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Reinforcement learning (RL)

In RL, an agent learns by interacting with an unknown environment
through trial-and-error to maximize long-term total reward.

At last — a computer program that
can beat a champion Go player PAcE4s4

ALL SYSTEMS GO

‘Recalculating ... recalculating ...”
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More successes of RL since AlphaGo

resource management

s

UAV and drones

nuclear plant control
strategic games
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One more: RL for foundation models

(&) ChatGPT N
ommessssesms (GEMINI

the reward model using
reinforcement learning.

A new prompt -
is sampled from i au e
the dataset. about frogs.

The policy

generates
an output.

N Meta Al

Once upon a time. L]
Y °
The reward model -
calculates a P L]
o
pe
reward for W
the output.
The reward is
b 3 QY deepseek
the policy
using PPO.

Alignment: safety, human value..

What can | help with?

4+  @search  Q Reason - o

Comcationitn Compattoncade 0Lt e cunsions
sty ) B

Question: If a > 1, then the sum of the real solutions of ya — Va + & = x is equal to

Response: <think>
To solve the equation ya - va+x = x, let’s start by squaring both
5
(Va=vax) =x* = a-vaFx=2
Rearrange to isolate the inner square root term:
(@-x)P=a+x = a®-202+ ()P =a+x = x-2a?-x+(@*-a) =0

Wait, wait. Wait. That's an aha moment I can flag here.

Let's reevaluate this step-by-step to identify if the correct sum can be -+
We started with the equation:

Va—Varx=x

First, let's square both sides:

a-vYa+x=x' = Va*x=a-

Next, I could square both sides again, treating the equation: -

Reasoning: math, coding...
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Challenges of RL

e explore or exploit: unknown or changing environments

e credit assignment problem: delayed rewards or feedback

e enormous state and action space
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Data efficiency

Data collection might be expensive, time-consuming, or high-stakes

self-driving cars

clinical trials

Calls for design of sample-efficient RL algorithms!
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Computational efficiency

Running RL algorithms might take a long time ...

e enormous state-action space

e nonconvexity

Calls for computationally efficient RL algorithms!
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asymptotic 2
a nalysy
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s »:gpe finite-sample
analysis «

asymptotic
anaIysV

Understanding efficiency of contemporary RL requires a modern suite
of non-asymptotic analysis
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Sample complexity issues that permeate
state-of-the-art RL theory

regret
or
other metrics

»

»

sample size
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Sample complexity issues that permeate
state-of-the-art RL theory

regret
or
other metrics

,,,,,,,,,,,,,,,,,,,,,,, A ((\3“

»
»

generative model / simulator @ sample size
online RL huge burn-in cost!
offline RL
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Sample complexity issues that permeate
state-of-the-art RL theory

regret
or
other metrics |-

>
>

sample size

e robust RL
e multi-agent RL
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Sample complexity issues that permeate
state-of-the-art RL theory

regret
or
other metrics

>
>

e robust RL sample size

e multi-agent RL
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This tutorial

FIRST-ORDER METHODS
IN OPTIMIZATION

Amir Beck

L .
(large-scale) optimization (high-dimensional) statistics

A taste of recent advances in understanding and designing sample-
and computationally-efficient RL algorithms
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This tutorial

FIRST-ORDER METHODS
IN OPTIMIZATION

Amir Beck

(large-scale) optimization (high-dimensional) statistics

A taste of recent advances in understanding and designing sample-
and computationally-efficient RL algorithms

1. Sample complexity of Q-Learning

2. Offline RL

3. Robust RL

4. RLHF (time permitting)
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Markov decision process (MDP)

state s action ay

0
I
I

environment |« — —J

e S={1,...,S}: state space (containing S states)
e A={1,...,A}: action space (containing A actions)
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Markov decision process (MDP)

state s action ay
pommmmm———- 1
| I
i reward
ith=T(8t,at |
R .

Dl environment |« — —

e S={1,...,S}: state space (containing S states)
e A={1,...,A}: action space (containing A actions)

e 1(s,a) € [0,1]: immediate reward
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Discounted infinite-horizon MDPs

action

environment |« — -

S =1{1,...,5}: state space (containing S states)
A={1,...,A}: action space (containing A actions)
r(s,a) € [0,1]: immediate reward

7(+|s): policy (or action selection rule)
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Discounted infinite-horizon MDPs

action

environment |« — -

next state
St41 ~ P(st, ar)
S =1{1,...,5}: state space (containing S states)
A={1,...,A}: action space (containing A actions)
r(s,a) € [0,1]: immediate reward
7(+|s): policy (or action selection rule)

P(-|s,a): unknown transition probabilities

14/ 70



Value function

state s iction
_7r(_||st) T0 1 T2 T3 T4

I I
rgward I :> 80— S1 ‘I S2— S3 ‘l Sa ‘I
re =1(se, ae H i H ' i 3 H ' H '
4 N .’ o’ o’ Nt N’
4~~" environment - ao a as as aq
<

Sth1 ~ P(‘|8hae)

Value of policy m: cumulative discounted reward

VseS: V7T(s):=E Z’ytr(st,at) |so=s
=0
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Value function

state s iction
_7r(_||st) T0 1 T2 T3 T4

I I
riward I :> 80— S1 ‘I S2— S3 ‘l Sa ‘I
n—'r(s,,a, H i H K i 7 H H i H
4 N .’ o’ o’ e’ AN
4~~" environment - ao a as as aq
<

Sth1 ~ P(‘|St,ae)

