Statistical and algorithmic foundations of reinforcement learning

Yuejie Chi Yale

Yuxin Chen UPenn

Yuting Wei UPenn

Tutorial, INFORMS 2025

Our wonderful collaborators

Gen Li CUHK

Zihan Zhang HKUST

Laixi Shi JHU

Yuling Yan UWM

Shicong Cen XTY

Changxiao Cai UMich

Simon Du UW

Jianqing Fan Princeton

Matthieu Geist ESL

Jason Lee Berkeley

Reinforcement learning (RL)

In RL, an agent learns by interacting with an *unknown* environment through <u>trial-and-error</u> to maximize long-term total reward.

"Recalculating ... recalculating ..."

More successes of RL since AlphaGo

robotics

strategic games

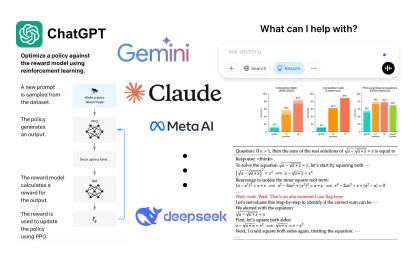
chip designs

nuclear plant control

resource management

UAV and drones

One more: RL for foundation models



Alignment: safety, human value...

Reasoning: math, coding...

Challenges of RL

- explore or exploit: unknown or changing environments
- credit assignment problem: delayed rewards or feedback
- enormous state and action space

Data efficiency

Data collection might be expensive, time-consuming, or high-stakes

clinical trials

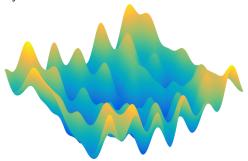
self-driving cars

Calls for design of sample-efficient RL algorithms!

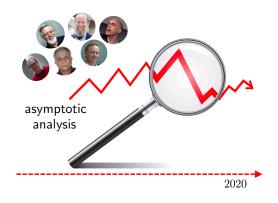
Computational efficiency

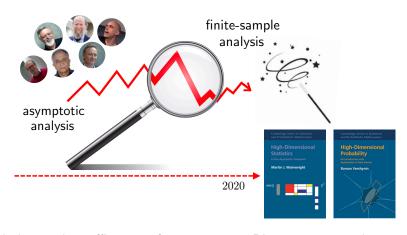
Running RL algorithms might take a long time ...

- enormous state-action space
- nonconvexity

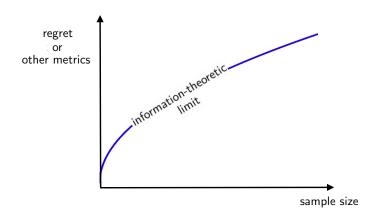


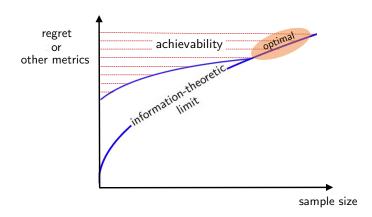
Calls for computationally efficient RL algorithms!

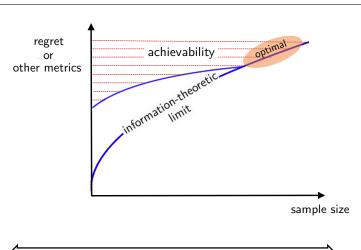


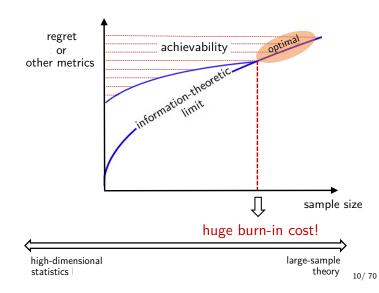


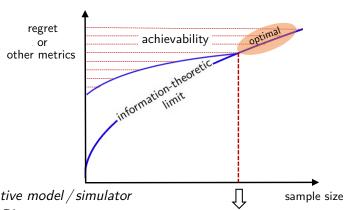
Understanding efficiency of contemporary RL requires a modern suite of non-asymptotic analysis





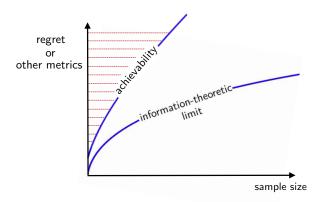






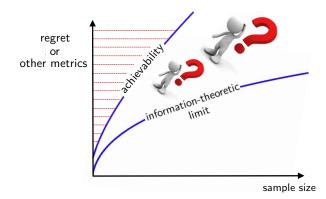
- generative model / simulator
- online RI
- offline RL

huge burn-in cost!



- robust RL
- multi-agent RL

• ...



- robust RL
- multi-agent RL
- ...

This tutorial

(large-scale) optimization

(high-dimensional) statistics

A taste of recent advances in understanding and designing sampleand computationally-efficient RL algorithms

This tutorial

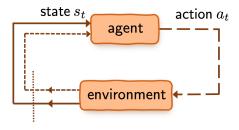
(large-scale) optimization

(high-dimensional) statistics

A taste of recent advances in understanding and designing sampleand computationally-efficient RL algorithms

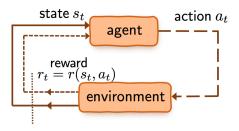
- 1. Sample complexity of Q-Learning
- 2. Offline RL
- 3. Robust RL
- 4. RLHF (time permitting)

Markov decision process (MDP)



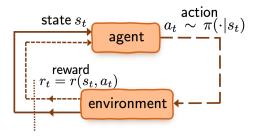
- $S = \{1, ..., S\}$: state space (containing S states)
- $\mathcal{A} = \{1, \dots, A\}$: action space (containing A actions)

Markov decision process (MDP)



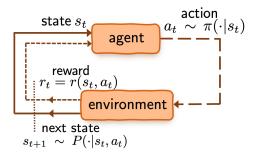
- $S = \{1, ..., S\}$: state space (containing S states)
- $A = \{1, \dots, A\}$: action space (containing A actions)
- $r(s,a) \in [0,1]$: immediate reward

Discounted infinite-horizon MDPs



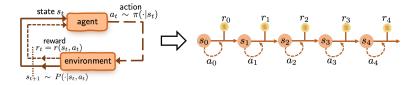
- $S = \{1, ..., S\}$: state space (containing S states)
- $A = \{1, ..., A\}$: action space (containing A actions)
- $r(s,a) \in [0,1]$: immediate reward
- $\pi(\cdot|s)$: policy (or action selection rule)

Discounted infinite-horizon MDPs



- $S = \{1, ..., S\}$: state space (containing S states)
- $A = \{1, ..., A\}$: action space (containing A actions)
- $r(s, a) \in [0, 1]$: immediate reward
- $\pi(\cdot|s)$: policy (or action selection rule)
- $P(\cdot|s,a)$: unknown transition probabilities

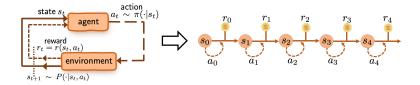
Value function



Value of policy π : cumulative discounted reward

$$\forall s \in \mathcal{S}: \quad V^{\pi}(s) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \, \big| \, s_{0} = s\right]$$

Value function

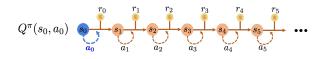


Value of policy π : cumulative discounted reward

$$\forall s \in \mathcal{S}: \quad V^{\pi}(s) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \, \big| \, s_{0} = s\right]$$

- $\gamma \in [0,1)$: discount factor
 - $\circ~$ take $\gamma \rightarrow 1$ to approximate long-horizon MDPs
 - \circ effective horizon: $\frac{1}{1-\gamma}$

Q-function (action-value function)

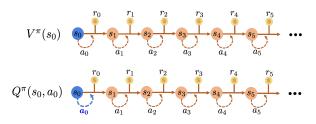


Q-function of policy π :

$$\forall (s, a) \in \mathcal{S} \times \mathcal{A} : \quad Q^{\pi}(s, a) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid s_{0} = s, \mathbf{a}_{0} = \mathbf{a} \right]$$

• $(a_0, s_1, a_1, s_2, a_2, \cdots)$: induced by policy π

Q-function (action-value function)



