á2 rescaled linear

paper sample complexity learning rate

Even-Dar & Mansour ’03 (tmix|S||A|)
1

1≠“

(1≠“)4Á2 linear: 1
t

Even-Dar & Mansour ’03 (tmix|S||A|)4.29
(1≠“)5Á2 poly: 1

tÊ , Ê œ (1
2 , 1)

Beck & Srikant ’12 t3mix|S|
3|A|3

(1≠“)5Á2 constant

Qu & Wierman ’20 tmix|S|2|A|2
(1≠“)5Á2 rescaled linear

if we take µmin ® 1
|S||A| , tcover ® tmix

µmin

All prior results require a sample size of at least tmix|S|2|A|2!

19/ 28

Prior art for asynchronous Q-learning

Question: how many samples are needed to ensure Î ‚Q≠QıÎŒ Æ Á?

paper sample complexity learning rate

Even-Dar & Mansour ’03 (tcover)
1

1≠“

(1≠“)4Á2 linear: 1
t

Even-Dar & Mansour ’03
!

t1+3Ê
cover

(1≠“)4Á2

" 1
Ê +

!
tcover
1≠“

" 1
1≠Ê poly: 1

tÊ , Ê œ (1
2 , 1)

Beck & Srikant ’12 t3cover|S||A|
(1≠“)5Á2 constant

Qu & Wierman ’20 tmix
µ2

min(1≠“)5Á2 rescaled linear

paper sample complexity learning rate

Even-Dar & Mansour ’03 (tmix|S||A|)
1

1≠“

(1≠“)4Á2 linear: 1
t

Even-Dar & Mansour ’03 (tmix|S||A|)4.29
(1≠“)5Á2 poly: 1

tÊ , Ê œ (1
2 , 1)

Beck & Srikant ’12 t3mix|S|
3|A|3

(1≠“)5Á2 constant

Qu & Wierman ’20 tmix|S|2|A|2
(1≠“)5Á2 rescaled linear

if we take µmin ® 1
|S||A| , tcover ® tmix

µmin

All prior results require a sample size of at least tmix|S|2|A|2!

19/ 28

<latexit sha1_base64="Pq+35hNDvIgMbC1n5n66gc9PU8I=">AAACCnicbVC7TsMwFHXKq5RXgJElUCGVgSqpymMssDAWQR9Sk1aO67RWbSeyHaQqyszCr7AwgBArX8DG3+C2GaBwpCsdnXOv7r3HjyiRyra/jNzC4tLySn61sLa+sbllbu80ZRgLhBsopKFo+1BiSjhuKKIobkcCQ+ZT3PJHVxO/dY+FJCG/U+MIewwOOAkIgkpLPXPfDQREye1FmpScY3cAGYNH3aqLI0loyLuVtGcW7bI9hfWXOBkpggz1nvnp9kMUM8wVolDKjmNHykugUARRnBbcWOIIohEc4I6mHDIsvWT6SmodaqVvBaHQxZU1VX9OJJBJOWa+7mRQDeW8NxH/8zqxCs69hPAoVpij2aIgppYKrUkuVp8IjBQdawKRIPpWCw2hzkbp9Ao6BGf+5b+kWSk7p+WTm2qxdpnFkQd74ACUgAPOQA1cgzpoAAQewBN4Aa/Go/FsvBnvs9ackc3sgl8wPr4BQN6aAQ==</latexit>

SA

(1 � �)4✏2
single-agent
Q-learning

Linear speedup with near-optimal parameter dependencies!

22

The statistical-communication complexity trade-off
in federated Q-Learning

Sudeep Salgia

CMU

Communication bottleneck

Central server

… …
Agent 1 Agent 2 Agent 𝐾Agent 𝑘

The price of communication: how much communication do we need to
pay to achieve the linear speedup?

24

A communication lower bound

Theorem (Salgia and Chi, NeurIPS 2024; informal)

For a wide family of federated Q-learning algorithm with intermittent
communication, regardless of the choice of synchronization schedules, the
number of communication rounds needs to be at least

Ω̃(
1

1 − γ
)

in order to achieve any speedup with respect to the number of agents.

● A similar lower bound holds for the number of communication bits.

● This is the first communication complexity barrier established for
federated RL algorithms.

