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In many sensing applications, one is interested in
identification of a parametric signal:

x (t) =
r

∑
i=1

die
j2π⟨t,f i⟩, t ∈ ⟦n1⟧ × . . . × ⟦nK⟧

(f i ∈ [0,1)K ∶ frequencies, di ∶ amplitudes, r ∶ model order)

● Occam’s razor: the number of modes r is small.

● Sensing with a minimal cost: how to identify the parametric signal
model from a small subset of entries of x(t)?

● This problem has many (classical) applications in communications,
remote sensing, and array signal processing.

Sparse Fourier Analysis
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Applications in Communications and Sensing

● Multipath channels: a (relatively) small number of strong paths.

● Radar Target Identification: a (relatively) small number of strong scatters.
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● Swap time and frequency:

z (t) =
r

∑
i=1

diδ(t − ti)

● Applications in microscopy imaging
and astrophysics.

● Resolution is limited by the point
spread function of the imaging system

Applications in Imaging
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x (t − τ ) =
r

∑
i=1

die
j2π⟨t−τ ,f i⟩ =

r

∑
i=1

die
−j2π⟨τ ,f i⟩ej2π⟨t,f i⟩

● Prony’s method: root-finding.

● SVD based approaches: ESPRIT [RoyKailath’1989], MUSIC
[Schmidt’1986], matrix pencil [HuaSarkar’1990, Hua’1992].

● spectrum blind sampling [Bresler’ 1996], finite rate of innovation
[Vetterli’ 2001], Xampling [Eldar’ 2011].

● Pros: perfect recovery from (equi-spaced) O(r) samples

● Cons: sensitive to noise and outliers, usually require prior knowledge on
the model order.

Something Old: Parametric Estimation

Exploring Physically-meaningful Constraints: shift invariance of the
harmonic structure
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● Discretize the frequency and assume a sparse representation over the
discretized basis

fi ∈ F = {
0

n1
, . . . ,

n1 − 1

n1
} × {

0

n2
, . . . ,

n2 − 1

n2
} × . . .

● Pros: perfect recovery from O(r logn) random samples, robust against
noise and outliers

● Cons: sensitive to gridding error

Something New: Compressed Sensing

Exploring Sparsity: Compressed Sensing [Candes and Tao’2006, Donoho’2006]
capture the attributes (sparsity) of signals from a small number of samples.
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Sensitivity to Basis Mismatch

● A toy example: x(t) = ej2πf0t:

– The success of CS relies on sparsity in the DFT basis.

– Basis mismatch: Physics places f off grid by a frequency offset.
∗ Basis mismatch translates a sparse signal into an incompressible signal.
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– Finer grid does not help, and one never estimates the true continuous-
valued frequencies! [Chi, Scharf, Pezeshki, Calderbank 2011]
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– revisit matrix pencil proposed for array
signal processing
– revitalize matrix pencil by combining
it with convex optimization
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Our Approach

● Conventional approaches enforce physically-meaningful constraints, but not
sparsity;

● Compressed sensing enforces sparsity, but not physically-meaningful
constraints;

● Approach: We combine sparsity with physically-meaningful constraints, so
that we can stably estimate the continuous-valued frequencies from a minimal
number of time-domain samples.
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Two-Dimensional Frequency Model

● Stack the signal x (t) = ∑
r
i=1 die

j2π⟨t,f i⟩ into a matrix X ∈ Cn1×n2.

● The matrix X has the following Vandermonde decomposition:

X = Y ⋅ D
®

diagonal matrix

⋅ZT .

Here, D ∶= diag{d1,⋯, dr} and

Y ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 ⋯ 1
y1 y2 ⋯ yr
⋮ ⋮ ⋮ ⋮

y
n1−1
1 y

n1−1
2 ⋯ y

n1−1
r

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Vandemonde matrix

,Z ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 ⋯ 1
z1 z2 ⋯ zr
⋮ ⋮ ⋮ ⋮

z
n2−1
1 z

n2−1
2 ⋯ z

n2−1
r

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Vandemonde matrix

where yi = exp(j2πf1i), zi = exp(j2πf2i), f i = (f1i, f2i).