Q-function of policy π :

$$\forall (s, a) \in \mathcal{S} \times \mathcal{A} : \quad Q^{\pi}(s, a) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid s_{0} = s, \mathbf{a}_{0} = \mathbf{a} \right]$$

• $(a_0, s_1, a_1, s_2, a_2, \cdots)$: induced by policy π

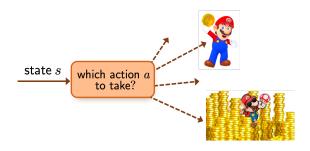
• optimal policy π^* : maximizing value function $\max_{\pi} V^{\pi}$

• optimal policy π^\star : maximizing value function $\max_{\pi} V^\pi$

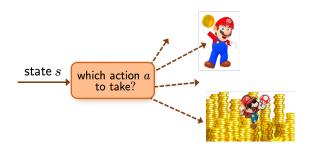
Theorem (Puterman'94)

For infinite horizon discounted MDP, there always exists a deterministic policy π^* , such that

$$V^{\pi^*}(s) \ge V^{\pi}(s), \quad \forall s, \text{ and } \pi.$$

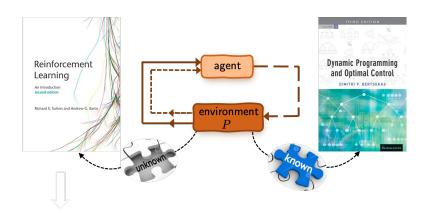


- optimal policy π^{\star} : maximizing value function $\max_{\pi} V^{\pi}$
- optimal value / ${\bf Q}$ function: $V^\star := V^{\pi^\star}$, $Q^\star := Q^{\pi^\star}$

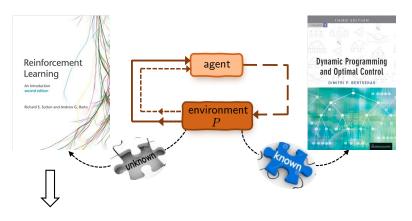


- optimal policy π^{\star} : maximizing value function $\max_{\pi} V^{\pi}$
- optimal value / Q function: $V^{\star} := V^{\pi^{\star}}$, $Q^{\star} := Q^{\pi^{\star}}$
- A question to keep in mind: how to find optimal π^* ?

RL: when the model is unknown ...

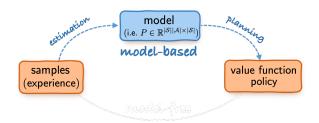


RL: when the model is unknown ...



Need to learn optimal policy from samples w/o model specification

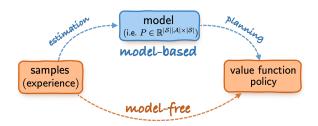
Two approaches



Model-based approach ("plug-in")

- 1. build an empirical estimate \widehat{P} for P
- 2. planning based on the empirical \widehat{P}

Two approaches



Model-based approach ("plug-in")

- 1. build an empirical estimate \hat{P} for P
- 2. planning based on the empirical \widehat{P}

Model-free approach

— learning w/o estimating the model explicitly

Sampling mechanisms

- 1. RL w/ a generative model (a.k.a. simulator)
 - o can query arbitrary state-action pairs to draw samples

Sampling mechanisms

- 1. RL w/ a generative model (a.k.a. simulator)
 - o can query arbitrary state-action pairs to draw samples
- 2. online RL
 - o execute MDP in real time to obtain sample trajectories

Sampling mechanisms

- 1. RL w/ a generative model (a.k.a. simulator)
 - o can query arbitrary state-action pairs to draw samples
- 2. online RL
 - execute MDP in real time to obtain sample trajectories
- 3. offline RL
 - o use pre-collected historical data

Sampling mechanisms

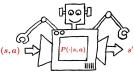
- 1. RL w/ a generative model (a.k.a. simulator)
 - o can query arbitrary state-action pairs to draw samples
- 2. online RL
 - execute MDP in real time to obtain sample trajectories
- 3. offline RL
 - o use pre-collected historical data

Question: how many samples are sufficient to learn an $\underbrace{\varepsilon ext{-optimal policy}?}_{V^{\widehat{\pi}} \geq V^{\star} - \varepsilon}$

Exploration vs exploitation

Exploration

offline RL



generative model

Exploration vs exploitation

Exploration (s,a) Particular analysis of section (s,a) Offline RL Online RL generative model

Varying levels of trade-offs between exploration and exploitation.

Sample Complexity of Q-Learning

Q-learning: a stochastic approximation algorithm

Chris Watkins

Peter Dayan

Stochastic approximation for solving the Bellman equation

Robbins & Monro. 1951

$$\mathcal{T}(Q) - Q = 0$$

where

$$\mathcal{T}(Q)(s,a) := \underbrace{r(s,a)}_{\text{immediate reward}} + \gamma \mathop{\mathbb{E}}_{s' \sim P(\cdot \mid s,a)} \Big[\underbrace{\max_{a' \in \mathcal{A}} Q(s',a')}_{\text{next state's value}} \Big].$$

Q-learning: a stochastic approximation algorithm

Chris Watkins

Peter Dayan

Stochastic approximation for solving Bellman equation $\mathcal{T}(Q)-Q=0$

$$\underbrace{Q_{t+1}(s,a) = Q_t(s,a) + \eta_t \big(\mathcal{T}_t(Q_t)(s,a) - Q_t(s,a)\big)}_{\text{sample transition } (s,a,s')}, \quad t \geq 0$$

Q-learning: a stochastic approximation algorithm

Chris Watkins

. etc. Buyu..

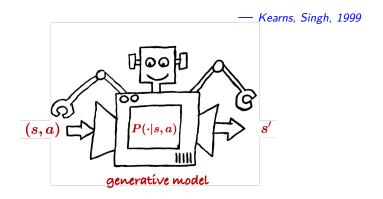
Stochastic approximation for solving Bellman equation $\mathcal{T}(Q)-Q=0$

$$\underbrace{Q_{t+1}(s,a) = Q_t(s,a) + \eta_t \big(\mathcal{T}_t(Q_t)(s,a) - Q_t(s,a) \big)}_{\text{sample transition } (s,a,s')}, \quad t \geq 0$$

$$\mathcal{T}_t(Q)(s, a) = r(s, a) + \gamma \max_{a'} Q(s', a')$$

$$\mathcal{T}(Q)(s, a) = r(s, a) + \gamma \mathop{\mathbb{E}}_{s' \sim P(\cdot \mid s, a)} \left[\max_{a'} Q(s', a') \right]$$

A generative model / simulator



Each iteration, draw an independent sample (s, a, s') for given (s, a)

Synchronous Q-learning

Chris Watkins

Peter Dayan

$$\begin{aligned} &\textbf{for } t = 0, 1, \dots, \pmb{T} \\ &\textbf{for } \mathsf{each} \ (s, a) \in \mathcal{S} \times \mathcal{A} \\ &\mathsf{draw } \mathsf{a } \mathsf{sample} \ (s, a, s'), \ \mathsf{run} \\ &Q_{t+1}(s, a) = (1 - \eta_t) Q_t(s, a) + \eta_t \Big\{ r(s, a) + \gamma \max_{a'} Q_t(s', a') \Big\} \end{aligned}$$

synchronous: all state-action pairs are updated simultaneously

 \bullet total sample size: TSA

 ℓ_{∞} -sample complexity: how many samples are required to

$$\underbrace{\varepsilon\text{-optimal policy}}_{\forall s:\ V^{\widehat{\pi}}(s)\,\geq\,V^{\star}(s)-\varepsilon}?$$

Minimax lower bound

Theorem (minimax lower bound; Azar et al., 2013)

For all $\varepsilon \in [0, \frac{1}{1-\gamma})$, there exists some MDP such that the total number of samples need to be at least

$$\widetilde{\Omega}\left(\frac{SA}{(1-\gamma)^3\varepsilon^2}\right)$$

to achieve $V^{\star} - V^{\widehat{\pi}} \leq \varepsilon$, where $\widehat{\pi}$ is the output of any RL algorithm.

Minimax lower bound

Theorem (minimax lower bound; Azar et al., 2013)

For all $\varepsilon \in [0, \frac{1}{1-\gamma})$, there exists some MDP such that the total number of samples need to be at least

$$\widetilde{\Omega}\left(\frac{SA}{(1-\gamma)^3\varepsilon^2}\right)$$

to achieve $V^{\star} - V^{\widehat{\pi}} \leq \varepsilon$, where $\widehat{\pi}$ is the output of any RL algorithm.