25

Key idea

E[(Q̂ −Q⋆)2] = E[(E[Q̂] −Q⋆)2]
´¹¹¹¸¹¹¹¶

Bias

+E[(Q̂ −E[Q̂])2]
´¹¹¹¸¹¹¶

Variance

● Variance exhibits linear speedup on average.

● Bias increases between two communication rounds. Averaging has a
small compensating effect, but the overall bias is independent of K.

Bias∝ τ = Ω(T (1 − γ))
⇓

bias dominates the variance
⇓

no collaboration gain

26

Key idea

E[(Q̂ −Q⋆)2] = E[(E[Q̂] −Q⋆)2]
´¹¹¹¸¹¹¹¶

Bias

+E[(Q̂ −E[Q̂])2]
´¹¹¹¸¹¹¶

Variance

● Variance exhibits linear speedup on average.

● Bias increases between two communication rounds. Averaging has a
small compensating effect, but the overall bias is independent of K.

Bias∝ τ = Ω(T (1 − γ))
⇓

bias dominates the variance
⇓

no collaboration gain

0 T

Bias

2⌧⌧ 3⌧

26

Key idea

E[(Q̂ −Q⋆)2] = E[(E[Q̂] −Q⋆)2]
´¹¹¹¸¹¹¹¶

Bias

+E[(Q̂ −E[Q̂])2]
´¹¹¹¸¹¹¶

Variance

● Variance exhibits linear speedup on average.

● Bias increases between two communication rounds. Averaging has a
small compensating effect, but the overall bias is independent of K.

Bias∝ τ = Ω(T (1 − γ))
⇓

bias dominates the variance
⇓

no collaboration gain

Bias

26

Near-optimal algorithm design

Can one design a federated Q-learning algorithm that simultaneously
offers optimal-order sample and communication complexities?

Yes!!

● Fed-DVR-Q (Salgia and Chi, NeurIPS 2024): achieves
near-optimal statistical and communication complexities with
communication compression and variance reduction:

Õ (
∣S ∣∣A∣

K(1 − γ)3ε2
) samples, Õ (

1

1 − γ
) rounds.

See our paper for details!

27

Near-optimal algorithm design

Can one design a federated Q-learning algorithm that simultaneously
offers optimal-order sample and communication complexities?

Yes!!

● Fed-DVR-Q (Salgia and Chi, NeurIPS 2024): achieves
near-optimal statistical and communication complexities with
communication compression and variance reduction:

Õ (
∣S ∣∣A∣

K(1 − γ)3ε2
) samples, Õ (

1

1 − γ
) rounds.

See our paper for details!

27

Near-optimal algorithm design

Can one design a federated Q-learning algorithm that simultaneously
offers optimal-order sample and communication complexities?

Yes!!

● Fed-DVR-Q (Salgia and Chi, NeurIPS 2024): achieves
near-optimal statistical and communication complexities with
communication compression and variance reduction:

Õ (
∣S ∣∣A∣

K(1 − γ)3ε2
) samples, Õ (

1

1 − γ
) rounds.

See our paper for details!

27

Dealing with heterogeneity in federated RL

Jiin Woo Gauri Joshi

CMU CMU

Q-learning following a behavior policy
agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =

r(st, at) reward next state action
s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action a0 which action a to take?

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

V ⇡(s0) Q⇡(s0, a0)

⇡b(·|s0) ⇡b(·|s1) ⇡b(·|s2) ⇡b(·|s3) ⇡b(·|s4) ⇡b(·|s5)

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action a0 which action a to take?

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

V ⇡(s0) Q⇡(s0, a0)
"
⇡b(·|s0) ⇡b(·|s1) ⇡b(·|s2) ⇡b(·|s3) ⇡b(·|s4) ⇡b(·|s5)

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action a0 which action a to take?

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

V ⇡(s0) Q⇡(s0, a0)
"
⇡b(·|s0) ⇡b(·|s1) ⇡b(·|s2) ⇡b(·|s3) ⇡b(·|s4) ⇡b(·|s5)

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action a0 which action a to take?

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

V ⇡(s0) Q⇡(s0, a0)
"
⇡b(·|s0) ⇡b(·|s1) ⇡b(·|s2) ⇡b(·|s3) ⇡b(·|s4) ⇡b(·|s5)

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action a0 which action a to take?