Value of policy m: cumulative discounted reward

o0
VseS: V7T(s):=E Z’yt'r(st,at) |so=s
t=0
e v €[0,1): discount factor
o take 7 — 1 to approximate long-horizon MDPs

1

o effective horizon: —
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Q-function (action-value function)

To T1 T2 T3 T4 Ts
I
Q (80, ao) ’—"I—>81—‘|—>32—‘|—'83—‘|—>84—‘|—>s5—‘|—> oo
o A A N N A
Qo a1 a2 (] (21 as

Q-function of policy 7:

V(s,a) eSxA: Q"(s,a) :=E Z'ytrt]sozs,ao =a
t=0

o (g¢7 s1,a1, S2,a2,---): induced by policy 7
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Q-function (action-value function)

To T T2 T3 T4 T5
VW(SO) . % 31_‘]_’8‘2 "I_’SS_‘I—'$4—‘L*S5—‘I—> eoe
ST
To T T2 T3 T4 Ts5
QW(So,ag) .—,‘I—*sl—,‘l—vslz—‘l—>33—‘L>34—‘|—>s5—‘|—> XY
\a ;l \Ef/ \(3]_2 o \EL'S'/ \zz:;¢ \&3‘¢
Q-function of policy 7:
oo
V(s,a) eSxA: Q"(s,a) :=E Z'ytrt]so =s,a0 =a
t=0

e (ge¢7 s1,a1,52,a2,---): induced by policy w
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Optimal policy and optimal value

e optimal policy 7*: maximizing value function max, V7™
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Optimal policy and optimal value

e optimal policy 7*: maximizing value function max, V7™

Theorem (Puterman’94)

For infinite horizon discounted MDP, there always exists a
deterministic policy 7, such that

V™ (s) > V™(s), Vs, and .
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Optimal policy and optimal value

e optimal policy 7*: maximizing value function max, V7™

e optimal value / Q function: V* := VT Qr = Q"
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Optimal policy and optimal value

e optimal policy 7*: maximizing value function max, V7™
e optimal value / Q function: V* := VT Qr = Q"

e A question to keep in mind: how to find optimal 7*?
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RL: when the model is unknown . ..

Reinforcement | \\ Dynamic Programming
Learning \ and Optimal Control
PR 1 1 DIMITRI P. BERTSEKAS
econd e

]
1
]
/ i !
1 ’
v

e
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RL: when the model is unknown . ..

Reinforcement
Learning

A latsoduction
second edition

— Dynamic Programming
.l and Optimal Control

DIMITRI P. BERTSEKAS

g
4
£
S
H
2
H
a
£

Need to learn optimal policy from samples w/o model specification
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Two approaches

o model P,
W (e P e RIS S
&,
! wmodel-based \

samples value function
(experience) policy

Model-based approach (“plug-in”
1. build an empirical estimate Pfor P

2. planning based on the empirical P
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Two approaches

o model A
N ’ Ty

&
wodel-based )
samples value function
(experience) policy
4 4
wodel-free

Model-based approach (“plug-in”
1. build an empirical estimate Pfor P

2. planning based on the empirical P

Model-free approach
— learning w/o estimating the model explicitly
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Sampling mechanisms

1. RL w/ a generative model (a.k.a. simulator)
o can query arbitrary state-action pairs to draw samples
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Sampling mechanisms

1. RL w/ a generative model (a.k.a. simulator)
o can query arbitrary state-action pairs to draw samples

2. online RL
o execute MDP in real time to obtain sample trajectories

3. offline RL

o use pre-collected historical data

Question: how many samples are sufficient to
learn an e-optimal policy?

V> Ve
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Exploration vs exploitation

Exploration

offline RL

\l
— *:%‘”efx

BN s

,mj\
“Recal

rcaldating ..

online RL

generative model
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Exploration vs exploitation

> Exploration

offline RL online RL generative model

Varying levels of trade-offs between exploration and exploitation. J
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Sample Complexity of Q-Learning



Q-learning: a stochastic approximation algorithm

i

Chris Watkins Peter Dayan

Stochastic approximation for solving the Bellman equation

Robbins & Monro, 1951

TQ) -Q=0
where
@ e 1 g o)

immediate reward ;
next state’s value
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Q-learning: a stochastic approximation algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation 7(Q) —Q =0

Qt+1(37a) = Qt(87a) + nt(ﬁ(Qt)(Sch) - Qt(s,a)), > 0

sample transition (s,a,s’)
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Q-learning: a stochastic approximation algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation 7(Q) —Q =0

Qt+1(37a) = Qt(87a) + nt(ﬁ(Qt)(Sch) - Qt(s,a)), > 0

sample transition (s,a,s’)

Te(Q)(s,a) = 7(s,a) + ymax Q(s',a’)

T(@Q)(s,a) =7(s,a) +v E [max Qs a’)]

s'~P(-]s,a) a’
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A generative model / simulator

— Kearns, Singh, 1999

generative model

Each iteration, draw an independent sample (s, a, s") for given (s, a)
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Synchronous Q-learning

Chris Watkins Peter Dayan

fort=0,1,...,7T
for each (s,a) e S x A

draw a sample (s,a, s’), run

Qr1(s,a) = (1 —ny)Qu(s,a) + nt{r(s,a) + 7 max Qi(s, a/)}

synchronous: all state-action pairs are updated simultaneously J

e total sample size: TSA
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{s-sample complexity: how many samples are required to

learn an e-optimal policy ?

o~

Vs: V7 (s) > V*(s)—e



Minimax lower bound

Theorem (minimax lower bound; Azar et al., 2013)