- \bullet holds for both finding the optimal Q-function and the optimal policy over the entire range of ε
- \bullet much smaller than the model dimension S^2A

Sample complexity of synchronous Q-learning

Theorem (Li, Cai, Chen, Wei, Chi'21, OR'24)

For any $0<\varepsilon\leq 1$, synchronous Q-learning yields $\|\widehat{Q}-Q^\star\|_\infty\leq \varepsilon$ with high prob. and $\mathbb{E}[\|\widehat{Q}-Q^\star\|_\infty]\leq \varepsilon$, with sample size at most

$$\begin{cases} \widetilde{O}\Big(\frac{SA}{(1-\gamma)^4\varepsilon^2}\Big) & \text{if } A \geq 2 \\ \widetilde{O}\Big(\frac{S}{(1-\gamma)^3\varepsilon^2}\Big) & \text{if } A = 1 \end{cases}$$
 (TD learning)

Sample complexity of synchronous Q-learning

Theorem (Li, Cai, Chen, Wei, Chi'21, OR'24)

For any $0<\varepsilon\leq 1$, synchronous Q-learning yields $\|\widehat{Q}-Q^\star\|_\infty\leq \varepsilon$ with high prob. and $\mathbb{E}[\|\widehat{Q}-Q^\star\|_\infty]\leq \varepsilon$, with sample size at most

$$\begin{cases} \widetilde{O}\Big(\frac{SA}{(1-\gamma)^4\varepsilon^2}\Big) & \text{if } A \geq 2 \\ \widetilde{O}\Big(\frac{S}{(1-\gamma)^3\varepsilon^2}\Big) & \text{if } A = 1 \end{cases} \qquad (\textit{TD learning})$$

• Covers both constant and rescaled linear learning rates:

$$\eta_t \equiv \frac{1}{1 + \frac{c_1(1-\gamma)T}{\log^2 T}} \quad \text{or} \quad \eta_t = \frac{1}{1 + \frac{c_2(1-\gamma)t}{\log^2 T}}$$

Sample complexity of synchronous Q-learning

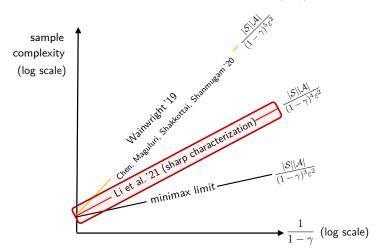
Theorem (Li, Cai, Chen, Wei, Chi'21, OR'24)

For any $0<\varepsilon\leq 1$, synchronous Q-learning yields $\|\widehat{Q}-Q^\star\|_\infty\leq \varepsilon$ with high prob. and $\mathbb{E}[\|\widehat{Q}-Q^\star\|_\infty]\leq \varepsilon$, with sample size at most

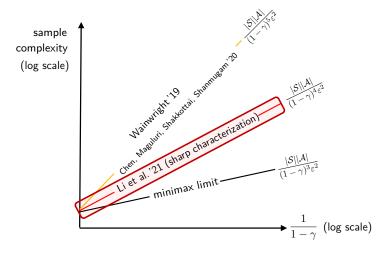
$$\begin{cases} \widetilde{O}\Big(\frac{SA}{(1-\gamma)^4\varepsilon^2}\Big) & \text{if } A \geq 2 \\ \widetilde{O}\Big(\frac{S}{(1-\gamma)^3\varepsilon^2}\Big) & \text{if } A = 1 \end{cases} \qquad \text{(minimax optimal)}$$

other papers	sample complexity
Even-Dar & Mansour, 2003	$2^{\frac{1}{1-\gamma}} \frac{SA}{(1-\gamma)^4 \varepsilon^2}$
Beck, Srikant, 2012	$\frac{S^2A^2}{(1-\gamma)^5\varepsilon^2}$
Wainwright, 2019	$\frac{SA}{(1-\gamma)^5\varepsilon^2}$
Chen, Maguluri, Shakkottai, Shanmugam, 2020	$\frac{SA}{(1-\gamma)^5\varepsilon^2}$

All this requires sample size at least $\frac{SA}{(1-\gamma)^4\varepsilon^2}$ $(A \ge 2)$...



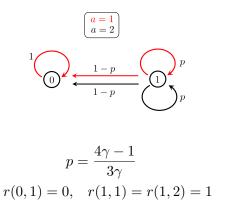
All this requires sample size at least $\frac{SA}{(1-\gamma)^4\varepsilon^2}$ $(A \ge 2) \dots$

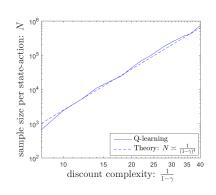


Question: Is Q-learning sub-optimal, or is it an analysis artifact?

A numerical example: $\frac{SA}{(1-\gamma)^4\varepsilon^2}$ samples seem necessary . . .

— observed in Wainwright '19





Q-learning is NOT minimax optimal

Theorem (Li, Cai, Chen, Wei, Chi'21, OR'24)

For any $0<\varepsilon\leq 1$, there exists an MDP with $A\geq 2$ such that to achieve $\|\widehat{Q}-Q^\star\|_\infty\leq \varepsilon$, synchronous Q-learning needs at least

$$\widetilde{\Omega}\left(rac{SA}{(1-\gamma)^4arepsilon^2}
ight)$$
 samples

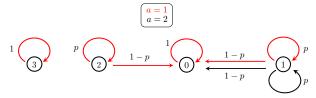
Q-learning is NOT minimax optimal

Theorem (Li, Cai, Chen, Wei, Chi'21, OR'24)

For any $0<\varepsilon\leq 1$, there exists an MDP with $A\geq 2$ such that to achieve $\|\widehat{Q}-Q^\star\|_\infty\leq \varepsilon$, synchronous Q-learning needs at least

$$\widetilde{\Omega}\left(\frac{SA}{(1-\gamma)^4 \varepsilon^2}\right)$$
 samples

- Tight algorithm-dependent lower bound
- Holds for both constant and rescaled linear learning rates

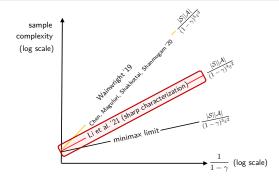


Q-learning is NOT minimax optimal

Theorem (Li, Cai, Chen, Wei, Chi'21, OR'24)

For any $0<\varepsilon\leq 1$, there exists an MDP with $A\geq 2$ such that to achieve $\|\widehat{Q}-Q^\star\|_\infty\leq \varepsilon$, synchronous Q-learning needs at least

$$\widetilde{\Omega}\left(rac{SA}{(1-\gamma)^4arepsilon^2}
ight)$$
 samples



Why is Q-learning sub-optimal?

Over-estimation of Q-functions (Thrun & Schwartz '93; Hasselt '10)

- $\max_{a \in \mathcal{A}} \mathbb{E}[X(a)]$ tends to be over-estimated (high positive bias) when $\mathbb{E}[X(a)]$ is replaced by its empirical estimates using a small sample size
- often gets worse with a large number of actions (Hasselt, Guez, Silver'15)

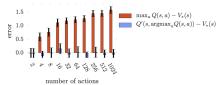


Figure 1: The orange bars show the bias in a single Q-learning update when the action values are $Q(s,a) = V_*(s) + \epsilon_a$ and the errors $\{\epsilon_a\}_{a=1}^n$ are independent standard normal random variables. The second set of action values Q', used for the blue bars, was generated identically and independently. All bars are the average of 100 repetitions.

Why is Q-learning sub-optimal?

Over-estimation of Q-functions (Thrun & Schwartz '93; Hasselt '10)

- $\max_{a \in \mathcal{A}} \mathbb{E}[X(a)]$ tends to be over-estimated (high positive bias) when $\mathbb{E}[X(a)]$ is replaced by its empirical estimates using a small sample size
- often gets worse with a large number of actions (Hasselt, Guez, Silver'15)

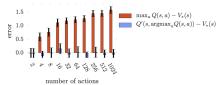


Figure 1: The orange bars show the bias in a single Q-learning update when the action values are $Q(s,a) = V_*(s) + \epsilon_a$ and the errors $\{\epsilon_a\}_{a=1}^m$ are independent standard normal random variables. The second set of action values Q', used for the blue bars, was generated identically and independently. All bars are the average of 100 repetitions.

