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Reinforcement learning (RL)

In RL, an agent learns by interacting with an unknown environment
through trial-and-error to maximize long-term total reward.
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More successes of RL since AlphaGo

robotics

strategic games

chip designs

nuclear plant control

resource management

UAV and drones
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One more: RL for foundation models

Alignment: safety, human value.. Reasoning: math, coding…
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RL holds great promise in accelerating scientific,
engineering and societal discoveries.
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Sample efficiency

However, collecting data samples might be expensive or time-consuming.

clinical trials

LLM alignment

autonomous driving

Calls for design of sample-efficient RL algorithms!
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Can we harness the power of federated learning?

Can we harness the power of federated learning for RL?
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RL meets federated learning

Central server

… …
Agent 1 Agent 2 Agent 𝐾Agent 𝑘

Federated reinforcement learning: enables multiple agents to
collaboratively learn a global policy without sharing datasets.
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Statistical-communication trade-offs

Statistical
benefits

Communication
overhead
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Comm. cost

Is linear speedup possible? What is the price in communication?
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This talk: federated RL

Statistical
benefits

Communication
overhead

Linear speedup:

Can we achieve linear speedup when learning with multiple agents?

Communication efficiency:

What is the minimum amount of communication to achieve
speedup?

Taming heterogeneity:

What if the agents are heterogeneous?
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Backgrounds:
Markov decision processes and Q-learning



Markov decision process (MDP)

● S: state space ● A: action space

● r(s, a) ∈ [0,1]: immediate reward

● π(⋅∣s): policy (or action selection rule)

● P (⋅∣s, a): transition probabilities
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Value function

Value function of policy π:

∀s ∈ S ∶ V π
(s) ∶= E [

∞
∑
t=0

γtrt ∣ s0 = s]

Q-function of policy π:

∀(s, a) ∈ S ×A ∶ Qπ
(s, a) ∶= E [

∞
∑
t=0

γtr(st, at) ∣ s0 = s, a0 = a]

● γ ∈ [0,1) is the discount factor; 1
1−γ is effective horizon

● Expectation is w.r.t. the sampled trajectory under π
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Searching for the optimal policy

agent environment st at st+1 rt

1

agent environment st at st+1 rt

1

P, r

Goal: find the optimal policy π⋆ that maximize V π(s)

● optimal value /Q function: V ⋆ ∶= V π⋆ , Q⋆ ∶= Qπ⋆

● optimal policy π⋆(s) = argmaxa∈AQ⋆(s, a)
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Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Robbins & Monro, 1951

for solving the Bellman equation

Q⋆ = T (Q⋆)

where

T (Q)(s, a) ∶= r(s, a)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶

immediate reward

+ γ E
s′∼P (⋅∣s,a)

[max
a′∈A

Q(s′, a′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
next state’s value

].
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A generative model / simulator

— Kearns & Singh, 1999

Each iteration, draw an independent sample (s, a, s′) for given (s, a)
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Q-learning with a generative model

Stochastic approximation for solving Bellman equation Q⋆ = T (Q⋆)
using samples collected from the generative model:

Qt+1(s, a) = (1 − η)Qt(s, a) + ηTt(Qt)(s, a)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

draw the transition (s,a,s′) for all (s,a)

, t ≥ 0

Tt(Q)(s, a) = r(s, a) + γmax
a′

Q(s′, a′)

T (Q)(s, a) = r(s, a) + γ E
s′∼P (⋅∣s,a)

[max
a′

Q(s′, a′)]
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A sharp sample complexity of Q-learning

Question: How many samples are needed for ∥Q̂ −Q⋆∥∞ ≤ ε?

Theorem (Li, Cai, Chen, Wei, Chi, OR 2024)

For any 0 < ε ≤ 1, Q-learning yields ∥Q̂ −Q⋆∥∞ ≤ ε with sample
complexity at most

Õ (
∣S ∣∣A∣

(1 − γ)4ε2
) .

Furthermore, this bound is tight for Q-learning.

● This is a factor of 1
1−γ away from the minimax lower bound, which is

(
∣S∣∣A∣
(1−γ)3ε2 ).

● The lower bound is based on analyzing the dynamic of Q-learning on
a specific worst-case instance.
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Federated Q-learning: towards linear speedup
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Federated Q-learning with local updates

● Local updates: the agent k performs τ
rounds of local Q-learning updates:

Qk
t+1 ← (1 − η)Q

k
t + ηTt(Q

k
t )

and sends it to the server.

