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Sparse Fourier Analysis

In many sensing applications, one is interested in
identification of a parametric signal:

x(t) = Zdieﬂ”(t’f@'>, te[ni]x...x[ng]
i=1

(f;€[0,1) : frequencies, d; : amplitudes, r : model order)

e Occam’s razor: the number of modes r is small.

e Sensing with a minimal cost: how to identify the parametric signal
model from a small subset of entries of x(t)?

e This problem has many (classical) applications in communications,
remote sensing, and array signal processing.
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Applications in Communications and Sensing

e Multipath channels: a (relatively) small number of strong paths.
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Applications in Imaging

e Swap time and frequency: .. The Point Spread Function
a 0.8
< (t) = Z dz&(t - t@) Fi Figure 1 MRS
i=1 £ 0.6 e
& o - --FWHM
=
. i . . . . S 0.4 -
e Applications in microscopy imaging 2
. ° Zero Intensity
and astrophysics. & 0.2 1 Rayleigh
m
e Resolution is limited by the point ,3 -
spread function of the imaging system YPosition (um) 2 x Position (um)
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Something Old: Parametric Estimation

Exploring Physically-meaningful Constraints:  shift invariance of the
harmonic structure

T (t — T) = zr: di6j27r<t_‘rafi> — zr: die_jZW(Tafi>€j27T<ta.f’i)
i=1 i=1

e Prony’s method: root-finding.

e SVD based approaches: ESPRIT [RoyKailath'1989], MUSIC
[Schmidt’'1986], matrix pencil [HuaSarkar'1990, Hua'1992].

e spectrum blind sampling [Bresler’ 1996], finite rate of innovation
[Vetterli" 2001], Xampling [Eldar’ 2011].

e Pros: perfect recovery from (equi-spaced) O(7) samples

e Cons: sensitive to noise and outliers, usually require prior knowledge on
the model order.
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Something New: Compressed Sensing

Exploring Sparsity: Compressed Sensing [Candes and Tao'2006, Donoho’2006]
capture the attributes (sparsity) of signals from a small number of samples.

o

e Discretize the frequency and assume a sparse representation over the
discretized basis

P RS Y LA A

ni ni na na

e Pros: perfect recovery from O(rlogn) random samples, robust against
noise and outliers

e Cons: sensitive to gridding error
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Sensitivity to Basis Mismatch

e A toy example: z(t) = ei?7/ot:
— The success of CS relies on sparsity in the DFT basis.

— Basis mismatch: Physics places f off grid by a frequency offset.
* Basis mismatch translates a sparse signal into an incompressible signal.

1k ]
1} .
o 200 400 o 200 400
Mismatch A6=0.177T/N Normalized recovery error=0.0816
1 [ i
—1} i
(0] 200 400 (o) 200 400
Mismatch A6=0.57T/N Normalized recovery error=0.3461
1 [ i
1} 1
(O] 200 400

o 200 400

Mismatch A6=7mw/N Normalized recovery error=1.0873

— Finer grid does not help, and one never estimates the true continuous-

valued frequencies! [Chi, Scharf, Pezeshki, Calderbank 2011]
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Our Approach

e Conventional approaches enforce physically-meaningful constraints, but not
sparsity;

e Compressed sensing enforces sparsity, but not physically-meaningful
constraints:

e Approach: We combine sparsity with physically-meaningful constraints, so
that we can stably estimate the continuous-valued frequencies from a minimal
number of time-domain samples.

— revisit matrix pencil proposed for array
signal processing

— revitalize matrix pencil by combining
it with convex optimization




Two-Dimensional Frequency Model

o Stack the signal z (t) = ¥, d;e727(t:fi) into a matrix X € Cni*ne,

e The matrix X has the following Vandermonde decomposition:

X=Y:

Here, D :=diag{dy,---,d,} and

L Y

1

Y1

ni—l

1

D

——

diagonal matrix

1

Y2 Yr
nl—l nl—l
Yo Yr

Vandemonde matrix

. 7T
no-1 ng-1 nog-1
| Z]_ z2 cee ZT

Vandemonde matrix

where y; = exp(j2m f1;), z; = exp(j2nfa;), Fi= (f1s, foi).

e Goal: We observe a random subset of entries of X, and wish to recover the

missing entries.
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Matrix Completion?

recallthat X= Y - D - Z*%

— —— ——
Vandemonde diagonal Vandemonde

where D :=diag{d,-,d,}, and

1 1 1 ] [ 1 1 1
cee Z Z cee Z
Y = y:l y:2 : y:T , 4= :1 :2 : :T
nq—1 ni-1 nq—1 n.—l n'—l . n'—l
] 911 y21 yrl | ] 212 222 ZTQ

e Quick observation: X can be a low-rank matrix with rank(X) = r.
e Question: can we apply Matrix Completion algorithms directly on X7

e Yes, but it yields sub-optimal performance.

e No, X is no longer low-rank if 7 > min (n1,n5)

IS NS N

?
?
\/
v
?