A provable improvement: Q-learning with variance reduction

(Wainwright 2019)

Offline/batch RL

 Collecting new data might be costly, unsafe, unethical, or time-consuming

medical records

data of self-driving

clicking times of ads

Offline/batch RL

- Collecting new data might be costly, unsafe, unethical, or time-consuming
- But we have already stored tons of historical data

medical records

data of self-driving

clicking times of ads

Offline/batch RL

- Collecting new data might be costly, unsafe, unethical, or time-consuming
- But we have already stored tons of historical data

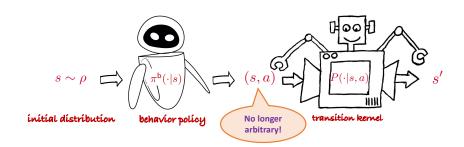
medical records

data of self-driving

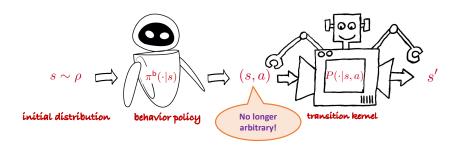
clicking times of ads

Question: can we learn based solely on historical data w/o active exploration?

A mathematical model of offline data



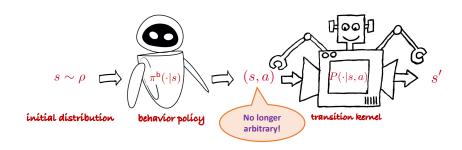
A mathematical model of offline data



historical dataset
$$\mathcal{D}=\{(s^{(i)},a^{(i)},s'^{(i)})\}$$
: N independent copies of
$$s\sim \rho, \qquad a\sim \pi^{\mathsf{b}}(\cdot\,|\,s), \qquad s'\sim P(\cdot\,|\,s,a)$$

• ρ : initial state distribution; π^b : behavior policy

A mathematical model of offline data



Goal: given a target accuracy level $\varepsilon \in (0, \frac{1}{1-\gamma}]$, find $\widehat{\pi}$ s.t.

$$V^{\star}(\rho) - V^{\widehat{\pi}}(\rho) \coloneqq \mathop{\mathbb{E}}_{s \sim \rho} \left[V^{\star}(s) \right] - \mathop{\mathbb{E}}_{s \sim \rho} \left[V^{\widehat{\pi}}(s) \right] \leq \varepsilon$$

— in a sample-efficient manner

Challenges of offline RL

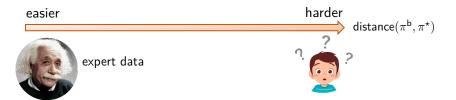
• Distribution shift:

 $\mathsf{distribution}(\mathcal{D}) \neq \mathsf{target} \; \mathsf{distribution} \; \mathsf{under} \; \mathsf{optimal} \; \pi^\star$

Challenges of offline RL

• Distribution shift:

 $\mathsf{distribution}(\mathcal{D}) \neq \mathsf{target} \; \mathsf{distribution} \; \mathsf{under} \; \mathsf{optimal} \; \pi^\star$

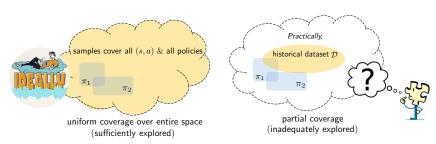


Challenges of offline RL

• Distribution shift:

 $\mathsf{distribution}(\mathcal{D}) \ \neq \ \mathsf{target} \ \mathsf{distribution} \ \mathsf{under} \ \mathsf{optimal} \ \pi^\star$

Partial coverage of state-action space:



How to quantify quality of historical dataset \mathcal{D} (induced by π^b)?

Single-policy concentrability coefficient (Rashidineiad et al. '21)

$$C^{\star} \coloneqq \max_{s,a} \frac{d^{\pi^{\star}}(s,a)}{d^{\pi^{\mathsf{b}}}(s,a)} = \left\| \frac{\textit{occupancy distribution of } \pi^{\star}}{\textit{occupancy distribution of } \pi^{\mathsf{b}}} \right\|_{\infty} \ge 1$$

Single-policy concentrability coefficient (Rashidineiad et al. '21)

$$C^{\star} := \max_{s,a} \frac{d^{\pi^{\star}}(s,a)}{d^{\pi^{\mathsf{b}}}(s,a)} = \left\| \frac{\text{occupancy distribution of } \pi^{\star}}{\text{occupancy distribution of } \pi^{\mathsf{b}}} \right\|_{\infty} \geq 1$$

captures distributional shift

Single-policy concentrability coefficient (Rashidineiad et al. '21)

$$C^{\star} \coloneqq \max_{s,a} \frac{d^{\pi^{\star}}(s,a)}{d^{\pi^{\mathsf{b}}}(s,a)} = \left\| \frac{\textit{occupancy distribution of } \pi^{\star}}{\textit{occupancy distribution of } \pi^{\mathsf{b}}} \right\|_{\infty} \geq 1$$

• captures distributional shift

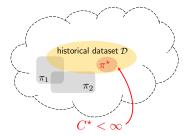
$$C^\star = O(1)$$
 large C^\star

expert data

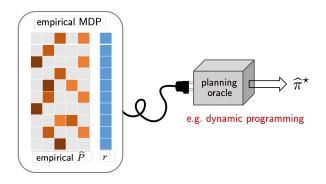
Single-policy concentrability coefficient (Rashidineiad et al. '21)

$$C^{\star} \coloneqq \max_{s,a} \frac{d^{\pi^{\star}}(s,a)}{d^{\pi^{\mathsf{b}}}(s,a)} = \left\| \frac{\textit{occupancy distribution of } \pi^{\star}}{\textit{occupancy distribution of } \pi^{\mathsf{b}}} \right\|_{\infty} \geq 1$$

- captures distributional shift
- allows for partial coverage
 - \circ as long as it covers the part reachable by π^{\star}

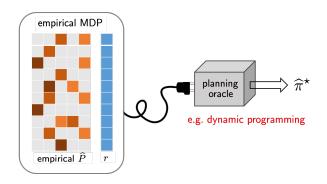


Model-based ("plug-in") approach?



1. construct empirical model \hat{P} :

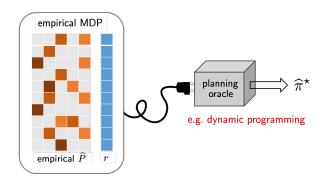
Model-based ("plug-in") approach?



1. construct empirical model \widehat{P} :

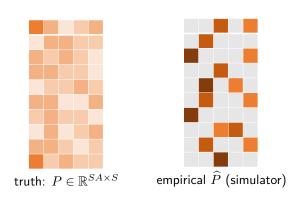
$$\widehat{P}(s' \mid s, a) = \underbrace{\frac{1}{N} \sum_{i=1}^{N} \mathbb{1}\{s'^{(i)} = s'\}}_{\text{empirical frequency}}$$

Model-based ("plug-in") approach?



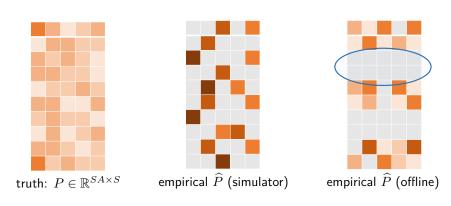
- 1. construct empirical model \widehat{P} :
- 2. planning (e.g. value iteration) based on empirical MDP

Issues & challenges in the sample-starved regime



 \bullet can't recover P faithfully if sample size $\ll S^2A$

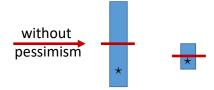
Issues & challenges in the sample-starved regime



- ullet can't recover P faithfully if sample size $\ll S^2A$
- (possibly) insufficient coverage under offline data

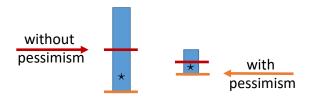
Penalize value estimate of (s, a) pairs that were poorly visited

— (Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21)



Penalize value estimate of (s, a) pairs that were poorly visited

— (Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21)



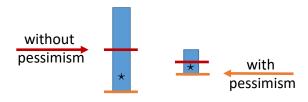
Value iteration with lower confidence bound (VI-LCB):

$$\widehat{Q}(s,a) \ \leftarrow \ \max \left\{ r(s,a) + \gamma \big\langle \widehat{P}(\cdot \, | \, s,a), \widehat{V} \big\rangle \right.$$

where
$$\widehat{V}(s) = \max_a \widehat{Q}(s, a)$$
.