For all € € [0, ﬁ) there exists some MDP such that the total
number of samples need to be at least

2 ()

to achieve V* — V™ < g, where T is the output of any RL algorithm.
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Minimax lower bound

Theorem (minimax lower bound; Azar et al., 2013)

For all € € [0, ﬁ) there exists some MDP such that the total
number of samples need to be at least

2 ()

to achieve V* — V™ < g, where T is the output of any RL algorithm.

e holds for both finding the optimal Q-function and the optimal
policy over the entire range of ¢

e much smaller than the model dimension S2A
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Sample complexity of synchronous Q-learning

Theorem (Li, Cai, Chen, Wei, Chi’21, OR’24)

For any 0 < € < 1, synchronous Q-learning yields ||@ — Q"o <€
with high prob. and E[||Q — Q*||«] < €, with sample size at most

{6(0_‘%‘;‘452) ifA>2

5(#) ifA=1 (TD learning)
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Sample complexity of synchronous Q-learning

Theorem (Li, Cai, Chen, Wei, Chi’21, OR’24)

For any 0 < € < 1, synchronous Q-learning yields ||@ — Q"o <€
with high prob. and E[||Q — Q*||«] < €, with sample size at most

2! SA .
O(i2m) ifA=2
O(ﬁ) ifA=1 (TD learning)

e Covers both constant and rescaled linear learning rates:

1 o 1
= ca(1-T rn= c2(1—7)t
1+ log? T 1 + log? T
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Sample complexity of synchronous Q-learning

Theorem (Li, Cai, Chen, Wei, Chi’21, OR’24)

For any 0 < € < 1, synchronous Q-learning yields ||@ — Q"o <€
with high prob. and E[||Q — Q*||«] < €, with sample size at most

2! SA f
6((1—5)352) ifA=1 (minimax optimal)

other papers sample complexity
Even-Dar & Mansour, 2003 21—v %
(1—-v)%e
: S242
Beck, Srikant, 2012 (1=5)5:2

. . SA
Wainwright, 2019 (1=2)5:2

Chen, Maguluri, Shakkottai, Shanmugam, 2020 %
(1—~)°e

29/ 70



All this requires sample size at least %

Pt
4 O
sample %

complexity

(log scale) N

(A>2)...




All this requires sample size at least % (A>2)...

sample
complexity

(log scale)

1
log scale
~— (log scale

Question: Is Q-learning sub-optimal, or is it an analysis artifact?



A numerical example: L“ samples seem necessary . ..
(1-7)%e

— observed in Wainwright '19

a=1
a=2 . 108
1 g
Q 1-p O ! g
—
©O—— 0 g
1- z
3]
=¥
Q
N
2 10°
4'7 - 1 E ——— Q-learning .
p frd T § , ———— Theory: N =< iy
")/ 10 10 15 20 25 30 35 40
discount complexity:
r(07 1) — O, 74(1, 1) — T.(l, 2) — 1 1scount complexity: g p
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Q-learning is NOT minimax optimal

Theorem (Li, Cai, Chen, Wei, Chi’21, OR’24)

For any 0 < € < 1, there exists an MDP with A > 2 such that to
achieve ||Q — Q*||oo < €, synchronous Q-learning needs at least

Q <(1—51:;{>452> Samp/es
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Q-learning is NOT minimax optimal

Theorem (Li, Cai, Chen, Wei, Chi’21, OR’24)

For any 0 <& <1, there exists an MDP with A > 2 such that to
achieve ||Q — Q*||oo < €, synchronous Q-learning needs at least
~ < SA

Q (1_7>4€2> Samp/es

e Tight algorithm-dependent lower bound

e Holds for both constant and rescaled linear learning rates

a=1
a=2
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Q-learning is NOT minimax optimal

Theorem (Li, Cai, Chen, Wei, Chi’21, OR’24)

For any 0 < € < 1, there exists an MDP with A > 2 such that to
achieve ||Q — Q*||oo < €, synchronous Q-learning needs at least

Q <(1_51:/?)482> Samp/es

sample +
complexity
(log scale)

(log scale)
L=y 32/ 70



Why is Q-learning sub-optimal?

Over-estimation of Q-functions (Thrun & Schwartz'93; Hasselt '10)

e maxgec 4 E[X (a)] tends to be
over-estimated (high positive
bias) when E[X (a)] is replaced
by its empirical estimates using a
small sample size

e often gets worse with a large
number of actions (Hasselt, Guez,
Silver '15)

15 m max, Q(s,a) - Vi(s)

0 mm Q'(s, argmax, Q(s, a)) — Va(s)

< il

g

error

o

©248%%
number of actions

Figure 1: The orange bars show the bias in a single Q-
learning update when the action values are Q(s,a) =
Vi(s) + €, and the errors {e, }7-; are independent standard
normal random variables. The second set of action values
@', used for the blue bars, was generated identically and in-
dependently. All bars are the average of 100 repetitions.
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Why is Q-learning sub-optimal?

Over-estimation of Q-functions (Thrun & Schwartz'93; Hasselt '10)

e maxgec 4 E[X (a)] tends to be
over-estimated (high positive
bias) when E[X (a)] is replaced
by its empirical estimates using a
small sample size

e often gets worse with a large
number of actions (Hasselt, Guez,
Silver '15)

15 m max, Q(s,a) - Vi(s)

0 [ Q'(s, argmax,Q(s, a)) — Vi(s)
5 |
oo JF &4

%
3

error

o

R R RN
e ge%

number of actions

Figure 1: The orange bars show the bias in a single Q-
learning update when the action values are Q(s,a) =
Vi(s) + €, and the errors {e, }7-; are independent standard
normal random variables. The second set of action values
@', used for the blue bars, was generated identically and in-
dependently. All bars are the average of 100 repetitions.