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

V ⇡(s0) Q⇡(s0, a0)
"
⇡b(·|s0) ⇡b(·|s1) ⇡b(·|s2) ⇡b(·|s3) ⇡b(·|s4) ⇡b(·|s5)

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action a0 which action a to take?

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

V ⇡(s0) Q⇡(s0, a0)
"
⇡b(·|s0) ⇡b(·|s1) ⇡b(·|s2) ⇡b(·|s3) ⇡b(·|s4) ⇡b(·|s5)

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action a0 which action a to take?

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

V ⇡(s0) Q⇡(s0, a0)
"
⇡b(·|s0) ⇡b(·|s1) ⇡b(·|s2) ⇡b(·|s3) ⇡b(·|s4) ⇡b(·|s5)

1

Stochastic approximation for solving Bellman equation Q⋆ = T (Q⋆)
using samples collected from a behavior policy πb:

Qt+1(st, at) = (1 − η)Qt(st, at) + ηTt(Qt)(st, at)
´¹¹¹¸¹¹¶

only update (st,at)-th entry

, t ≥ 0

Tt(Q)(st, at) = r(st, at) + γmax
a′

Q(st+1, a′)

T (Q)(s, a) = r(s, a) + γ E
s′∼P (⋅∣s,a)

[max
a′

Q(s′, a′)]

29

Q-learning following a behavior policy
agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =

r(st, at) reward next state action
s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action a0 which action a to take?

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

V ⇡(s0) Q⇡(s0, a0)

⇡b(·|s0) ⇡b(·|s1) ⇡b(·|s2) ⇡b(·|s3) ⇡b(·|s4) ⇡b(·|s5)

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action a0 which action a to take?

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

V ⇡(s0) Q⇡(s0, a0)
"
⇡b(·|s0) ⇡b(·|s1) ⇡b(·|s2) ⇡b(·|s3) ⇡b(·|s4) ⇡b(·|s5)

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action a0 which action a to take?

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

V ⇡(s0) Q⇡(s0, a0)
"
⇡b(·|s0) ⇡b(·|s1) ⇡b(·|s2) ⇡b(·|s3) ⇡b(·|s4) ⇡b(·|s5)

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action a0 which action a to take?

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

V ⇡(s0) Q⇡(s0, a0)
"
⇡b(·|s0) ⇡b(·|s1) ⇡b(·|s2) ⇡b(·|s3) ⇡b(·|s4) ⇡b(·|s5)

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action a0 which action a to take?

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

V ⇡(s0) Q⇡(s0, a0)
"
⇡b(·|s0) ⇡b(·|s1) ⇡b(·|s2) ⇡b(·|s3) ⇡b(·|s4) ⇡b(·|s5)

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action a0 which action a to take?

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

V ⇡(s0) Q⇡(s0, a0)
"
⇡b(·|s0) ⇡b(·|s1) ⇡b(·|s2) ⇡b(·|s3) ⇡b(·|s4) ⇡b(·|s5)

1

agent at ⇠ ⇡(·|st) environment st at st+1 ⇠ P (·|st, at) rt =
r(st, at) reward next state action a0 which action a to take?

s0 a0 s1 a1 s2 a2 s3 a3 s4 a4 s5 a5 r0 r1 r2 r3 r4 r5

V ⇡(s0) Q⇡(s0, a0)
"
⇡b(·|s0) ⇡b(·|s1) ⇡b(·|s2) ⇡b(·|s3) ⇡b(·|s4) ⇡b(·|s5)

1

Stochastic approximation for solving Bellman equation Q⋆ = T (Q⋆)
using samples collected from a behavior policy πb:

Qt+1(st, at) = (1 − η)Qt(st, at) + ηTt(Qt)(st, at)
´¹¹¹¸¹¹¶

only update (st,at)-th entry

, t ≥ 0

Tt(Q)(st, at) = r(st, at) + γmax
a′

Q(st+1, a′)

T (Q)(s, a) = r(s, a) + γ E
s′∼P (⋅∣s,a)

[max
a′

Q(s′, a′)]

29

Tackling data heterogeneity

Central server

Can we achieve faster convergence with heterogeneous local behavior
policies with low communication complexity?

30

Tackling data heterogeneity

Central server

Can we achieve faster convergence with heterogeneous local behavior
policies with low communication complexity?