Penalize value estimate of (s,a) pairs that were poorly visited

— (Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21)



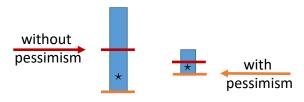
Value iteration with lower confidence bound (VI-LCB):

$$\widehat{Q}(s,a) \ \leftarrow \ \max \left\{ r(s,a) + \gamma \big\langle \widehat{P}(\cdot \, | \, s,a), \widehat{V} \big\rangle, \ 0 \right\}$$

where
$$\widehat{V}(s) = \max_a \widehat{Q}(s, a)$$
.

Penalize value estimate of $\left(s,a\right)$ pairs that were poorly visited

— (Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21)



Value iteration with lower confidence bound (VI-LCB):

$$\widehat{Q}(s,a) \; \leftarrow \; \max \left\{ r(s,a) + \gamma \langle \widehat{P}(\cdot \, | \, s,a), \widehat{V} \rangle - \underbrace{b(s,a;\widehat{V})}_{\text{uncertainty penalty}}, \; 0 \right\}$$

where
$$\widehat{V}(s) = \max_{a} \widehat{Q}(s, a)$$
.

Sample complexity of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei '24)

For any $0 < \varepsilon \le \frac{1}{1-\gamma}$, the policy $\widehat{\pi}$ returned by VI-LCB using a Bernstein-style penalty term achieves

$$V^{\star}(\rho) - V^{\widehat{\pi}}(\rho) \le \varepsilon$$

with high prob., with sample complexity at most

$$\widetilde{O}\left(\frac{SC^{\star}}{(1-\gamma)^{3}\varepsilon^{2}}\right)$$

Sample complexity of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei'24)

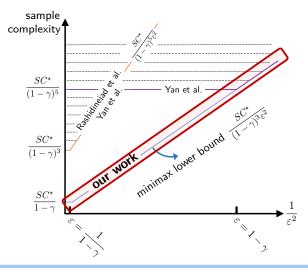
For any $0<\varepsilon\leq \frac{1}{1-\gamma}$, the policy $\widehat{\pi}$ returned by VI-LCB using a Bernstein-style penalty term achieves

$$V^{\star}(\rho) - V^{\widehat{\pi}}(\rho) \le \varepsilon$$

with high prob., with sample complexity at most

$$\widetilde{O}\left(\frac{SC^{\star}}{(1-\gamma)^{3}\varepsilon^{2}}\right)$$

- depends on distribution shift (as reflected by C^*)
- achieves minimax optimality
- full ε -range (no burn-in cost)



Model-based offline RL is minimax optimal with no burn-in cost!

Safety and robustness in RL

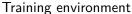
(Zhou et al., 2021; Panaganti and Kalathil, 2022; Yang et al., 2022;)

Training environment

Test environment

Safety and robustness in RL

(Zhou et al., 2021; Panaganti and Kalathil, 2022; Yang et al., 2022;)

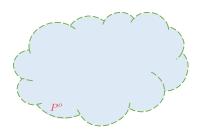


Test environment

Sim2Real Gap: Can we learn optimal policies that are robust to model perturbations?

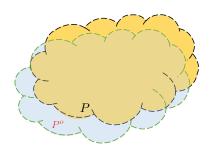
Uncertainty set of the nominal transition kernel P^o :

$$\mathcal{U}^{\sigma}(\underline{P^o}) = \{ P : \rho(P, \underline{P^o}) \le \sigma \}$$



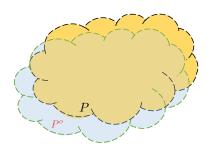
Uncertainty set of the nominal transition kernel P^o :

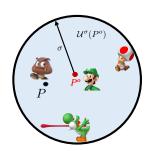
$$\mathcal{U}^{\sigma}(\underline{P^o}) = \{P : \rho(P, \underline{P^o}) \le \sigma\}$$



Uncertainty set of the nominal transition kernel P^o :

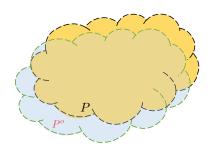
$$\mathcal{U}^{\sigma}(\underline{P^o}) = \{P : \rho(P, \underline{P^o}) \le \sigma\}$$

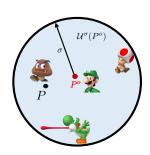




Uncertainty set of the nominal transition kernel P^o :

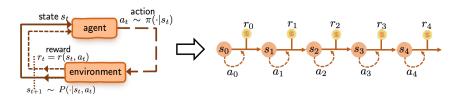
$$\mathcal{U}^{\sigma}(\underline{P^o}) = \{ P : \rho(P, \underline{P^o}) \le \sigma \}$$





• Examples of ρ : f-divergence (TV, χ^2 , KL...)

Robust value/Q function



Robust value/Q function of policy π :

$$\forall s \in \mathcal{S}: \qquad V^{\pi,\sigma}(s) := \inf_{P \in \mathcal{U}^{\sigma}(P^{o})} \mathbb{E}_{\pi,P} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid s_{0} = s \right]$$

$$\forall (s,a) \in \mathcal{S} \times \mathcal{A}: \qquad Q^{\pi,\sigma}(s,a) := \inf_{P \in \mathcal{U}^{\sigma}(P^{o})} \mathbb{E}_{\pi,P} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \mid s_{0} = s, a_{0} = a \right]$$

Measures the worst-case performance of the policy in the uncertainty set.

Distributionally robust MDP

Robust MDP

Find the policy π^* that maximizes $V^{\pi,\sigma}$

(Iyengar. '05, Nilim and El Ghaoui. '05)

Distributionally robust MDP

Robust MDP

Find the policy π^* that maximizes $V^{\pi,\sigma}$

(Iyengar. '05, Nilim and El Ghaoui. '05)

Robust Bellman's optimality equation: the optimal robust policy π^\star and optimal robust value $V^{\star,\sigma}:=V^{\pi^\star,\sigma}$ satisfy

$$\begin{split} Q^{\star,\sigma}(s,a) &= r(s,a) + \gamma \inf_{P_{s,a} \in \mathcal{U}^{\sigma}\left(P_{s,a}^{o}\right)} \left\langle P_{s,a}, V^{\star,\sigma} \right\rangle, \\ V^{\star,\sigma}(s) &= \max_{a} \ Q^{\star,\sigma}(s,a) \end{split}$$

Distributionally robust MDP

Robust MDP

Find the policy π^* that maximizes $V^{\pi,\sigma}$

(Iyengar. '05, Nilim and El Ghaoui. '05)

Robust Bellman's optimality equation: the optimal robust policy π^\star and optimal robust value $V^{\star,\sigma}:=V^{\pi^\star,\sigma}$ satisfy

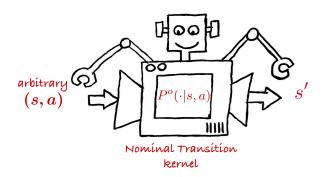
$$\begin{split} Q^{\star,\sigma}(s,a) &= r(s,a) + \gamma \inf_{P_{s,a} \in \mathcal{U}^{\sigma}\left(P_{s,a}^{o}\right)} \left\langle P_{s,a}, V^{\star,\sigma} \right\rangle, \\ V^{\star,\sigma}(s) &= \max_{a} \ Q^{\star,\sigma}(s,a) \end{split}$$

Distributionally robust value iteration (DRVI):

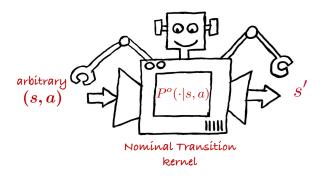
$$Q(s, a) \leftarrow r(s, a) + \gamma \inf_{P_{s, a} \in \mathcal{U}^{\sigma}(P_{s, a}^{o})} \langle P_{s, a}, V \rangle,$$

where
$$V(s) = \max_a Q(s, a)$$
.