A provable improvement: Q-learning with variance reduction

(Wainwright 2019)
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Offline RL



Offline/batch RL

e Collecting new data might be costly, unsafe, unethical, or
time-consuming

THE COMING INAUTONOMOUS VEHICLES

e B

/a5

medical records data of self-driving clicking times of ads
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Offline/batch RL

e Collecting new data might be costly, unsafe, unethical, or
time-consuming

e But we have already stored tons of historical data

THE COMING INAUTONOMOUS VEHICLES

ou
w
e
. & e
< (7}

NS LS
N

medical records data of self-driving clicking times of ads

Question: can we learn based solely on historical data
w/o active exploration? J

35/ 70



A mathematical model of offline data

s~ ’%\ <5,a

initial distribution behavior policy No longer transition kermel
arbitrary!
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A mathematical model of offline data

s~ ’%\ <s,a

initial distribution behavior policy No longer transition kermel
arbitrary!

historical dataset D = {(s(),a(", s'))}: N independent copies of

s~ p, a~72(s), s' ~ P(-]s,a)
e p: initial state distribution; 7®: behavior policy

36/ 70



A mathematical model of offline data

s~ ’%\ <s,a

initial distribution behavior policy No longer transition kermel
arbitrary!

Goal: given a target accuracy level € € (0, ﬁ] find 7 s.t.

VNp) = V() = E [V}(s)] ~ B [V7(5)] <=

— in a sample-efficient manner

36/ 70



Challenges of offline RL

e Distribution shift:

distribution(D) # target distribution under optimal 7*
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Challenges of offline RL

e Distribution shift:

distribution(D) # target distribution under optimal 7*

easier harder
| > distance(n®, 1)

\ ?

\ )

2 expert data : ﬁ ?
N

b4
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Challenges of offline RL

e Distribution shift

distribution(D) # target distribution under optimal

¢ Partial coverage of state-action space

1 > \ P R N
/ \\\ / Practically, N
1 4 !
, -4 samples cover all (s,a) & all polncnes/ I/ ' historical dataset D ,/\\'
~ /l \\,\\ - i
m[ﬂm > ™ L
- ) ~— ’ 0o,
9 5 /i\”// \\\‘* /3\ ///\\7//
SUN N /, N
uniform coverage over entire space
(sufficiently explored)

partial coverage
(inadequately explored)
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How to quantify quality of historical dataset D (induced by 7°)?
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How to quantify quality of historical dataset D (induced by 7°)?

Single-policy concentrability coefficient (Rashidineiad et al.’21)

d™" (s, a) occupancy distribution of T*

C* := max =
sa dm (s, a)

. . . b
occupancy distribution of 7® ||
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How to quantify quality of historical dataset D (induced by 7°)?

Single-policy concentrability coefficient (Rashidineiad et al.’21)

C* := max d b(s,a) =
s,a d™(s,a)

occupancy distribution of "

. . . b
occupancy distribution of 7® ||

e captures distributional shift
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How to quantify quality of historical dataset D (induced by 7°)?

Single-policy concentrability coefficient (Rashidineiad et al.’21)

d™ (s,a occupancy distribution of "
C* = max b<’): paney T 1
s,a d™ (s, a) occupancy distribution of ©° ||
e captures distributional shift
large C*
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How to quantify quality of historical dataset D (induced by 7°)?

Single-policy concentrability coefficient (Rashidineiad et al.’21)

d™ (s,a occupancy distribution of ™
C”* := max b(’): pancy ekttt - 1
s,a d™ (s, a) occupancy distribution of 7° ||
‘M\(\/V“\ ! )
e captures distributional shift /

e allows for partial coverage
o as long as it covers the part
reachable by 7*

38/ 70



Model-based (“plug-in”) approach?

[ empirical MDP

HEN

| [ |

| |
|| | . A~k
n B e 7

H BB

| || . .

| | | B e.g. dynamic programming

H_ BN

|| |

r

empirical p

1. construct empirical model P:
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Model-based (“plug-in”) approach?

[ empirical MDP

H EN

| [ |

| |
|| | . A~k
n B e 7

H BB

| || . .

| | | B e.g. dynamic programming

H_ BN

|| |

r

empirical p

1. construct empirical model P:

P(s'|s,a) = Z]l{s

empirical frequency 39/ 70




Model-based (“plug-in”) approach?

[ empirical MDP

H NN
[ | [ |
| | |
H B : .
e B s 7
H EH B
[ | . .
.. . e.g. dynamic programming
H BB
[ |
r

empirical p

1. construct empirical model P:

2. planning (e.g. value iteration) based on empirical MDP

39/ 70



Issues & challenges in the sample-starved regime

. H N
H
H H
|
H N
H BN
H
L
H_ N
| n
truth: P € RS4x5 empirical P (simulator)

e can't recover P faithfully if sample size < S%A
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Issues & challenges in the sample-starved regime

o H N H N
H
H H
|
H N
H BN |
H
L
H_ N H B
H n H
truth: P € RS4xS empirical P (simulator) empirical P (offline)

e can't recover P faithfully if sample size < S%A

e (possibly) insufficient coverage under offline data

40/ 70



Pessimism in the face of uncertainty

Penalize value estimate of (s,a) pairs that were poorly visited

— (Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21)

without

—
pessimism _._
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Pessimism in the face of uncertainty