30

The benefit of collaboration?

Prior art requires full coverage of every agent over the entire
state-action space...

… …
Agent 1 Agent 2 Agent 𝐾Agent 𝑘

However, the power of collaboration really shines if we only need...

… …
Agent 1 Agent 2 Agent 𝐾Agent 𝑘

Is collaborative coverage enough for federated Q-learning?

31

The benefit of collaboration?

Prior art requires full coverage of every agent over the entire
state-action space...

… …
Agent 1 Agent 2 Agent 𝐾Agent 𝑘

However, the power of collaboration really shines if we only need...

… …
Agent 1 Agent 2 Agent 𝐾Agent 𝑘

Is collaborative coverage enough for federated Q-learning?

31

The benefit of collaboration?

Prior art requires full coverage of every agent over the entire
state-action space...

… …
Agent 1 Agent 2 Agent 𝐾Agent 𝑘

However, the power of collaboration really shines if we only need...

… …
Agent 1 Agent 2 Agent 𝐾Agent 𝑘

Is collaborative coverage enough for federated Q-learning?

31

Key metrics

Collaborative coverage: minimum entry of the average stationary
distribution

µavg =min
s,a

1

K

K

∑
k=1

µk
b(s, a).

Heterogeneity of local behavior policies: density ratio of individual /
average behavior policies

Chet =Kmax
k,s,a

µk
b(s, a)

∑
K
k=1 µk

b(s, a)
=max

k,s,a

µk
b(s, a)

µavg(s, a)
.

… …
Agent 1 Agent 2 Agent 𝐾Agent 𝑘

… …
Agent 1 Agent 2 Agent 𝐾Agent 𝑘

<latexit sha1_base64="a4VDnzMJgvHV6FXlqQ7gxbaV3qg=">AAAB/XicbVC7SgNBFJ31GeNrfWBjMxgEq7BrEW2EkDSWCZgHJMsyO5lNhsw+mLkrxCX4KzYWitr6A36BnY3f4mSTQhMPDBzOuZd75nix4Aos68tYWl5ZXVvPbeQ3t7Z3ds29/aaKEklZg0Yikm2PKCZ4yBrAQbB2LBkJPMFa3rA68Vu3TCoehTcwipkTkH7IfU4JaMk1D6tu2g0IDJSfDhiMx/gK265ZsIpWBrxI7BkplI/q3/y18lFzzc9uL6JJwEKggijVsa0YnJRI4FSwcb6bKBYTOiR91tE0JAFTTpqlH+NTrfSwH0n9QsCZ+nsjJYFSo8DTk1nQeW8i/ud1EvAvnZSHcQIspNNDfiIwRHhSBe5xySiIkSaESq6zYjogklDQheV1Cfb8lxdJ87xol4qlum6jgqbIoWN0gs6QjS5QGV2jGmogiu7QA3pCz8a98Wi8GG/T0SVjtnOA/sB4/wHC2Jh7</latexit>

Chet = 1
<latexit sha1_base64="8bB4iPoXJSp67dC4fs8qZHAE6dg=">AAAB/XicbVDLSsNAFJ3UV62v+MCNm8EiuCqJi+pGKO1GcNOCfUAbwmQ6aYdOJmFmItQQ/BU3LhR16w/4Be7c+C1O0y609cDA4Zx7uWeOFzEqlWV9Gbml5ZXVtfx6YWNza3vH3N1ryTAWmDRxyELR8ZAkjHLSVFQx0okEQYHHSNsb1SZ++5YISUN+o8YRcQI04NSnGCktueZBzU16AVJD6SdDotIUXsJr1yxaJSsDXCT2jBQrh41v+lr9qLvmZ68f4jggXGGGpOzaVqScBAlFMSNpoRdLEiE8QgPS1ZSjgEgnydKn8EQrfeiHQj+uYKb+3khQIOU48PRkFnTem4j/ed1Y+RdOQnkUK8Lx9JAfM6hCOKkC9qkgWLGxJggLqrNCPEQCYaULK+gS7PkvL5LWWckul8oN3UYVTJEHR+AYnAIbnIMKuAJ10AQY3IEH8ASejXvj0Xgx3qajOWO2sw/+wHj/AepAmJU=</latexit>

Chet = K

32

Key metrics

Collaborative coverage: minimum entry of the average stationary
distribution

µavg =min
s,a

1

K

K

∑
k=1

µk
b(s, a).