● Goal: We observe a random subset of entries of X, and wish to recover the
missing entries.
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Convex Relaxation
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︸ ︷︷ ︸
H

• Applying Taylor expansion:

Σn
o = Σn

o K∗
︸︷︷︸

sparse matrix

Σn
o + H∗

︸︷︷︸
support known

+ W︸︷︷︸
residual

– Treat W as noise (BUT WHY???)
⇐ W small
⇐ H∗K∗H∗ and Σ0 − Σn

0 small

Yuxin Chen () Model Selection with Missing Data June 21, 2011 9 / 19

● Yes, but it yields sub-optimal performance.

– It requires at least rmax{n1, n2} samples.

● No, X is no longer low-rank if r > min (n1, n2)

– Note that r can be as large as n1n2

Matrix Completion?

recall that X = Y
®

Vandemonde

⋅ D
®

diagonal

⋅ ZT
°

Vandemonde

.

where D ∶= diag{d1,⋯, dr}, and

Y ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 ⋯ 1
y1 y2 ⋯ yr
⋮ ⋮ ⋮ ⋮

y
n1−1
1 y

n1−1
2 ⋯ y

n1−1
r

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,Z ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 ⋯ 1
z1 z2 ⋯ zr
⋮ ⋮ ⋮ ⋮

z
n2−1
1 z

n2−1
2 ⋯ z

n2−1
r

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

● Quick observation: X can be a low-rank matrix with rank(X) = r.

● Question: can we apply Matrix Completion algorithms directly on X?
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Given a data matrix X, Hua proposed the
following matrix enhancement for two-dimensional
frequency models [Hua 1992]:

● Choose two pencil parameters k1 and k2;
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● An enhanced form Xe is an k1 × (n1 − k1 + 1) block Hankel matrix :

Xe =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X0 X1 ⋯ Xn1−k1

X1 X2 ⋯ Xn1−k1+1

⋮ ⋮ ⋮ ⋮

Xk1−1 Xk1 ⋯ Xn1−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where each block is a k2 × (n2 − k2 + 1) Hankel matrix as follows

X l =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xl,0 xl,1 ⋯ xl,n2−k2

xl,1 xl,2 ⋯ xl,n2−k2+1

⋮ ⋮ ⋮ ⋮

xl,k2−1 xl,k2 ⋯ xl,n2−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Revisiting Matrix Pencil: Matrix Enhancement
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The Task

C = A* B*+

Low-rank Matrix

Unknown rank, eigenvectors

Sparse “Errors” Matrix

Unknown support, values

Given
Composite

matrix

Low Rankness of the Enhanced Matrix

● Choose pencil parameters k1 = Θ(n1) and k2 = Θ(n2), the dimensionality of
Xe is proportional to n1n2 × n1n2.

● The enhanced matrix can be decomposed as follows [Hua 1992]:

Xe =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ZL

ZLY d

⋮

ZLY
k1−1
d

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

D [ZR,Y dZR,⋯,Y
n1−k1
d ZR] ,

– ZL and ZR are Vandermonde matrices specified by z1, . . . , zr,
– Y d = diag [y1, y2,⋯, yr].

● The enhanced form Xe is low-rank.

– rank (Xe) ≤ r

– Spectral Sparsity ⇒ Low Rankness

● holds even with damping modes.
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Enhanced Matrix Completion (EMaC)

● The natural algorithm is to find the enhanced matrix with the minimal rank
satisfying the measurements:

minimize
M∈Cn1×n2

rank (M e)

subject to M i,j =Xi,j,∀(i, j) ∈ Ω

where Ω denotes the sampling set.