Penalize value estimate of (s,a) pairs that were poorly visited

— (Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21)

W|thout
Pessimism :.:  with
pessnmlsm

Value iteration with lower confidence bound (VI-LCB):

@(s,a) — max{ (s,a) +~(P ( |s,a), V)

where V(s) = max, Q(s, a).
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— (Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21)

W|thout
Pessimism :.:  with
pessnmlsm

Value iteration with lower confidence bound (VI-LCB):

@(s,a) — max{ (s,a) +~(P ( |s,a), V), 0}

where V(s) = max, Q(s, a).
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Pessimism in the face of uncertainty

Penalize value estimate of (s,a) pairs that were poorly visited

— (Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21)

W|thout
Pessimism :.:  with
pessnmlsm

Value iteration with lower confidence bound (VI-LCB):

@(s,a) — max{ (s,a) +~(P ( | s,a), XA/)— b(s,a;V), 0}

uncertainty penalty

where V(s) = max, Q(s, a).
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Sample complexity of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’24)

Forany 0 < e < ﬁ the policy 7 returned by VI-LCB using a
Bernstein-style penalty term achieves

V¥(p) = V7(p) < e

with high prob., with sample complexity at most

0 (a=p=)
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Sample complexity of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’24)

Forany 0 < e < ﬁ the policy 7 returned by VI-LCB using a
Bernstein-style penalty term achieves

V¥(p) = V7(p) < e

with high prob., with sample complexity at most
~ SC*
o—"=__
((1 - 7)352)

e depends on distribution shift (as reflected by C*)

e achieves minimax optimality

e full e-range (no burn-in cost)
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sample
complexity

Model-based offline RL is minimax optimal with no burn-in cost! J




Robust RL



Safety and robustness in RL

(Zhou et al., 2021; Panaganti and Kalathil, 2022; Yang et al., 2022;)

Training environment % Test environment

45/ 70



Safety and robustness in RL

(Zhou et al., 2021; Panaganti and Kalathil, 2022; Yang et al., 2022;)

Training environment % Test environment

Sim2Real Gap: Can we learn optimal policies that are robust
to model perturbations? J
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Modeling environment uncertainty

Uncertainty set of the nominal transition kernel P°:

U (P°)={P: p(P,P°) <o}

=

Te

P
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Uncertainty set of the nominal transition kernel P°:
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Modeling environment uncertainty

Uncertainty set of the nominal transition kernel P°:

U (P°)={P: p(P,P°) <o}
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Modeling environment uncertainty

Uncertainty set of the nominal transition kernel P°:

U (P°)={P: p(P,P°) <o}

///—\/ 1\\
/ \
)
//_k A
( \
/
\/— \\ /
[ }-7
/
“=_ P L__v
- = /
I)u \\_//

e Examples of p: f-divergence (TV, x2, KL...)
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Robust value/Q function

StEH ~ P('Istvat)

Robust value/Q function of policy 7:

VseS: V™o(s):= inf E, t =
s (s) PeZ/III(}(PO) P LZ_; ~y'ry | S0 s]
o0
v S : e = inf E; t =s,a9 =
(s,a) eSxA: Q™(s,a) PeZ/I{IC}(PO) P [;7 T | 50 = 5,00 a]

Measures the worst-case performance of the policy in the uncertainty

set.
47/ 70



Distributionally robust MDP

Robust MDP
Find the policy m* that maximizes V™

(lyengar. 05, Nilim and El Ghaoui. '05)
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Distributionally robust MDP

Robust MDP
Find the policy m* that maximizes V™

(lyengar. 05, Nilim and El Ghaoui. '05)

Robust Bellman’s optimality equation: the optimal robust policy
7* and optimal robust value V*7 := V7% satisfy

Q" (s,a) =r(s,a) +~ inf (Ps,q, V),
Ps, €U (PS,)

V*o(s) = max Q" (s,a)
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Distributionally robust MDP

Robust MDP
Find the policy m* that maximizes V™

(lyengar. '05, Nilim and El Ghaoui. '05)
Robust Bellman’s optimality equation: the optimal robust policy

7* and optimal robust value V*7 := V7% satisfy

Q" (s,a) =r(s,a) +~ inf (Ps,q, V),
Ps, €U (PS,)

V*o(s) = max Q" (s,a)

Distributionally robust value iteration (DRVI):

Q(s,a) + r(s,a) +~ inf (Psa, V),
Py o€l (P2,)

where V(s) = max, Q(s,a).
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Learning distributionally robust MDPs

arbitra ry

(s,a)

Nominal Transition
kernel
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Learning distributionally robust MDPs

arbitra ry

(s,a)

Nominal Transition
kernel

Goal of robust RL: given D := {(s;,a;, s})})¥, from the nominal
environment PY, find an e-optimal robust policy & obeying

V*,O’ _ V;T\,O' S c

— in a sample-efficient manner
49/ 70



Model-based RL: empirical MDP + planning
( empirical \

nominal MDP

o 1] ]

planning :::> T
J oracle
e.g. policy iteration

empirical

\_ nominal P° /

Planning by distributionally robust value iteration (DRVI):

~

Q(s,a) < r(s,a) +~ inf  (Psga, 17),
P acu” (Pg,)

where V(s) = max, Q(s, a).
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Duality for scalability

Dual problem can be solved efficiently (w.r.t. a scalar) J

(lyengar. '05, Nilim and El Ghaoui. '05)