\/ -

v — It requires at least » max{ni,no} samples.
?

?

Vo

L Y

?

?
Y — Note that r can be as large as nins
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Revisiting Matrix Pencil: Matrix Enhancement

Given a data matrix X, Hua proposed the
following matrix enhancement for two-dimensional
frequency models [Hua 1992]:

e Choose two pencil parameters ki and ko;

e An enhanced form X, is an k1 x (n1 — k1 + 1) block Hankel matrix :

Xo X1 o Xpg
X, - )(:1 %2 Xn1:—k1+1 |
| Xk-1 Xgy o Xnp-1
where each block is a kg x (ng — ko + 1) Hankel matrix as follows
[ Ti0 Tt Tingky |
X, = xl.,l fBz.,2 iEl,nQ‘—k2+1
| Llko-1 Llky Ll no-1
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Low Rankness of the Enhanced Matrix

Choose pencil parameters k1 = ©(n1) and kg = ©(ng), the dimensionality of
X Is proportional to ning x nins.

The enhanced matrix can be decomposed as follows [Hua 1992]:

— -

Z\
Z\Y
X = L; ‘ D[ZR,YdZR,“'aY?rklZR],
Zyhn!
— Z| and Zr are Vandermonde matrices specified by z1,..., 2z,

- Yd:diag[y17y27”'7yr]- | -
The enhanced form X, is low-rank. Wﬂm

— rank (X,) <7
— Spectral Sparsity = Low Rankness

holds even with damping modes.
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Enhanced Matrix Completion (EMaC)

e The natural algorithm is to find the enhanced matrix with the minimal rank
satisfying the measurements:

minimize rank (M)
MeCm17m2

subject to M, ; =X, ;,V(i,7) €

where () denotes the sampling set.

e Motivated by Matrix Completion, we will solve its convex relaxation,

(EMaC): minimize |M.|,
MeCn17n2

subject to M, ; =X, ;,V(i,7) €

where | - ||, denotes the nuclear norm.

e The algorithm is referred to as Enhanced Matrix Completion (EMaC).
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Enhanced Matrix Completion (EMaC)

(EMaC): minimize |M.,|,
MeCn1*m2

subject to M, ; =X, ;,V(i,7) €
e existing MC result won't apply — requires at least O(nr) samples

e Question: How many samples do we need?

(T VYTV T VYT T Y Y]
VARVAR S I SRVENVER S SRVANAE
VTV VYTV YT
S SIVAE SV BVAR SVE VAN
VIVVTT VYV
EVANVIE S VAV B SVANAS
VYV IV VYTV VY
VIV VTV Y
G SRVENVANEE SIVANAE SR SVAS
/VARVIEE SN SV SN SRV
VYV IV VYT YV
v vV vV oy ]
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Introduce Coherence Measure

e Define the 2-D Dirichlet kernel:

1 1 - 6_j277k1f1 1 - 6_j277k2f2
D(ki, ka, f1, f2) = ( )( )7

kiko\ 1- e~J2mf1 1 — e-J2mf2

e Define G| and G as r x r Gram matrices such that

(GL)i1 =D(k1, ko, f1: — f11, foi — fa1),
(GR)ii=D(n1—ki+1,n2—ka+1, f1i = fu, foi — far)-

0.2 -0.1 0 0.1
separation on x axis

Dirichlet Kernel
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Introduce Incoherence Measure

e Incoherence condition holds w.r.t. 1 if

1 1
y r

e Examples: = ©(1) under many scenarios:

— Randomly generated frequencies;
— (Mild) perturbation of grid points;

— In 1D, let &y ~ Zt: well-separated frequencies (Liao and Fannjiang, 2014):

A =min;.; |fi - f;| 2 n% which is about 2 times Rayleigh limits.

Lol

.

--k=,
- —

-4 _
v

==t -
==1r -
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Theoretical Guarantees for Noiseless Case

e Theorem [Chen and Chi, 2013] (Noiseless Samples) Let n = ning. If
all measurements are noiseless, then EMaC recovers X perfectly with high
probability if

m > Curlog*n.

where (' is some universal constant.

e Implications
— deterministic signal model, random observation;

— coherence condition i only depends on the frequencies but not amplitudes.

— near-optimal within logarithmic factors: ©(rpolylogn).