● Motivated by Matrix Completion, we will solve its convex relaxation,

(EMaC) ∶ minimize
M∈Cn1×n2

∥M e∥∗

subject to M i,j =Xi,j,∀(i, j) ∈ Ω

where ∥ ⋅ ∥∗ denotes the nuclear norm.

● The algorithm is referred to as Enhanced Matrix Completion (EMaC).
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Enhanced Matrix Completion (EMaC)

(EMaC) ∶ minimize
M∈Cn1×n2

∥M e∥∗

subject to M i,j =Xi,j,∀(i, j) ∈ Ω

● existing MC result won’t apply – requires at least O(nr) samples

● Question: How many samples do we need?
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Dirichlet Kernel

Introduce Coherence Measure

● Define the 2-D Dirichlet kernel:

D(k1, k2, f1, f2) ∶=
1

k1k2
(

1 − e−j2πk1f1

1 − e−j2πf1
)(

1 − e−j2πk2f2

1 − e−j2πf2
) ,

● Define GL and GR as r × r Gram matrices such that

(GL)i,l = D(k1, k2, f1i − f1l, f2i − f2l),

(GR)i,l = D(n1 − k1 + 1, n2 − k2 + 1, f1i − f1l, f2i − f2l).
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● Examples: µ = Θ(1) under many scenarios:

– Randomly generated frequencies;
– (Mild) perturbation of grid points;
– In 1D, let k1 ≈

n1
2 : well-separated frequencies (Liao and Fannjiang, 2014):

∆ = mini≠j ∣fi − fj∣ ≳
2
n1

, which is about 2 times Rayleigh limits.

Introduce Incoherence Measure

● Incoherence condition holds w.r.t. µ if

σmin (GL) ≥
1

µ
, σmin (GR) ≥

1

µ
.

Page 17



Theoretical Guarantees for Noiseless Case

● Theorem [Chen and Chi, 2013] (Noiseless Samples) Let n = n1n2. If
all measurements are noiseless, then EMaC recovers X perfectly with high
probability if

m > Cµr log4n.

where C is some universal constant.

● Implications

– deterministic signal model, random observation;

– coherence condition µ only depends on the frequencies but not amplitudes.

– near-optimal within logarithmic factors: Θ(rpolylogn).

– general theoretical guarantees for Hankel (Toeplitz) matrix completion.
— see applications in control, MRI, natural language processing, etc
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Phase Transition
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Figure 1: Phase transition diagrams where spike locations are randomly
generated. The results are shown for the case where n1 = n2 = 15.
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Robustness to Bounded Noise

Assume the samples are noisy X =Xo +N , where N is bounded noise:

(EMaC-Noisy) ∶ minimize
M∈Cn1×n2

∥M e∥∗

subject to ∥PΩ (M −X) ∥F ≤ δ,

● Theorem [Chen and Chi, 2013] (Noisy Samples) Suppose Xo is a noisy
copy of X that satisfies

∥PΩ(X −Xo
)∥F ≤ δ.

Under the conditions of Theorem 1, the solution to EMaC-Noisy satisfies

∥X̂e −Xe∥F ≤ {2
√
n + 8n +

8
√

2n2

m
} δ

with probability exceeding 1 − n−2.

● Implications: The average entry inaccuracy is bounded above by O( nmδ).
In practice, EMaC-Noisy usually yields better estimate.
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Singular Value Thresholding (Noisy Case)

● Several optimized solvers for Hankel matrix completion exist, for example
[Fazel et. al. 2013, Liu and Vandenberghe 2009]

Algorithm 1 Singular Value Thresholding for EMaC
1: initialize Set M0 =Xe and t = 0.