TV uncertainty: divergence function p = total variation

~

Q(s,a) + r(s,a)

o A€ [min, ?Ig?ilaxs 7)) {ﬁsoa [‘7] AT O (>‘ - HBH [‘7] ,\(8/))} )

where [V]x(s) := X if V(s) > A, otherwise [V]x(s) = V (s).
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Duality for scalability

Dual problem can be solved efficiently (w.r.t. a scalar) J

(lyengar. '05, Nilim and El Ghaoui. '05)

TV uncertainty: divergence function p = total variation

~

Q(s,a) + r(s,a)

o A€ [min, ?Ig?ilaxs 7)) {ﬁsoa [‘7] AT O (>‘ — min [‘7] ,\(8/))} )

where [V]x(s) := X if V(s) > A, otherwise [V]x(s) = V (s).
x? uncertainty: divergence function p = 2

~

Q(s,a) + r(s,a)

o i )
A€ [minS V(s),maxg V(s)}



A curious question

HEN Learn the optimal policy of

. . = /r" the nominal MDP?
’/

. N.-
HE B ==
H B = o /l

CE g
- . . <4 Learn the robust policy

around the nominal MDP?

n n '

empirical MDP
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A curious question

. N . Learn the optimal policy of
.. . = /," the nominal MDP?
’/

. . /"’ Iy
HE B e
H B R (]

- ]

\N Sl
- . . \~,‘ Learn the robust policy
. . around the nominal MDP?
empirical MDP

Robustness-statistical trade-off? |s there a statistical premium
that one needs to pay in quest of additional robustness? J
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Sample complexity under TV uncertainty

Theorem (Shi et al., 2023)

Assume the uncertainty set is measured via the TV distance with
radius o € [0,1). For sufficiently small ¢ > 0, DRVI outputs a policy
T that satisfies V*° — V™7 < ¢ with sample complexity at most

O (T Fmt=m12)

ignoring logarithmic factors. In addition, no algorithm can succeed if
the sample size is below

. ((1 —7)21115;?1 —%0}62>'

e Establish the minimax optimality of DRVI for RMDP under the

TV uncertainty set over the full range of o.
53/ 70



When the uncertainty set is TV

Sample complexity 4
SA
W - Upper bound [Clavier et al.] ==
—7)4e
1
|
|
SA ] Standard MDPs
W 7 === upper & minimax lower bound =~~~
—7)3e
_s4
(=)o Upper & minimax lower bound
SA (this work)
)22 -
(1-7) ;
1
1
1
SA(1—7) . 1 Lower bound [Yang et al.]
7] >
‘ 0 O(1-7) o(1) 1

g
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When the uncertainty set is TV

Sample complexity 4
SA
m - | — Upper bound [Clavier et al.] =
|
|
|
] Standard MDPs
% - === upper & minimax lower bound ==~
—7)3¢
SA
(A -2ea Upper & minimax lower bound
SA (this work)
=P
SA(I _ 'Y) . Lower bound [Yang et al.]
2 >
0 on-4  0Q) 1 9
RMDPs are easier to learn than standard MDPs. y
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Sample complexity theorem under \? uncertainty

Theorem (Shi et al., 2025)

Assume the uncertainty set is measured via the x* divergence with
radius o € [0,00). For sufficiently small ¢ > 0, DRVI outputs a policy
T that satisfies V*7 — V™% < e with sample complexity at most

~ SA
of—54 (14 Vo+o
(1 —7)3e? 1—xy
ignoring logarithmic factors. In addition, no algorithm can succeed if
the sample size is below

iy (775))

e Establish the minimax optimality of DRVI for RMDP under the
TV uncertainty set over the full range of o.
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When the uncertainty set is \? divergence

Sample complexity 4

Upper bound $*Ac
S2A [Panaganti and Kalathil] (1—7)te?
(1—=7)%e?
Upper bound Lower bound
(this work) (this work)
L 4 SAmax{o,/o} SAc
(1=mte? -y =i
SA Standard MDPs
(1—7)3e? === =77 upper & minimax lower bound =
SA
=%
SA Wet al.]
(1 —)e? 1 >

o((1-7)%)0(1-7) 0(1)

T o
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When the uncertainty set is \? divergence

Sample complexity 4

Upper bound

S2A [Panaganti and Kalathil]

(1 —m)te?
Upper bound
(this work)

_SA ) samasio.ya)
-7t | “a-ve

SA
(L=n)3%?

SA
(1—7)e? ]

S? Ao
T

Lower bound
(this work)
SAo
=

Standard MDPs
upper & minimax lower bound =

SA
=

Lower bound [Yang et al.]

>

o((1-7%)01-v) o)

T o

RMDPs are harder to learn than standard MDPs.
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A crumb of RLHF



Language models as policies

Prompt: Explain reinforcement learning (RL).

! Answer: Reinforcement learning (RL) is a type of

machine learning where an...

apple
k? image
Transformer/RN Nx agent

Given prompt x € X, a language model generates an answer:
y o~ 7(-|z)

——
parameterized by LLM
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Language models as policies

--------------------------------------------------------------------------

Prompt: Explain reinforcement learning (RL).

! Answer: Reinforcement learning (RL) is a type of

machine learning where an agent

/> learns
k? sleeps
Transformer/RNN eats

Given prompt x € X, a language model generates an answer:

y o~ m(-|x)
——
parameterized by LLM
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RL with human feedback (RLHF)

............................

Switzerland e @‘

! Who has —_— /
etter chesser \ REEETTETEELL UL PP PPPPPPEEEN s
.................. :  United States L

............................