Learning distributionally robust MDPs



Learning distributionally robust MDPs

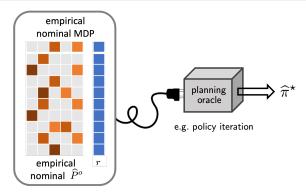


Goal of robust RL: given $\mathcal{D} := \{(s_i, a_i, s_i')\}_{i=1}^N$ from the *nominal* environment P^0 , find an ε -optimal robust policy $\widehat{\pi}$ obeying

$$V^{\star,\sigma} - V^{\widehat{\pi},\sigma} \le \varepsilon$$

— in a sample-efficient manner

Model-based RL: empirical MDP + planning



Planning by distributionally robust value iteration (DRVI):

$$\widehat{Q}(s, a) \leftarrow r(s, a) + \gamma \inf_{P_{s, a} \in \mathcal{U}^{\sigma}\left(\widehat{P}_{s, a}^{\sigma}\right)} \langle P_{s, a}, \widehat{V} \rangle,$$

where $\hat{V}(s) = \max_a \hat{Q}(s, a)$.

Duality for scalability

Dual problem can be solved efficiently (w.r.t. a scalar)

(Iyengar. '05, Nilim and El Ghaoui. '05)

TV uncertainty: divergence function $\rho =$ total variation

$$\begin{split} \widehat{Q}(s, a) \; \leftarrow \; r(s, a) \\ &+ \gamma \max_{\lambda \in \left[\min_{s} \widehat{V}(s), \max_{s} \widehat{V}(s)\right]} \left\{ \widehat{P}_{s, a}^{o} \left[\widehat{V}\right]_{\lambda} - \sigma \left(\lambda - \min_{s'} \left[\widehat{V}\right]_{\lambda}(s')\right) \right\}, \end{split}$$

where $[\widehat{V}]_{\lambda}(s):=\lambda$ if $\widehat{V}(s)>\lambda$, otherwise $[\widehat{V}]_{\lambda}(s)=\widehat{V}(s)$.

Duality for scalability

Dual problem can be solved efficiently (w.r.t. a scalar)

(Iyengar. '05, Nilim and El Ghaoui. '05)

TV uncertainty: divergence function $\rho = \text{total variation}$

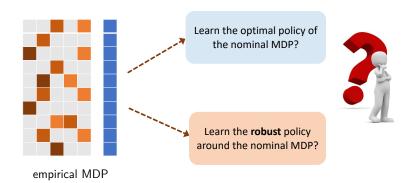
$$\begin{split} \widehat{Q}(s, a) \; \leftarrow \; r(s, a) \\ &+ \gamma \max_{\lambda \in \left[\min_{s} \widehat{V}(s), \max_{s} \widehat{V}(s)\right]} \left\{ \widehat{P}_{s, a}^{o} \left[\widehat{V}\right]_{\lambda} - \sigma \left(\lambda - \min_{s'} \left[\widehat{V}\right]_{\lambda}(s')\right) \right\}, \end{split}$$

where $[\widehat{V}]_{\lambda}(s) := \lambda$ if $\widehat{V}(s) > \lambda$, otherwise $[\widehat{V}]_{\lambda}(s) = \widehat{V}(s)$.

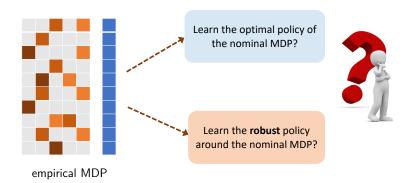
 χ^2 uncertainty: divergence function $\rho = \chi^2$

$$\begin{split} \widehat{Q}(s,a) \; \leftarrow \; r(s,a) \\ &+ \gamma \max_{\lambda \in \left[\min_s \widehat{V}(s), \max_s \widehat{V}(s)\right]} \bigg\{ \widehat{P}^o_{s,a} \big[\widehat{V}\big]_{\lambda} - \sqrt{\lambda \mathrm{Var}_{\widehat{P}^o_{s,a}} \Big(\big[\widehat{V}\big]_{\lambda}\Big)} \bigg\}. \end{split}$$

A curious question



A curious question



Robustness-statistical trade-off? Is there a statistical premium that one needs to pay in quest of additional robustness?

Sample complexity under TV uncertainty

Theorem (Shi et al., 2023)

Assume the uncertainty set is measured via the TV distance with radius $\sigma \in [0,1)$. For sufficiently small $\varepsilon > 0$, DRVI outputs a policy $\widehat{\pi}$ that satisfies $V^{\star,\sigma} - V^{\widehat{\pi},\sigma} \leq \varepsilon$ with sample complexity at most

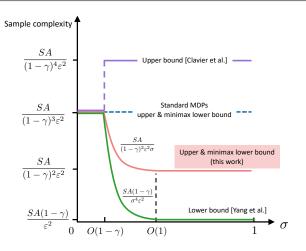
$$\widetilde{O}\left(\frac{SA}{(1-\gamma)^2 \max\{1-\gamma,\sigma\}\varepsilon^2}\right)$$

ignoring logarithmic factors. In addition, no algorithm can succeed if the sample size is below

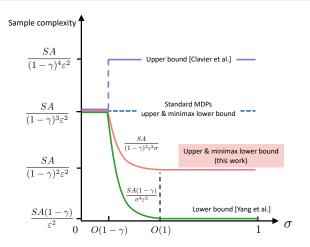
$$\widetilde{\Omega}\left(\frac{SA}{(1-\gamma)^2 \max\{1-\gamma,\sigma\}\varepsilon^2}\right).$$

• Establish the minimax optimality of DRVI for RMDP under the TV uncertainty set over the full range of σ .

When the uncertainty set is TV



When the uncertainty set is TV



RMDPs are easier to learn than standard MDPs.

Sample complexity theorem under χ^2 uncertainty

Theorem (Shi et al., 2025)

Assume the uncertainty set is measured via the χ^2 divergence with radius $\sigma \in [0,\infty)$. For sufficiently small $\varepsilon>0$, DRVI outputs a policy $\widehat{\pi}$ that satisfies $V^{\star,\sigma}-V^{\widehat{\pi},\sigma}\leq \varepsilon$ with sample complexity at most

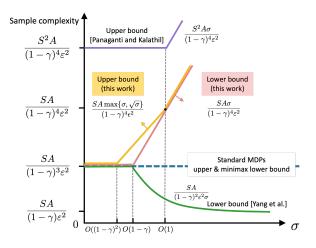
$$\widetilde{O}\left(\frac{SA}{(1-\gamma)^3\varepsilon^2}\left(1+\frac{\sqrt{\sigma}+\sigma}{1-\gamma}\right)\right)$$

ignoring logarithmic factors. In addition, no algorithm can succeed if the sample size is below

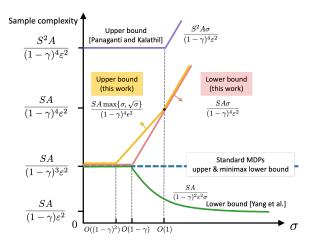
$$\widetilde{\Omega}\left(\frac{SA}{(1-\gamma)^3\varepsilon^2}\left(1+\frac{\sigma}{1-\gamma}\right)\right)$$

• Establish the minimax optimality of DRVI for RMDP under the TV uncertainty set over the full range of σ .

When the uncertainty set is χ^2 divergence



When the uncertainty set is χ^2 divergence

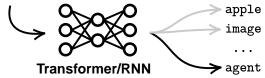


RMDPs are harder to learn than standard MDPs.

Language models as policies

Prompt: Explain reinforcement learning (RL).

Answer: Reinforcement learning (RL) is a type of machine learning where an...



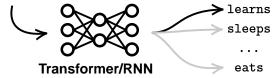
Given prompt $x \in \mathcal{X}$, a language model generates an answer:

$$y \sim \underbrace{\pi(\cdot|x)}_{ ext{parameterized by LLM}}$$

Language models as policies

Prompt: Explain reinforcement learning (RL).