2: repeat
3: 1) Qt ← Dτt (M t) (singular-value thresholding)

4: 2) M t ← HankelX0
(Qt) (projection onto a Hankel matrix consistent with observation)

5: 3) t← t + 1

6: until convergence
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True Signal
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Figure 2: dimension: 101 × 101, r = 30, m
n1n2

= 5.8%, SNR = 10dB.
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Robustness to Sparse Outliers

● What if a constant portion of measurements are arbitrarily corrupted?
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– Robust PCA approach [Candes et. al. 2011, Chandrasekaran et. al. 2011]
– Solve the following algorithm:

(RobustEMaC) ∶ minimize
M ,S∈Cn1×n2

∥M e∥∗ + λ∥Se∥1

subject to (M +S)i,l =X
corrupted
i,l , ∀(i, l) ∈ Ω
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● Implications:

– slightly more samples m ∼ Θ(r2 log3n);
– robust to a constant portion of outliers:
s ∼ Θ(m);

● In summary, EMaC achieves robust recovery
with respect to dense and sparse errors from
a near-optimal number of samples.
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Theoretical Guarantees for Robust Recovery

● Theorem [Chen and Chi, 2013] (Sparse Outliers) Set n = n1n2 and
λ = 1√

m logn
. Let the percent of corrupted entries s ≤ 20% selected uniformly

at random, then RobustEMaC recovers X with high probability if

m > Cµr2 log3n,

where C is some universal constant.
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Phase Transition for Line Spectrum Estimation

Fix the amount of corruption as 10% of the total number of samples:
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Figure 3: Phase transition diagrams where spike locations are randomly
generated. The results are shown for the case where n = 125.
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Related Work

● Cadzow’s denoising with full observation: non-convex heuristic to denoise
line spectrum data based on the Hankel form.

● Atomic norm minimization with random observation: recently proposed by
[Tang et. al., 2013] for compressive line spectrum estimation off the grid.

min
s

∥s∥A subject to PΩ (s) = PΩ (x) ,

where the atomic norm is defined as ∥x∥A = inf {∑i ∣di∣∣x(t) = ∑i die
j2πfit} .

– Random signal model: if the frequencies are separated by 4 times the
Rayleigh limit and the phases are random, then perfect recovery with
O(r log r logn) samples;

– no stability result with random observations;

– extendable to multi-dimensional frequencies [Chi and Chen, 2013], but the
SDP characterization is more complicated [Xu et. al. 2013].
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(Numerical) Comparison with Atomic Norm Minimization

Phase transition for 1D spectrum estimation: the phase transition for atomic
norm minimization is very sensitive to the separation condition. The EMaC, in
contrast, is insensitive to the separation.
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Figure: phase transition for atomic norm minimization without separation (a),
with separation (b); and EMaC without separation (c). The inclusion of
separation doesn’t change the phase transition of EMaC.
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(Numerical) Comparison with Atomic Norm Minimization

Phase transition for 2D spectrum estimation: the phase transition for atomic
norm minimization is very sensitive to the separation condition. The EMaC, in
contrast, is insensitive to the separation. Here the problem dimension n1 = n2 = 8
is relatively small and the atomic norm minimization approach seems in favor
despite of separation.
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Figure: phase transition for atomic norm minimization without separation (a),
with separation (b); and EMaC without separation (c). The inclusion of
separation doesn’t change the phase transition of EMaC.
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Extension to Multiple Measurement Vectors Model

● When multiple snapshots available, it is possible to exploit the covariance
structure to reduce the number of sensors. Without loss of generality,
consider 1D:

x` (t) =
r

∑
i=1

di,`e
j2πtfi, t ∈ {0,1, . . . , n − 1}

where x` = [x`(0), x`(1), . . . , x`(n − 1)]T , ` = 1, . . . , L.

● We assume the coefficients di,` ∼ CN (0, σ2
i ), then the covariance matrix

Σ = E [x`x
H
` ] = toep(u)

is a PSD block Toeplitz matrix with rank(Σ) = r.