Goal: finetune the LLM to align with human preference J
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RL with human feedback (RLHF)

............................

Switzerland e @‘

! Who has —_— /
etter chesser \ REEETTETEELL UL PP PPPPPPEEEN s
.................. :  United States L

............................

Goal: finetune the LLM to align with human preference J

Prototypical pipeline:
e Reward learning: learn a reward model from preference data;

e Policy optimization: optimize the LLM to maximize the reward.
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RLHF: reward learning

Bradly-Terry model
The probability of pairwise comparison i »~ j is modeled by

exp(ry)

P(i - j) = exp(ry) + exp(r;)

= O'(T“ - T‘)?

where r; € R is the score associated with item 1.
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RLHF: reward learning

Bradly-Terry model
The probability of pairwise comparison i »~ j is modeled by

exp(ry)

P(i - j) = exp(ry) + exp(r;)

= O'(T“ - 7’4),

where r; € R is the score associated with item 1.

e Reward model: »* : X x ) — R, evaluating the quality of a
prompt-answer pair (x,y) that aligns with human preference;
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RLHF: reward learning

Bradly-Terry model
The probability of pairwise comparison i »~ j is modeled by

exp(ry)
exp(ry) + exp(r})

= O'(T‘* - 73%)7

PG> j) =

where r; € R is the score associated with item 1.

e Reward model: »* : X x ) — R, evaluating the quality of a
prompt-answer pair (x,y) that aligns with human preference;
e Reward learning: Given comparison data D = {(z%, v ,y" )} |,
the MLE of the reward function is given by
rmLe = argmin, £(r, D),

where ((r,D) = -N, log o(r(z,yy) — r(z',yL)).
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RLHF: policy optimization

Policy optimization via reward maximization

Find 7 that (approximately) maximizes the objective w.r.t. r

Jrm= E [@yl-FE [KL((:|) || 7ret (+]))]

e 3> 0: KL regularization parameter;
e T a reference policy, typically the model after SFT;

e p e A(X): prompt distribution.
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Direct Preference Optimization (DPQO)

— (Rafailov et al., 2023)

1. Reward learning: 7 < argmin,{(r, D)

2. Policy learning: 7 <— argmax,J(7, )
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Direct Preference Optimization (DPQO)

— (Rafailov et al., 2023)

Observation: the optimal = w.r.t. » admits a closed-form solution

et (y|2) exp(r(z,y)/5)

. = argmax, J(r,m) <= m(ylr) = 70 2)
T, T
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Direct Preference Optimization (DPQO)

— (Rafailov et al., 2023)

Observation: the optimal = w.r.t. » admits a closed-form solution

et (y|2) exp(r(z,y)/5)

m = argmax_ J(r,m) < m.(y|lxr) = Z(r,z)
r,x

e The reward function r in terms of its optimal 7, is
r(z,y) = B(logm (y|z) — log mer(y|z) + log Z(r, z)) .
=ur(m)
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Direct Preference Optimization (DPQO)

— (Rafailov et al., 2023)

e The reward function r in terms of its optimal 7, is

r(z,y) = B(log 7, (y|z) — log met(y|z) + log Z(r, x)) .
=ur(m)

e The two-step procedure is equivalent to

7 < argmin_{(r(m), D)

N i )i i i
— —Zlogtf (/310g7r(y+‘$)_510gw> )

) Tref (Z/EFW) 7Tref(yi—"%'i)

Single-step and policy-only! Very popular in practice.
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Online RLHF

Leverage online data collection to improve data coverage - how do
we perform exploration in the policy space directly?

Sample new data (z,y1,y2) Comparison Oracle

t+1
from 71'( ) (maylay2) — (‘T7y+ay—)

Update comparison data

Policy Update DD = DU {(z, y4,y-)}

7+ argmax, J (r(t>,7r>

\/ Reward Update
t—t+1 r+1) ~ argmin, ¢ (7‘, D(Hl))
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Exploration via optimistic MLE

Optimistic MLE: Bias the estimate towards the models with higher
optimal objective J*(r) = max, J(r,7) by

P+ argmin, {£(r, DY) —aJ* (r)}.

64/ 70



Exploration via optimistic MLE

Optimistic MLE: Bias the estimate towards the models with higher
optimal objective J*(r) = max, J(r,7) by

P+ argmin, {£(r, DY) —aJ* (r)}.

e Small caveat: the update is not well-defined, since the BT model
cannot distinguish between r and r + ¢ - 1, while

J(r+c-1)=J(r)+c
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Exploration via optimistic MLE

Optimistic MLE: Bias the estimate towards the models with higher
optimal objective J*(r) = max, J(r,7) by

Pt argmin,.c {¢(r, D(t))—aJ*(r)}.

e Small caveat: the update is not well-defined, since the BT model
cannot distinguish between r and r + ¢ - 1, while

J(r+c-1)=J(r)+c

e We can resolve the shift ambiguity by focusing on the following
equivalent class of reward functions:

R = {7’ : E [r(z,y)] = O}.

w'\/pvy'\/ﬂ'cal('lz)
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Exploration via optimistic MLE

Optimistic MLE: Bias the estimate towards the models with higher
optimal objective J*(r) = max, J(r,7) by

Pt argmin,.c {¢(r, D(t))—aJ*(r)}.

e Small caveat: the update is not well-defined, since the BT model
cannot distinguish between r and r + ¢ - 1, while