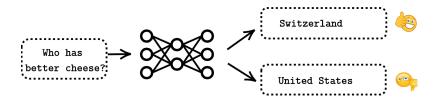
Answer: Reinforcement learning (RL) is a type of machine learning where an agent



Given prompt $x \in \mathcal{X}$, a language model generates an answer:

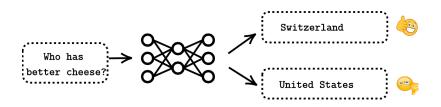
$$y \sim \underbrace{\pi(\cdot|x)}_{ ext{parameterized by LLM}}$$

RL with human feedback (RLHF)



Goal: finetune the LLM to align with human preference

RL with human feedback (RLHF)



Goal: finetune the LLM to align with human preference

Prototypical pipeline:

- Reward learning: learn a reward model from preference data;
- Policy optimization: optimize the LLM to maximize the reward.

RLHF: reward learning

Bradly-Terry model

The probability of pairwise comparison $i \succ j$ is modeled by

$$\mathbb{P}(i \succ j) = \frac{\exp(r_i^{\star})}{\exp(r_i^{\star}) + \exp(r_j^{\star})} = \sigma(r_i^{\star} - r_j^{\star}),$$

where $r_i^{\star} \in \mathbb{R}$ is the score associated with item i.

RLHF: reward learning

Bradly-Terry model

The probability of pairwise comparison $i \succ j$ is modeled by

$$\mathbb{P}(i \succ j) = \frac{\exp(r_i^{\star})}{\exp(r_i^{\star}) + \exp(r_j^{\star})} = \sigma(r_i^{\star} - r_j^{\star}),$$

where $r_i^{\star} \in \mathbb{R}$ is the score associated with item i.

• **Reward model:** $r^{\star}: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$, evaluating the quality of a prompt-answer pair (x,y) that aligns with human preference;

RLHF: reward learning

Bradly-Terry model

The probability of pairwise comparison $i \succ j$ is modeled by

$$\mathbb{P}(i \succ j) = \frac{\exp(r_i^{\star})}{\exp(r_i^{\star}) + \exp(r_j^{\star})} = \sigma(r_i^{\star} - r_j^{\star}),$$

where $r_i^{\star} \in \mathbb{R}$ is the score associated with item i.

- **Reward model:** $r^*: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$, evaluating the quality of a prompt-answer pair (x,y) that aligns with human preference;
- Reward learning: Given comparison data $\mathcal{D} = \{(x^i, y_+^i, y_-^i)\}_{i=1}^N$, the MLE of the reward function is given by

$$\begin{split} r_{\mathsf{MLE}} &= \mathsf{argmin}_r \ell(r, \mathcal{D}), \\ \ell(r, \mathcal{D}) &= -\sum_{i=1}^N \log \sigma(r(x^i, y_+^i) - r(x^i, y_-^i)). \end{split}$$

where

RLHF: policy optimization

Policy optimization via reward maximization

Find π that (approximately) maximizes the objective w.r.t. r

$$J(r,\pi) = \underset{\substack{x \sim \rho, \\ y \sim \pi(\cdot|x)}}{\mathbb{E}} \left[r(x,y) \right] - \beta \underset{x \sim \rho}{\mathbb{E}} \left[\mathsf{KL} \big(\pi(\cdot|x) \parallel \pi_{\mathrm{ref}}(\cdot|x) \big) \right]$$

- $\beta > 0$: KL regularization parameter;
- π_{ref} : a reference policy, typically the model after SFT;
- $\rho \in \Delta(\mathcal{X})$: prompt distribution.

— (Rafailov et al., 2023)

- 1. Reward learning: $\hat{r} \leftarrow \operatorname{argmin}_r \ell(r, \mathcal{D})$
 - 2. Policy learning: $\hat{\pi} \leftarrow \mathrm{argmax}_{\pi} J(\hat{r}, \pi)$

— (Rafailov et al., 2023)

Observation: the optimal π w.r.t. r admits a closed-form solution

$$\pi_r = \mathrm{argmax}_\pi J(r,\pi) \iff \pi_r(y|x) = \frac{\pi_{\mathrm{ref}}(y|x) \exp(r(x,y)/\beta)}{Z(r,x)}.$$

— (Rafailov et al., 2023)

Observation: the optimal π w.r.t. r admits a closed-form solution

$$\pi_r = \operatorname{argmax}_{\pi} J(r,\pi) \iff \pi_r(y|x) = \frac{\pi_{\operatorname{ref}}(y|x) \exp(r(x,y)/\beta)}{Z(r,x)}.$$

ullet The reward function r in terms of its optimal π_r is

$$r(x,y) = \underbrace{\beta(\log \pi_r(y|x) - \log \pi_{\text{ref}}(y|x) + \log Z(r,x))}_{=:r(\pi)}.$$

— (Rafailov et al., 2023)

ullet The reward function r in terms of its optimal π_r is

$$r(x,y) = \underbrace{\beta(\log \pi_r(y|x) - \log \pi_{ref}(y|x) + \log Z(r,x))}_{=:r(\pi)}.$$

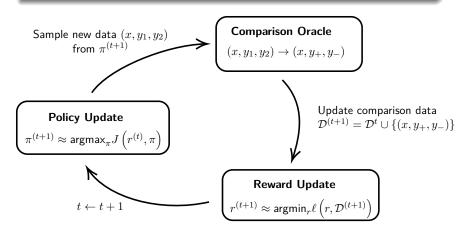
• The two-step procedure is equivalent to

$$\begin{split} \widehat{\pi} &\leftarrow \mathrm{argmin}_{\pi} \ell(\underline{r(\pi)}, \mathcal{D}) \\ &= -\sum_{i=1}^{N} \log \sigma \left(\beta \log \frac{\pi(y_{+}^{i}|x^{i})}{\pi_{\mathrm{ref}}(y_{+}^{i}|x^{i})} - \beta \log \frac{\pi(y_{-}^{i}|x^{i})}{\pi_{\mathrm{ref}}(y_{-}^{i}|x^{i})} \right). \end{split}$$

Single-step and policy-only! Very popular in practice.

Online RLHF

Leverage online data collection to improve data coverage - how do we perform **exploration** in the policy space directly?



Optimistic MLE: Bias the estimate towards the models with higher optimal objective $J^{\star}(r) = \max_{\pi} J(r,\pi)$ by

$$r^{(t+1)} \leftarrow \operatorname{argmin}_r \{ \ell(r, \mathcal{D}^{(t)}) - \alpha J^{\star}(r) \}.$$

Optimistic MLE: Bias the estimate towards the models with higher optimal objective $J^{\star}(r) = \max_{\pi} J(r,\pi)$ by

$$r^{(t+1)} \leftarrow \operatorname{argmin}_r \{ \ell(r, \mathcal{D}^{(t)}) - \alpha J^{\star}(r) \}.$$

• Small caveat: the update is not well-defined, since the BT model cannot distinguish between r and $r+c\cdot {\bf 1}$, while

$$J^{\star}(r+c\cdot \mathbf{1})=J^{\star}(r)+c.$$

Optimistic MLE: Bias the estimate towards the models with higher optimal objective $J^{\star}(r) = \max_{\pi} J(r, \pi)$ by

$$r^{(t+1)} \leftarrow \operatorname{argmin}_{r \in \mathcal{R}} \{\ell(r, \mathcal{D}^{(t)}) - \alpha J^{\star}(r)\}.$$

• Small caveat: the update is not well-defined, since the BT model cannot distinguish between r and $r+c\cdot \mathbf{1}$, while

$$J^{\star}(r+c\cdot \mathbf{1}) = J^{\star}(r) + c.$$

• We can resolve the shift ambiguity by focusing on the following equivalent class of reward functions:

$$\mathcal{R} = \left\{ r : \underset{x \sim \rho, y \sim \pi_{\text{cal}}(\cdot|x)}{\mathbb{E}} [r(x, y)] = 0 \right\}.$$

Optimistic MLE: Bias the estimate towards the models with higher optimal objective $J^{\star}(r) = \max_{\pi} J(r,\pi)$ by

$$r^{(t+1)} \leftarrow \operatorname{argmin}_{r \in \mathcal{R}} \{ \ell(r, \mathcal{D}^{(t)}) - \alpha J^{\star}(r) \}.$$

• Small caveat: the update is not well-defined, since the BT model cannot distinguish between r and $r+c\cdot \mathbf{1}$, while

$$J^{\star}(r+c\cdot \mathbf{1}) = J^{\star}(r) + c.$$

• We can resolve the shift ambiguity by focusing on the following equivalent class of reward functions:

$$\mathcal{R} = \left\{ r : \underset{x \sim \rho, y \sim \pi_{\text{cal}}(\cdot|x)}{\mathbb{E}} [r(x, y)] = 0 \right\}.$$

Can we avoid solving a bilevel optimization problem?