— general theoretical guarantees for Hankel (Toeplitz) matrix completion.
— see applications in control, MRI, natural language processing, etc

Page 18



Phase Transition

r: sparsity level

2‘0 4‘0 éO 8‘0 1 60 1 éO 1 A‘fO 1 éO 1 éO 260
m: number of samples

Figure 1: Phase transition diagrams where spike locations are randomly
generated. The results are shown for the case where n; =ny = 15.
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Robustness to Bounded Noise

Assume the samples are noisy X = X°+ N, where N is bounded noise:

(EMaC-Noisy) :  minimize || M|,
MeCn1*n2

subject to  |[Pq (M - X) || <9,

e Theorem [Chen and Chi, 2013] (Noisy Samples) Suppose X° is a noisy
copy of X that satisfies

HPQ(X — XO)HF <0.

Under the conditions of Theorem 1, the solution to EMaC-Noisy satisfies

8\/§n2} 5

m

HXe_XeHF < {2\/7_1,+8n+

with probability exceeding 1 — n=2.

e Implications: The average entry inaccuracy is bounded above by O(0).
In practice, EMaC-Noisy usually yields better estimate.

Page 20



Singular Value Thresholding (Noisy Case)

e Several optimized solvers for Hankel matrix completion exist, for example
[Fazel et. al. 2013, Liu and Vandenberghe 2009]

Algorithm 1 Singular Value Thresholding for EMaC
1: initialize Set M= X, and t = 0.
2: repeat
33 1) Q< D, (My) (singular-value thresholding)
4. 2) M« Hankelx,(Q;) (projection onto a Hankel matrix consistent with observation)
5
6

3) t<—t+1
. until convergence

— — — True Signal

25 . B
I ; Reconstructed Signal
1 \
20 \
o ! ! |
-g | | I | r
= 151 NI A n
£ f I J \\ r
< 1op "\ M AT
I \ ‘ | \
5 | ‘ \ .
! v
O 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time (vectorized)

Figure 2: dimension: 101 x 101, 7 = 30, = = 5.8%, SNR = 10dB.

nin2
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Robustness to Sparse Outliers

e What if a constant portion of measurements are arbitrarily corrupted?

6l
4
2

€

©
O

i

— = isy s

amples

— cleal gI

0

data

index

— Robust PCA approach [Candes et. al. 2011, Chandrasekaran et. al. 2011]
— Solve the following algorithm:

(RobustEMaC) :

minimize
M ,SeCn1xn2

subject to

| M|, + A S|l

(M + S)z',l =X

corrupted
1,1

Y

V(i,1) e
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Theoretical Guarantees for Robust Recovery

e Theorem [Chen and Chi, 2013] (Sparse Outliers) Set n = niny and

_ 1 : .
A= N Let the percent of corrupted entries s < 20% selected uniformly

at random, then RobustEMaC recovers X with high probability if
m > Cpur?log®n,

where (' is some universal constant.

e Implications: ol

— slightly more samples m ~ ©(r? log3 n); 4
— robust to a constant portion of outliers: .

—>
-
——
——
—
-

-6 Ty

e In summary, EMaC achieves robust recovery

with respect to dense and sparse errors from | | | | ‘ ‘
a near-optimal number of samples.



Phase Transition for Line Spectrum Estimation

Fix the amount of corruption as 10% of the total number of samples:

25
10.9

20 10.8
o 107
Q@

>15 10.6
'45 0.5
310 0.4
f’? 0.3
5 0.2
0.1
' : ' ' : 0

20 40 60 80 100

m: number of samples

Figure 3: Phase transition diagrams where spike locations are randomly

generated. The results are shown for the case where n = 125.
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Related Work

e Cadzow’s denoising with full observation: non-convex heuristic to denoise
line spectrum data based on the Hankel form.

e Atomic norm minimization with random observation: recently proposed by
[Tang et. al., 2013] for compressive line spectrum estimation off the grid.

min |s|, subjectto Pq(s)="Pq(x),

where the atomic norm is defined as ||x| 4 = inf{zi |||z (t) =X, dz-ej%fit}.

— Random signal model: if the frequencies are separated by 4 times the
Rayleigh limit and the phases are random, then perfect recovery with
O(rlogrlogn) samples;

— no stability result with random observations;

— extendable to multi-dimensional frequencies [Chi and Chen, 2013], but the
SDP characterization is more complicated [Xu et. al. 2013].
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(Numerical) Comparison with Atomic Norm Minimization

Phase transition for 1D spectrum estimation: the phase transition for atomic

norm minimization is very sensitive to the separation condition. The EMaC, in
contrast, is insensitive to the separation.

r: sparsity level
~ n n

r: sparsity level

= n N
r: sparsity level
= n N

50 60 70 80 90 50 60 70 80 90 50 60 70 80 90
m: number of samples m: number of samples m: number of samples

(a) (b) (c)

Figure: phase transition for atomic norm minimization without separation (a),

with separation (b); and EMaC without separation (c). The inclusion of
separation doesn't change the phase transition of EMaC.
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(Numerical) Comparison with Atomic Norm Minimization