Heterogeneity of local behavior policies: density ratio of individual /
average behavior policies

Chet =Kmax
k,s,a

µk
b(s, a)

∑
K
k=1 µk

b(s, a)
=max

k,s,a

µk
b(s, a)

µavg(s, a)
.

… …
Agent 1 Agent 2 Agent 𝐾Agent 𝑘

… …
Agent 1 Agent 2 Agent 𝐾Agent 𝑘

<latexit sha1_base64="a4VDnzMJgvHV6FXlqQ7gxbaV3qg=">AAAB/XicbVC7SgNBFJ31GeNrfWBjMxgEq7BrEW2EkDSWCZgHJMsyO5lNhsw+mLkrxCX4KzYWitr6A36BnY3f4mSTQhMPDBzOuZd75nix4Aos68tYWl5ZXVvPbeQ3t7Z3ds29/aaKEklZg0Yikm2PKCZ4yBrAQbB2LBkJPMFa3rA68Vu3TCoehTcwipkTkH7IfU4JaMk1D6tu2g0IDJSfDhiMx/gK265ZsIpWBrxI7BkplI/q3/y18lFzzc9uL6JJwEKggijVsa0YnJRI4FSwcb6bKBYTOiR91tE0JAFTTpqlH+NTrfSwH0n9QsCZ+nsjJYFSo8DTk1nQeW8i/ud1EvAvnZSHcQIspNNDfiIwRHhSBe5xySiIkSaESq6zYjogklDQheV1Cfb8lxdJ87xol4qlum6jgqbIoWN0gs6QjS5QGV2jGmogiu7QA3pCz8a98Wi8GG/T0SVjtnOA/sB4/wHC2Jh7</latexit>

Chet = 1
<latexit sha1_base64="8bB4iPoXJSp67dC4fs8qZHAE6dg=">AAAB/XicbVDLSsNAFJ3UV62v+MCNm8EiuCqJi+pGKO1GcNOCfUAbwmQ6aYdOJmFmItQQ/BU3LhR16w/4Be7c+C1O0y609cDA4Zx7uWeOFzEqlWV9Gbml5ZXVtfx6YWNza3vH3N1ryTAWmDRxyELR8ZAkjHLSVFQx0okEQYHHSNsb1SZ++5YISUN+o8YRcQI04NSnGCktueZBzU16AVJD6SdDotIUXsJr1yxaJSsDXCT2jBQrh41v+lr9qLvmZ68f4jggXGGGpOzaVqScBAlFMSNpoRdLEiE8QgPS1ZSjgEgnydKn8EQrfeiHQj+uYKb+3khQIOU48PRkFnTem4j/ed1Y+RdOQnkUK8Lx9JAfM6hCOKkC9qkgWLGxJggLqrNCPEQCYaULK+gS7PkvL5LWWckul8oN3UYVTJEHR+AYnAIbnIMKuAJ10AQY3IEH8ASejXvj0Xgx3qajOWO2sw/+wHj/AepAmJU=</latexit>

Chet = K

32

Our theorem

Theorem (Woo, Joshi, Chi, JMLR 2025)

For sufficiently small ε > 0, federated asynchronous Q-learning yields
∥Q̂ −Q⋆∥∞ ≤ ε with sample complexity at most

Õ (
Chet

Kµavg(1 − γ)5ε2
)

ignoring the burn-in cost that depends on the mixing times.

● Near-optimal linear speedup when the local behavior policies are
similar, Chet ≈ 1.

● Key idea: leave-one-out arguments to decouple statistical
dependencies due to Markovian sampling and local updates.

Curse of heterogeneity? Performance degenerates when local behavior
policies are heterogeneous (i.e. 1≪ Chet). /

33

Our theorem

Theorem (Woo, Joshi, Chi, JMLR 2025)

For sufficiently small ε > 0, federated asynchronous Q-learning yields
∥Q̂ −Q⋆∥∞ ≤ ε with sample complexity at most

Õ (
Chet

Kµavg(1 − γ)5ε2
)

ignoring the burn-in cost that depends on the mixing times.