• The optimal policy admits the following closed-form solution:

$$\pi_r = \mathrm{argmax}_\pi J(r,\pi) \iff \pi_r(y|x) = \frac{\pi_{\mathrm{ref}}(y|x) \exp(r(x,y)/\beta)}{Z(r,x)}.$$

• The optimal policy admits the following closed-form solution:

$$\pi_r = \mathrm{argmax}_\pi J(r,\pi) \iff \pi_r(y|x) = \frac{\pi_{\mathrm{ref}}(y|x) \exp(r(x,y)/\beta)}{Z(r,x)}.$$

$$J^{\star}(r) = \underset{x \sim \rho, y \sim \pi_{r}(\cdot|x)}{\mathbb{E}} \left[r(x, y) - \beta \log \frac{\pi_{r}(y|x)}{\pi_{\text{ref}}(y|x)} \right]$$
$$= \underset{x \sim \rho, y \sim \pi_{r}(\cdot|x)}{\mathbb{E}} \left[\log Z(r, x) \right]$$

The optimal policy admits the following closed-form solution:

$$\pi_r = \operatorname{argmax}_{\pi} J(r,\pi) \iff \pi_r(y|x) = \frac{\pi_{\operatorname{ref}}(y|x) \exp(r(x,y)/\beta)}{Z(r,x)}.$$

$$J^{\star}(r) = \underset{x \sim \rho, y \sim \pi_r(\cdot|x)}{\mathbb{E}} \left[r(x, y) - \beta \log \frac{\pi_r(y|x)}{\pi_{ref}(y|x)} \right]$$
$$= \underset{x \sim \rho, y \sim \pi_r(\cdot|x)}{\mathbb{E}} \left[\log Z(r, x) \right]$$
$$= \underset{x \sim \rho, y \sim \pi_{red}(\cdot|x)}{\mathbb{E}} \left[\log Z(r, x) \right]$$

• The optimal policy admits the following closed-form solution:

$$\pi_r = \mathrm{argmax}_\pi J(r,\pi) \iff \pi_r(y|x) = \frac{\pi_{\mathrm{ref}}(y|x) \exp(r(x,y)/\beta)}{Z(r,x)}.$$

$$J^{\star}(r) = \underset{x \sim \rho, y \sim \pi_r(\cdot|x)}{\mathbb{E}} \left[r(x, y) - \beta \log \frac{\pi_r(y|x)}{\pi_{\text{ref}}(y|x)} \right]$$
$$= \underset{x \sim \rho, y \sim \pi_r(\cdot|x)}{\mathbb{E}} \left[\log Z(r, x) \right]$$
$$= \underset{x \sim \rho, y \sim \pi_{\text{cal}}(\cdot|x)}{\mathbb{E}} \left[\log Z(r, x) \right]$$
$$= \underset{x \sim \rho, y \sim \pi_{\text{cal}}(\cdot|x)}{\mathbb{E}} \left[r(x, y) - \beta \log \frac{\pi_r(y|x)}{\pi_{\text{ref}}(y|x)} \right]$$

• The optimal policy admits the following closed-form solution:

$$\pi_r = \mathrm{argmax}_\pi J(r,\pi) \iff \pi_r(y|x) = \frac{\pi_{\mathrm{ref}}(y|x) \exp(r(x,y)/\beta)}{Z(r,x)}.$$

$$J^{\star}(r) = \underset{x \sim \rho, y \sim \pi_r(\cdot|x)}{\mathbb{E}} \left[r(x, y) - \beta \log \frac{\pi_r(y|x)}{\pi_{\text{ref}}(y|x)} \right]$$
$$= \underset{x \sim \rho, y \sim \pi_r(\cdot|x)}{\mathbb{E}} \left[\log Z(r, x) \right]$$
$$= \underset{x \sim \rho, y \sim \pi_{\text{cal}}(\cdot|x)}{\mathbb{E}} \left[\log Z(r, x) \right]$$
$$= \underset{x \sim \rho, y \sim \pi_{\text{cal}}(\cdot|x)}{\mathbb{E}} \left[r(x, y) - \beta \log \frac{\pi_r(y|x)}{\pi_{\text{ref}}(y|x)} \right]$$

Value-incentivized preference optimization (VPO)

$$\boldsymbol{\pi}^{(t+1)} \leftarrow \mathrm{argmin}_{\boldsymbol{\pi}} \{ \ell(r(\boldsymbol{\pi}), \mathcal{D}^{(t)}) - \alpha J^{\star}(r(\boldsymbol{\pi})) \}.$$

• The negative log-likelihood term reformulates into DPO loss:

$$\ell(r(\pi), \mathcal{D}^{(t)}) = -\sum_{(x,y_+,y_-)\in\mathcal{D}^{(t)}} \log \sigma \left(\beta \left(\log \frac{\pi(y_+|x)}{\pi_{\text{ref}}(y_+|x)} - \log \frac{\pi(y_-|x)}{\pi_{\text{ref}}(y_-|x)}\right)\right).$$

The reward bias term can be written as:

$$J^{\star}(r(\pi)) = -\beta \mathop{\mathbb{E}}_{x \sim \rho, y \sim \pi_{\text{cal}}(\cdot|x)} \left[\log \pi(y|x) - \log \pi_{\text{ref}}(y|x) \right],$$

which is essentially becomes a reverse-KL regularization that maximizes $\mathsf{KL}(\pi_{\mathrm{cal}}(\cdot|x) \parallel \pi(\cdot|x))$.

Main results - online VPO

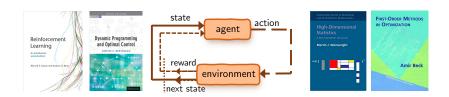
Theorem (Cen et al., ICLR 2025)

Assume that reward estimates $||r^{(t)}||_{\infty} \leq B$ and $||r^{\star}||_{\infty} \leq B$ for some B > 0. With high probability we have

$$\sum_{t=1}^{T} \left[J^{\star}(r^{\star}) - J(r^{\star}, \pi^{(t)}) \right] \leq \widetilde{O}(\sqrt{T}).$$

- We can obtain similar regret bounds under general function approximation of the reward model.
- \bullet Consistent with the $\widetilde{O}(\sqrt{T})$ regret for online RL with UCB bonus.
- ullet Offline RL: flipping the sign of lpha leads to a pessimistic algorithm.

Concluding remarks



Understanding non-asymptotic performances of RL algorithms is a fruitful playground!

Promising directions:

- function approximation
- multi-agent RL

- RL for foundation models
- many more...

Thank you!

Statistical and Algorithmic Foundations of Reinforcement Learning

Yuejie Chi

Department of Statistics and Data Science, Yale University, New Haven, CT 06511, USA, yuejie.chi@yale.edu

Yuxin Chen, Yuting Wei

Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA, {yuxinc@wharton.upenn.edu, ytwei@wharton.upenn.edu}

Abstract

As a paradigm for sequential decision making in unknown environments, reinforcement learning (RL) has received a flurry of attention in recent years. However, the explosion of model complexity in emerging applications and the presence of nonconvexity exacerbate the challenge of achieving efficient RL in sample-starved situations, where data collection is expensive, time-consuming, or even high-stakes (e.g., in clinical trials, autonomous systems, and online advertising). How to understand and enhance the sample and computational efficacies of RL algorithms is thus of great interest. In this tutorial, we aim to introduce several important algorithmic and theoretical developments in RL, highlighting the connections between new ideas and classical topics. Employing Markov Decision Processes as the central mathematical model, we cover several distinctive RL scenarios (i.e., RL with a simulator, online RL, offline RL, robust RL, and RL with human feedback), and present several mainstream RL approaches (i.e., model-based approach, value-based approach, and policy optimization). Our discussions gravitate around the issues of sample complexity, computational efficiency, as well as algorithm-dependent and information-theoretic lower bounds from a nonasymptotic viewpoint.