● Periodic averaging: the server averages the
local updates and sends it back to agents:

Qt =
1

K

K

∑
k=1

Qk
t

Central server

… …
Agent 1 Agent 2 Agent 𝐾Agent 𝑘

Sample trajectory and behavior policy

(s, a) sÕ P (·|s, a) generative model

Observed: {st, at, rt}Œ
t=0¸ ˚˙ ˝

Markovian trajectory

generated by behavior policy fib

Goal: estimate optimal value function V ı based on sample trajectory

Key quantities of sample trajectory
• minimum state-action occupancy probability

µmin := min µfib(s, a)¸ ˚˙ ˝
stationary distribution• mixing time: tmix
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Can we achieve faster convergence, i.e. linear speedup, with low
communication complexity?

Yes!!
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Can we achieve faster convergence, i.e. linear speedup, with low
communication complexity?

Yes!!
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Federated Q-learning with local updates

● Local updates: the agent k performs τ
rounds of local Q-learning updates:

Qk
t+1 ← (1 − η)Q

k
t + ηTt(Q

k
t )

and sends it to the server.

● Periodic averaging: the server averages the
local updates and sends it back to agents:

Qt =
1

K

K

∑
k=1

Qk
t

Central server

… …
Agent 1 Agent 2 Agent 𝐾Agent 𝑘
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Linear speedup of federated Q-learning

Theorem (Jiin, Joshi, Chi, ICML 2023)

For any 0 < ε ≤ 1
1−γ , federated synchronous Q-learning yields

∥Q̂ −Q⋆∥∞ ≤ ε with sample complexity at most

Õ (
∣S ∣∣A∣

K(1 − γ)5ε2
)

as long as τ − 1 ≤ 1
η
min{ 1−γ

8γ
, 1
K
} and η = Õ(K(1 − γ)4ε2).

● Linear speedup compared with the single-agent sample complexity

Õ ( ∣S∣∣A∣
(1−γ)4ε2 ).

● Communication complexity: ε-independent T /τ = Õ ( K
1−γ ) for

sufficiently small ε.
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Comparison with prior art

Prior art for asynchronous Q-learning

Question: how many samples are needed to ensure Î ‚Q≠QıÎŒ Æ Á?

paper sample complexity learning rate

Even-Dar & Mansour ’03 (tcover)
1

1≠“

(1≠“)4Á2 linear: 1
t

Even-Dar & Mansour ’03
!

t1+3Ê
cover

(1≠“)4Á2

" 1
Ê +

!
tcover
1≠“

" 1
1≠Ê poly: 1

tÊ , Ê œ ( 1
2 , 1)

Beck & Srikant ’12 t3cover|S||A|
(1≠“)5Á2 constant

Qu & Wierman ’20 tmix
µ2

min(1≠“)5Á2 rescaled linear

paper sample complexity learning rate

Even-Dar & Mansour ’03 (tmix|S||A|)
1

1≠“

(1≠“)4Á2 linear: 1
t

Even-Dar & Mansour ’03 (tmix|S||A|)4.29
(1≠“)5Á2 poly: 1

tÊ , Ê œ ( 1
2 , 1)

Beck & Srikant ’12 t3mix|S|
3|A|3

(1≠“)5Á2 constant

Qu & Wierman ’20 tmix|S|2|A|2
(1≠“)5Á2 rescaled linear

if we take µmin ® 1
|S||A| , tcover ® tmix

µmin

All prior results require a sample size of at least tmix|S|2|A|2!
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SA

(1 � �)4✏2
single-agent 
Q-learning

Linear speedup with near-optimal parameter dependencies!
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The statistical-communication complexity trade-off
in federated Q-Learning
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Communication bottleneck

Central server

… …
Agent 1 Agent 2 Agent 𝐾Agent 𝑘

The price of communication: how much communication do we need to
pay to achieve the linear speedup?
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A communication lower bound

Theorem (Salgia and Chi, NeurIPS 2024; informal)

For a wide family of federated Q-learning algorithm with intermittent
communication, regardless of the choice of synchronization schedules, the
number of communication rounds needs to be at least

Ω̃(
1

1 − γ
)

in order to achieve any speedup with respect to the number of agents.

● A similar lower bound holds for the number of communication bits.

● This is the first communication complexity barrier established for
federated RL algorithms.
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Key idea

E[(Q̂ −Q⋆)2] = E[(E[Q̂] −Q⋆)2]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Bias

+E[(Q̂ −E[Q̂])2]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Variance

● Variance exhibits linear speedup on average.