● Near-optimal linear speedup when the local behavior policies are
similar, Chet ≈ 1.

● Key idea: leave-one-out arguments to decouple statistical
dependencies due to Markovian sampling and local updates.

Curse of heterogeneity? Performance degenerates when local behavior
policies are heterogeneous (i.e. 1≪ Chet). /

33

Our theorem

Theorem (Woo, Joshi, Chi, JMLR 2025)

For sufficiently small ε > 0, federated asynchronous Q-learning yields
∥Q̂ −Q⋆∥∞ ≤ ε with sample complexity at most

Õ (
Chet

Kµavg(1 − γ)5ε2
)

ignoring the burn-in cost that depends on the mixing times.

● Near-optimal linear speedup when the local behavior policies are
similar, Chet ≈ 1.

● Key idea: leave-one-out arguments to decouple statistical
dependencies due to Markovian sampling and local updates.

Curse of heterogeneity? Performance degenerates when local behavior
policies are heterogeneous (i.e. 1≪ Chet). /

33

Importance averaging

Key observation: not all updates are of same quality due to limited
visits induced by the behavior policy.

… …+

Importance averaging: the server averages the local updates based on
importance via

Qt(s, a) =
1

K

K

∑
k=1

αk
t (s, a)Q

k
t (s, a),

where

αk
t =

(1 − η)−N
k
t−τ,t(s,a)

∑
K
k=1(1 − η)

−Nk
t−τ,t(s,a)

, Nk
t−τ,t(s, a) =

number of visits
in the sync period

.

34

Importance averaging

Key observation: not all updates are of same quality due to limited
visits induced by the behavior policy.

… …+

higher weights

Importance averaging: the server averages the local updates based on
importance via

Qt(s, a) =
1

K

K

∑
k=1

αk
t (s, a)Q

k
t (s, a),

where

αk
t =

(1 − η)−N
k
t−τ,t(s,a)

∑
K
k=1(1 − η)

−Nk
t−τ,t(s,a)

, Nk
t−τ,t(s, a) =

number of visits
in the sync period

.

34

Our theorem

Theorem (Woo, Joshi, Chi, JMLR 2025)

For sufficiently small ε > 0, federated asynchronous Q-learning with
importance averaging yields ∥Q̂ −Q⋆∥∞ ≤ ε with at most

Õ (
1

Kµavg(1 − γ)5ε2
)

samples, ignoring the burn-in cost that depends on the mixing times.

● Similar results can be developed for the offline setting, too.

Prior art for asynchronous Q-learning

Question: how many samples are needed to ensure Î ‚Q≠QıÎŒ Æ Á?

paper sample complexity learning rate

Even-Dar & Mansour ’03 (tcover)
1

1≠“

(1≠“)4Á2 linear: 1
t

Even-Dar & Mansour ’03
!

t1+3Ê
cover

(1≠“)4Á2

" 1
Ê +

!
tcover
1≠“

" 1
1≠Ê poly: 1

tÊ , Ê œ (1
2 , 1)

Beck & Srikant ’12 t3cover|S||A|
(1≠“)5Á2 constant

Qu & Wierman ’20 tmix
µ2

min(1≠“)5Á2 rescaled linear

paper sample complexity learning rate

Even-Dar & Mansour ’03 (tmix|S||A|)
1

1≠“

(1≠“)4Á2 linear: 1
t

Even-Dar & Mansour ’03 (tmix|S||A|)4.29
(1≠“)5Á2 poly: 1

tÊ , Ê œ (1
2 , 1)

Beck & Srikant ’12 t3mix|S|
3|A|3

(1≠“)5Á2 constant

Qu & Wierman ’20 tmix|S|2|A|2
(1≠“)5Á2 rescaled linear

if we take µmin ® 1
|S||A| , tcover ® tmix

µmin

All prior results require a sample size of at least tmix|S|2|A|2!