J(r+c-1)=J(r)+c

e We can resolve the shift ambiguity by focusing on the following
equivalent class of reward functions:

R = {7’ : E [r(z,y)] = O}.

w'\/pvy'\/ﬂ'cal('lz)

Can we avoid solving a bilevel optimization problem? J
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Exploiting the structure of J(r, )

e The optimal policy admits the following closed-form solution:

Wref(y‘x) eXp( )/5
Z(r,x)

7, = argmax_J(r,w) < m.(ylx) =
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Exploiting the structure of J(r, )

e The optimal policy admits the following closed-form solution:

Wref(y‘x) eXp( )/5 ‘

7, = argmax_J(r,w) < m.(ylx) =

Z(r,x)

e We can write the J*(r) as
JH(r)= E r(z,y) — Blog Tolplo)
a~py () Tref (y])

= E  [logZ(r z)]
arpy~r(-|a)
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Exploiting the structure of J(r, )

e The optimal policy admits the following closed-form solution:

Tret (y]2) exp(r(z, y)/B)

. = argmax, J(r, ) <= m(y|z) =

Z(r,x)

e We can write the J*(r) as
Fe)= B [rey) - sl UL
Ty~ (-|T) 7Tref(y|x)

= E [log Z(r, x)]

wropy~r(-|a)

= E [log Z(r, z)]

prvyNﬂ—cal('lx)
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Exploiting the structure of J(r, )

e The optimal policy admits the following closed-form solution:

ﬂ'ref(y‘x) exp(?"(x, y)//B)
Z(r,x) '

7 = argmax_J(r,w) < m.(ylx) =

e We can write the J*(r) as

P = Bty - s U0

xrp Yy~ (+|T) Wref(y|x)
— B llogZ(na)

z~py~r(-|z)
= E  [logZ(r,z)]

prvyNWcal(‘|x)

— E - [r(x,y) — Blog

TNPY~Teal

mr (y|2) }

Tref (Y] )
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Exploiting the structure of J(r, )

e The optimal policy admits the following closed-form solution:

ﬂ'ref(y‘x) exp(?"(x, y)//B)
Z(r,x) '

7 = argmax_J(r,w) < m.(ylx) =

e We can write the J*(r) as
« ™ (y| )
J*(r) = E { B log ]
) e 50 7 P18 )
—  E  [logZ(r)]

z~py~r(-|z)

= E [log Z(r, )]

prvyNWcal(‘|x)

_ E [M Blog m(yw)}

oo pyy~Tical ()2) 8 Teet (U])
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Value-incentivized preference optimization (VPO)

7Y argmin_{¢(r(x), D) — aJ*(r(x))}.

e The negative log-likelihood term reformulates into DPO loss:

{(r(m), DY)
= — Z log0<6(logﬂ'(y+m) —logiﬂ(y_’x) ))

(@925 )ED® Tref (Y+|2) Tref (Y |)

e The reward bias term can be written as:
JH(r(m)) = =B E [log 7 (y|x) — log mret (y]2)] ,
prvyNﬂ'cal("x)
which is essentially becomes a reverse-KL regularization that
maximizes KL (7cai(-|2) || 7(-]2)).
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Main results - online VPO

Theorem (Cen et al., ICLR 2025)

Assume that reward estimates ||| < B and ||r*||sc < B for some
B > 0. With high probability we have

T
ST = It 7)) < O(VT).

t=1

e We can obtain similar regret bounds under general function
approximation of the reward model.

e Consistent with the O(v/T) regret for online RL with UCB bonus.

e Offline RL: flipping the sign of « leads to a pessimistic algorithm.
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Concluding Remarks



Concluding remarks

‘ “U\\ E——— state

A ;i i ]action
Reinforcement :\“\\\ D‘{nan&'\thgrammiliu r

Learning X trol
It

FiRsT-ORDER METHODS
IN OPTIMIZATION

/

!

X

Amir Beck

'1'_'! environment!{- —_—

<
:next state

Understanding non-asymptotic performances of RL algorithms is a
fruitful playground! J

Promising directions:

e function approximation e RL for foundation models
e multi-agent RL e many more...
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Thank you!

Statistical and Algorithmic Foundations of
Reinforcement Learning

Yuejie Chi
Department of Statistics and Data Science, Yale University, New Haven, CT 06511, USA,
yuejie.chi@yale.edu

Yuxzin Chen, Yuting Wei
Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104,
USA, {yuxincGwharton.upenn.edu, ytwei@wharton.upenn.edu}

Abstract

As a paradigm for sequential decision making in unknown environments, reinforcement
learning (RL) has received a flurry of attention in recent years. However, the explo-
sion of model complexity in emerging applications and the presence of nonconvexity
exacerbate the challenge of achieving efficient RL in sample-starved situations, where
data collection is expensive, time-consuming, or even high-stakes (e.g., in clinical tri-
als, autonomous systems, and online advertising). How to understand and enhance
the sample and computational efficacies of RL algorithms is thus of great interest. In
this tutorial, we aim to introduce several important algorithmic and theoretical devel-
opments in RL, highlighting the connections between new ideas and classical topics.
Employing Markov Decision Processes as the central mathematical model, we cover
several distinctive RL scenarios (i.e., RL with a simulator, online RL, offline RL, robust
RL, and RL with human feedback), and present several mainstream RL approaches
(i.e., model-based approach, value-based approach, and policy optimization). Our dis-
cussions gravitate around the issues of sample complexity, computational efficiency,
as well as algorithm-dependent and information-theoretic lower bounds from a non-
asymptotic viewpoint.
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