Phase transition for 2D spectrum estimation: the phase transition for atomic
norm minimization is very sensitive to the separation condition. The EMaC, in
contrast, is insensitive to the separation. Here the problem dimension n; =ng =8

is relatively small and the atomic norm minimization approach seems in favor
despite of separation.

sity level
)
o

arsity level

30 35 40
number of samples

30 35 40
number of samples

(b) (c)

Figure: phase transition for atomic norm minimization without separation (a),
with separation (b); and EMaC without separation (c). The inclusion of
separation doesn'’t change the phase transition of EMaC.
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Extension to Multiple Measurement Vectors Model

e When multiple snapshots available, it is possible to exploit the covariance
structure to reduce the number of sensors. Without loss of generality,
consider 1D:

2o (t) = Y g te{0,1,....n-1)
i=1
where @y = [24(0),24(1),...,2¢(n-1)]*, £=1,..., L.
e We assume the coefficients d; o ~ CN'(0,0%), then the covariance matrix
Y =E|zx/| = toep(u)
is a PSD block Toeplitz matrix with rank(X) =r.

e The frequencies can be estimated without separation from wu using /;
minimization with nonnegative constraints [Donoho and Tanner’ 2005].
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Observation with the Sparse Ruler

e Observation pattern: Instead of random observations, we assume
deterministic observation pattern 2 over a (minimum) sparse ruler for all

snapshots:
y,=Xae={xe(t), teQ}, (=1,... L.

e Sparse ruler in 1D: for Q€ {0,...,n -1}

— Define the difference set:
A={li-j|, Vi, jeQ}

— Q is called a length-n sparse ruler if A={0,...,n—-1}.

— Examples:
+ when n =21, Q={0,1,2,6,7,8,17,20}.
* nested arrays, co-prime arrays [Pal and Vaidyanathan' 2010, 2011]
* minimum sparse rulers [Redei and Renyi, 1949]

e roughly |Q] = O(y/n).

Page 29



Covariance Estimation on Sparse Ruler Entries

e Consider the observation on 2 ={0,1,2,5,8},

—

:L’g(O)-
Zl?g(l)
Elywy)|=E xeg [z1(0) zH (1) 2 (2) 21 (5) 21 (8)]
ri(8).

Uo u{{ fué{ ué{ ug

Uq Uo u{{ Uf ug
Uus Uy Uus ug Usg

ug U7  Us us Uuop

e which gives the exact full covariance matrix ¥ = toep(u) in the absence of
noise and an infinite number of snapshots.
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Two-step Structured Covariance Estimation

e In practice, measurements will be noisy with a finite number of snapshots:

Yy =T 0+ Wy, ¢(=1,....L,

where wy ~ CN (02, 1).
e Two-step covariance estimation:

— formulate the sample covariance matrix of y,:

— determine the Teoplitz covariance matrix with SDP:

1
U = argmin 5 |Pa(toep(u)) - ZQ,LH; + ATr(toep(u)),

uw:toep(u)>0

where A is some regularization parameter.
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Theoretical Guarantee

e Theorem [Li and Chi] Let u* be the ground truth. Set

s Cmax{\/r logéLn)’ rlogéLn)} =)

with 3¢ = E[y,,yil] for some constant C, then with probability at least
1 — L1, the solution satisfies

1
Jn

if ) is a complete sparse ruler.

|& —w*|F <16A/r

¢ Remark:

— ﬁ“’& —u*|p is small as soon as L > O(r?logn);

— As the rank r (as large as n) can be larger than || (as small as \/n), this
allows frequency estimation even the snapshots cannot be recovered.
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Numerical Simulations

The algorithm also applies to other observation patterns, e.g. random. Setting:
n =64, L =400, |2| =5, and r = 6.

CS with DFT frame Correlation-aware with DFT frame

15 154

1o e 1

Ground truth

054 e 054 ]

Atomic norm minimization Structured covariance estimation

N A A 24

154 154

147 ‘ 14

05d o5d |
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Final Remarks

Sparse parameter estimation is possible leveraging shift-invariance structures
embedded in matrix pencil with recent matrix completion techniques;

Fundamental performance is determined by the proximity of the frequencies
measured by the conditioning number of the Gram matrix formed by the
sampling the Dirichlet kernel;

Recovering more lines than the number of sensors is made possible by
exploiting the second-order statistics;

Future work: how to compare conventional algorithms with those of convex
optimization?
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Q&A

Publications available on arXiv:

e Robust Spectral Compressed Sensing via Structured Matrix Completion, IEEE
Trans. Information Theory, http://arxiv.org/abs/1304.8126

e Off-the-Grid Line Spectrum Denoising and Estimation with Multiple
Measurement Vectors, submitted, http://arxiv.org/abs/1408.2242

Thank You! Questions?
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