● Bias increases between two communication rounds. Averaging has a
small compensating effect, but the overall bias is independent of K.

Bias∝ τ = Ω(T (1 − γ))
⇓

bias dominates the variance
⇓

no collaboration gain
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Near-optimal algorithm design

Can one design a federated Q-learning algorithm that simultaneously
offers optimal-order sample and communication complexities?

Yes!!

● Fed-DVR-Q (Salgia and Chi, NeurIPS 2024): achieves
near-optimal statistical and communication complexities with
communication compression and variance reduction:

Õ (
∣S ∣∣A∣

K(1 − γ)3ε2
) samples, Õ (

1

1 − γ
) rounds.

See our paper for details!
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Q-learning following a behavior policy
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´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

only update (st,at)-th entry

, t ≥ 0

Tt(Q)(st, at) = r(st, at) + γmax
a′

Q(st+1, a′)

T (Q)(s, a) = r(s, a) + γ E
s′∼P (⋅∣s,a)

[max
a′

Q(s′, a′)]
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Tackling data heterogeneity

Central server

Can we achieve faster convergence with heterogeneous local behavior
policies with low communication complexity?
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The benefit of collaboration?

Prior art requires full coverage of every agent over the entire
state-action space...

… …
Agent 1 Agent 2 Agent 𝐾Agent 𝑘

However, the power of collaboration really shines if we only need...

… …
Agent 1 Agent 2 Agent 𝐾Agent 𝑘

Is collaborative coverage enough for federated Q-learning?
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Key metrics

Collaborative coverage: minimum entry of the average stationary
distribution

µavg =min
s,a

1

K

K

∑
k=1

µk
b(s, a).

Heterogeneity of local behavior policies: density ratio of individual /
average behavior policies

Chet =Kmax
k,s,a

µk
b(s, a)

∑
K
k=1 µk

b(s, a)
=max

k,s,a

µk
b(s, a)

µavg(s, a)
.

… …
Agent 1 Agent 2 Agent 𝐾Agent 𝑘

… …
Agent 1 Agent 2 Agent 𝐾Agent 𝑘

<latexit sha1_base64="a4VDnzMJgvHV6FXlqQ7gxbaV3qg=">AAAB/XicbVC7SgNBFJ31GeNrfWBjMxgEq7BrEW2EkDSWCZgHJMsyO5lNhsw+mLkrxCX4KzYWitr6A36BnY3f4mSTQhMPDBzOuZd75nix4Aos68tYWl5ZXVvPbeQ3t7Z3ds29/aaKEklZg0Yikm2PKCZ4yBrAQbB2LBkJPMFa3rA68Vu3TCoehTcwipkTkH7IfU4JaMk1D6tu2g0IDJSfDhiMx/gK265ZsIpWBrxI7BkplI/q3/y18lFzzc9uL6JJwEKggijVsa0YnJRI4FSwcb6bKBYTOiR91tE0JAFTTpqlH+NTrfSwH0n9QsCZ+nsjJYFSo8DTk1nQeW8i/ud1EvAvnZSHcQIspNNDfiIwRHhSBe5xySiIkSaESq6zYjogklDQheV1Cfb8lxdJ87xol4qlum6jgqbIoWN0gs6QjS5QGV2jGmogiu7QA3pCz8a98Wi8GG/T0SVjtnOA/sB4/wHC2Jh7</latexit>

Chet = 1
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Chet = K
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Our theorem

Theorem (Woo, Joshi, Chi, JMLR 2025)

For sufficiently small ε > 0, federated asynchronous Q-learning yields
∥Q̂ −Q⋆∥∞ ≤ ε with sample complexity at most

Õ (
Chet

Kµavg(1 − γ)5ε2
)

ignoring the burn-in cost that depends on the mixing times.

● Near-optimal linear speedup when the local behavior policies are
similar, Chet ≈ 1.

● Key idea: leave-one-out arguments to decouple statistical
dependencies due to Markovian sampling and local updates.

Curse of heterogeneity? Performance degenerates when local behavior
policies are heterogeneous (i.e. 1≪ Chet). /
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Importance averaging

Key observation: not all updates are of same quality due to limited
visits induced by the behavior policy.