19/ 28

Prior art for asynchronous Q-learning

Question: how many samples are needed to ensure Î ‚Q≠QıÎŒ Æ Á?

paper sample complexity learning rate

Even-Dar & Mansour ’03 (tcover)
1

1≠“

(1≠“)4Á2 linear: 1
t

Even-Dar & Mansour ’03
!

t1+3Ê
cover

(1≠“)4Á2

" 1
Ê +

!
tcover
1≠“

" 1
1≠Ê poly: 1

tÊ , Ê œ (1
2 , 1)

Beck & Srikant ’12 t3cover|S||A|
(1≠“)5Á2 constant

Qu & Wierman ’20 tmix
µ2

min(1≠“)5Á2 rescaled linear

paper sample complexity learning rate

Even-Dar & Mansour ’03 (tmix|S||A|)
1

1≠“

(1≠“)4Á2 linear: 1
t

Even-Dar & Mansour ’03 (tmix|S||A|)4.29
(1≠“)5Á2 poly: 1

tÊ , Ê œ (1
2 , 1)

Beck & Srikant ’12 t3mix|S|
3|A|3

(1≠“)5Á2 constant

Qu & Wierman ’20 tmix|S|2|A|2
(1≠“)5Á2 rescaled linear

if we take µmin ® 1
|S||A| , tcover ® tmix

µmin

All prior results require a sample size of at least tmix|S|2|A|2!

19/ 28

Importance

averaging

Eq
ua

l
av

er
ag

in
g

35

Our theorem

Theorem (Woo, Joshi, Chi, JMLR 2025)

For sufficiently small ε > 0, federated asynchronous Q-learning with
importance averaging yields ∥Q̂ −Q⋆∥∞ ≤ ε with at most

Õ (
1

Kµavg(1 − γ)5ε2
)

samples, ignoring the burn-in cost that depends on the mixing times.

● Similar results can be developed for the offline setting, too.

Prior art for asynchronous Q-learning

Question: how many samples are needed to ensure Î ‚Q≠QıÎŒ Æ Á?

paper sample complexity learning rate

Even-Dar & Mansour ’03 (tcover)
1

1≠“

(1≠“)4Á2 linear: 1
t

Even-Dar & Mansour ’03
!

t1+3Ê
cover

(1≠“)4Á2

" 1
Ê +

!
tcover
1≠“

" 1
1≠Ê poly: 1

tÊ , Ê œ (1
2 , 1)

Beck & Srikant ’12 t3cover|S||A|
(1≠“)5Á2 constant

Qu & Wierman ’20 tmix
µ2

min(1≠“)5Á2 rescaled linear

paper sample complexity learning rate

Even-Dar & Mansour ’03 (tmix|S||A|)
1

1≠“

(1≠“)4Á2 linear: 1
t

Even-Dar & Mansour ’03 (tmix|S||A|)4.29
(1≠“)5Á2 poly: 1

tÊ , Ê œ (1
2 , 1)

Beck & Srikant ’12 t3mix|S|
3|A|3

(1≠“)5Á2 constant

Qu & Wierman ’20 tmix|S|2|A|2
(1≠“)5Á2 rescaled linear

if we take µmin ® 1
|S||A| , tcover ® tmix

µmin

All prior results require a sample size of at least tmix|S|2|A|2!

19/ 28

Prior art for asynchronous Q-learning

Question: how many samples are needed to ensure Î ‚Q≠QıÎŒ Æ Á?

paper sample complexity learning rate

Even-Dar & Mansour ’03 (tcover)
1

1≠“

(1≠“)4Á2 linear: 1
t

Even-Dar & Mansour ’03
!

t1+3Ê
cover

(1≠“)4Á2

" 1
Ê +

!
tcover
1≠“

" 1
1≠Ê poly: 1

tÊ , Ê œ (1
2 , 1)

Beck & Srikant ’12 t3cover|S||A|
(1≠“)5Á2 constant

Qu & Wierman ’20 tmix
µ2

min(1≠“)5Á2 rescaled linear

paper sample complexity learning rate

Even-Dar & Mansour ’03 (tmix|S||A|)
1

1≠“

(1≠“)4Á2 linear: 1
t

Even-Dar & Mansour ’03 (tmix|S||A|)4.29
(1≠“)5Á2 poly: 1

tÊ , Ê œ (1
2 , 1)

Beck & Srikant ’12 t3mix|S|
3|A|3

(1≠“)5Á2 constant

Qu & Wierman ’20 tmix|S|2|A|2
(1≠“)5Á2 rescaled linear

if we take µmin ® 1
|S||A| , tcover ® tmix

µmin

All prior results require a sample size of at least tmix|S|2|A|2!

19/ 28

Importance

averaging

Eq
ua

l
av

er
ag

in
g

35

Our theorem

Theorem (Woo, Joshi, Chi, JMLR 2025)

For sufficiently small ε > 0, federated asynchronous Q-learning with
importance averaging yields ∥Q̂ −Q⋆∥∞ ≤ ε with at most

Õ (
1

Kµavg(1 − γ)5ε2
)

samples, ignoring the burn-in cost that depends on the mixing times.

● Similar results can be developed for the offline setting, too.

Prior art for asynchronous Q-learning

Question: how many samples are needed to ensure Î ‚Q≠QıÎŒ Æ Á?

paper sample complexity learning rate

Even-Dar & Mansour ’03 (tcover)
1

1≠“

(1≠“)4Á2 linear: 1
t

Even-Dar & Mansour ’03
!

t1+3Ê
cover

(1≠“)4Á2

" 1
Ê +

!
tcover
1≠“

" 1
1≠Ê poly: 1

tÊ , Ê œ (1
2 , 1)

Beck & Srikant ’12 t3cover|S||A|
(1≠“)5Á2 constant

Qu & Wierman ’20 tmix
µ2

min(1≠“)5Á2 rescaled linear

paper sample complexity learning rate

Even-Dar & Mansour ’03 (tmix|S||A|)
1

1≠“

(1≠“)4Á2 linear: 1
t

Even-Dar & Mansour ’03 (tmix|S||A|)4.29
(1≠“)5Á2 poly: 1

tÊ , Ê œ (1
2 , 1)

Beck & Srikant ’12 t3mix|S|
3|A|3

(1≠“)5Á2 constant

Qu & Wierman ’20 tmix|S|2|A|2
(1≠“)5Á2 rescaled linear

if we take µmin ® 1
|S||A| , tcover ® tmix

µmin

All prior results require a sample size of at least tmix|S|2|A|2!

19/ 28

Prior art for asynchronous Q-learning

Question: how many samples are needed to ensure Î ‚Q≠QıÎŒ Æ Á?

paper sample complexity learning rate

Even-Dar & Mansour ’03 (tcover)
1

1≠“

(1≠“)4Á2 linear: 1
t

Even-Dar & Mansour ’03
!

t1+3Ê
cover

(1≠“)4Á2

" 1
Ê +

!
tcover
1≠“

" 1
1≠Ê poly: 1

tÊ , Ê œ (1
2 , 1)

Beck & Srikant ’12 t3cover|S||A|
(1≠“)5Á2 constant

Qu & Wierman ’20 tmix
µ2

min(1≠“)5Á2 rescaled linear

paper sample complexity learning rate

Even-Dar & Mansour ’03 (tmix|S||A|)
1

1≠“

(1≠“)4Á2 linear: 1
t

Even-Dar & Mansour ’03 (tmix|S||A|)4.29
(1≠“)5Á2 poly: 1

tÊ , Ê œ (1
2 , 1)

Beck & Srikant ’12 t3mix|S|
3|A|3

(1≠“)5Á2 constant

Qu & Wierman ’20 tmix|S|2|A|2
(1≠“)5Á2 rescaled linear

if we take µmin ® 1
|S||A| , tcover ® tmix

µmin

All prior results require a sample size of at least tmix|S|2|A|2!

19/ 28

Importance

averaging

Eq
ua

l
av

er
ag

in
g

35

Summary

Central server

Synergy of statistics and RL: federated RL unleashes the collaborative
power of agents even under heterogeneity!

Future work:
● Multi-environment and personalized RL.
● Other MDP settings.

36

Summary

Central server

Synergy of statistics and RL: federated RL unleashes the collaborative
power of agents even under heterogeneity!

Future work:
● Multi-environment and personalized RL.
● Other MDP settings.

36

Thanks!

● The Blessing of Heterogeneity in Federated Q-Learning: Linear Speedup
and Beyond, JMLR 2025. Preliminary version at ICML 2023.

● The Sample-Communication Complexity Trade-off in Federated
Q-Learning, NeurIPS 2024, oral.

● Federated Offline Reinforcement Learning: Collaborative Single-Policy
Coverage Suffices, ICML 2024.

https://users.ece.cmu.edu/~yuejiec/

37

https://users.ece.cmu.edu/~yuejiec/