… …+

Importance averaging: the server averages the local updates based on
importance via

Qt(s, a) =
1

K

K

∑
k=1

αk
t (s, a)Q

k
t (s, a),

where

αk
t =

(1 − η)−N
k
t−τ,t(s,a)

∑
K
k=1(1 − η)

−Nk
t−τ,t(s,a)

, Nk
t−τ,t(s, a) =

number of visits
in the sync period

.
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Our theorem

Theorem (Woo, Joshi, Chi, JMLR 2025)

For sufficiently small ε > 0, federated asynchronous Q-learning with
importance averaging yields ∥Q̂ −Q⋆∥∞ ≤ ε with at most

Õ (
1

Kµavg(1 − γ)5ε2
)

samples, ignoring the burn-in cost that depends on the mixing times.

● Similar results can be developed for the offline setting, too.
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Õ (
1

Kµavg(1 − γ)5ε2
)

samples, ignoring the burn-in cost that depends on the mixing times.

● Similar results can be developed for the offline setting, too.

Prior art for asynchronous Q-learning

Question: how many samples are needed to ensure Î ‚Q≠QıÎŒ Æ Á?

paper sample complexity learning rate

Even-Dar & Mansour ’03 (tcover)
1

1≠“

(1≠“)4Á2 linear: 1
t

Even-Dar & Mansour ’03
!

t1+3Ê
cover

(1≠“)4Á2

" 1
Ê +

!
tcover
1≠“

" 1
1≠Ê poly: 1

tÊ , Ê œ ( 1
2 , 1)

Beck & Srikant ’12 t3cover|S||A|
(1≠“)5Á2 constant

Qu & Wierman ’20 tmix
µ2

min(1≠“)5Á2 rescaled linear

paper sample complexity learning rate

Even-Dar & Mansour ’03 (tmix|S||A|)
1

1≠“

(1≠“)4Á2 linear: 1
t

Even-Dar & Mansour ’03 (tmix|S||A|)4.29
(1≠“)5Á2 poly: 1

tÊ , Ê œ ( 1
2 , 1)

Beck & Srikant ’12 t3mix|S|
3|A|3

(1≠“)5Á2 constant

Qu & Wierman ’20 tmix|S|2|A|2
(1≠“)5Á2 rescaled linear

if we take µmin ® 1
|S||A| , tcover ® tmix

µmin

All prior results require a sample size of at least tmix|S|2|A|2!

19/ 28

Prior art for asynchronous Q-learning

Question: how many samples are needed to ensure Î ‚Q≠QıÎŒ Æ Á?

paper sample complexity learning rate

Even-Dar & Mansour ’03 (tcover)
1

1≠“

(1≠“)4Á2 linear: 1
t

Even-Dar & Mansour ’03
!

t1+3Ê
cover

(1≠“)4Á2

" 1
Ê +

!
tcover
1≠“

" 1
1≠Ê poly: 1

tÊ , Ê œ ( 1
2 , 1)

Beck & Srikant ’12 t3cover|S||A|
(1≠“)5Á2 constant

Qu & Wierman ’20 tmix
µ2

min(1≠“)5Á2 rescaled linear

paper sample complexity learning rate

Even-Dar & Mansour ’03 (tmix|S||A|)
1

1≠“

(1≠“)4Á2 linear: 1
t

Even-Dar & Mansour ’03 (tmix|S||A|)4.29
(1≠“)5Á2 poly: 1

tÊ , Ê œ ( 1
2 , 1)

Beck & Srikant ’12 t3mix|S|
3|A|3

(1≠“)5Á2 constant

Qu & Wierman ’20 tmix|S|2|A|2
(1≠“)5Á2 rescaled linear

if we take µmin ® 1
|S||A| , tcover ® tmix

µmin

All prior results require a sample size of at least tmix|S|2|A|2!

19/ 28

Importance 

averaging

Eq
ua

l 
av

er
ag

in
g

35



Summary

Central server

Synergy of statistics and RL: federated RL unleashes the collaborative
power of agents even under heterogeneity!

Future work:
● Multi-environment and personalized RL.
● Other MDP settings.

36



Summary

Central server

Synergy of statistics and RL: federated RL unleashes the collaborative
power of agents even under heterogeneity!

Future work:
● Multi-environment and personalized RL.
● Other MDP settings.

36



Thanks!

● The Blessing of Heterogeneity in Federated Q-Learning: Linear Speedup
and Beyond, JMLR 2025. Preliminary version at ICML 2023.

● The Sample-Communication Complexity Trade-off in Federated
Q-Learning, NeurIPS 2024, oral.

● Federated Offline Reinforcement Learning: Collaborative Single-Policy
Coverage Suffices, ICML 2024.

https://users.ece.cmu.edu/~yuejiec/
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