● The frequencies can be estimated without separation from u using `1
minimization with nonnegative constraints [Donoho and Tanner’ 2005].
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Observation with the Sparse Ruler

● Observation pattern: Instead of random observations, we assume
deterministic observation pattern Ω over a (minimum) sparse ruler for all
snapshots:

y` = xΩ,` = {x`(t), t ∈ Ω} , ` = 1, . . . , L.

● Sparse ruler in 1D: for Ω ∈ {0, . . . , n − 1}

– Define the difference set:

∆ = {∣i − j∣, ∀i, j ∈ Ω}

– Ω is called a length-n sparse ruler if ∆ = {0, . . . , n − 1}.
– Examples:
∗ when n = 21, Ω = {0,1,2,6,7,8,17,20}.
∗ nested arrays, co-prime arrays [Pal and Vaidyanathan’ 2010, 2011]
∗ minimum sparse rulers [Redei and Renyi, 1949]

● roughly ∣Ω∣ = O(
√
n).
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Covariance Estimation on Sparse Ruler Entries

● Consider the observation on Ω = {0,1,2,5,8},

E [y`y
H
` ] = E

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x`(0)
x`(1)
x`(2)
x`(5)
x`(8)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[xH` (0) xH` (1) xH` (2) xH` (5) xH` (8)]

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u0 uH1 uH2 uH5 uH8
u1 u0 uH1 uH4 uH7
u2 u1 u0 uH3 uH6
u5 u4 u3 u0 uH3
u8 u7 u6 u3 u0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

● which gives the exact full covariance matrix Σ = toep(u) in the absence of
noise and an infinite number of snapshots.
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Two-step Structured Covariance Estimation

● In practice, measurements will be noisy with a finite number of snapshots:

y` = xΩ,` +w`, ` = 1, . . . , L,

where w` ∼ CN (σ2,I).

● Two-step covariance estimation:

– formulate the sample covariance matrix of y`:

ΣΩ,L =
1

L

L

∑
`=1

y`y
H
` ;

– determine the Teoplitz covariance matrix with SDP:

û = argmin
u∶toep(u)⪰0

1

2
∥PΩ(toep(u)) −ΣΩ,L∥

2
F + λTr(toep(u)),

where λ is some regularization parameter.
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Theoretical Guarantee

● Theorem [Li and Chi] Let u⋆ be the ground truth. Set

λ ≥ Cmax

⎧⎪⎪
⎨
⎪⎪⎩

√
r log(Ln)

L
,
r log(Ln)

L

⎫⎪⎪
⎬
⎪⎪⎭

∥Σ⋆
Ω∥

with Σ⋆
Ω = E [ymy

H
m] for some constant C, then with probability at least

1 −L−1, the solution satisfies

1
√
n
∥û −u⋆∥F ≤ 16λ

√
r

if Ω is a complete sparse ruler.

● Remark:

– 1√
n
∥û −u⋆∥F is small as soon as L ≳ O(r2 logn);

– As the rank r (as large as n) can be larger than ∣Ω∣ (as small as
√
n), this

allows frequency estimation even the snapshots cannot be recovered.

Page 32



−1

0

1

−1

0

1

0

0.5

1

1.5

2

Ground truth

−1

0

1

−1

0

1

0

0.5

1

1.5

2

CS with DFT frame

−1

0

1

−1

0

1

0

0.5

1

1.5

2

Correlation−aware with DFT frame

−1

0

1

−1

0

1

0

0.5

1

1.5

2

Atomic norm minimization

−1

0

1

−1

0

1

0

0.5

1

1.5

2

Structured covariance estimation

Numerical Simulations

The algorithm also applies to other observation patterns, e.g. random. Setting:
n = 64, L = 400, ∣Ω∣ = 5, and r = 6.
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Final Remarks

● Sparse parameter estimation is possible leveraging shift-invariance structures
embedded in matrix pencil with recent matrix completion techniques;

● Fundamental performance is determined by the proximity of the frequencies
measured by the conditioning number of the Gram matrix formed by the
sampling the Dirichlet kernel;

● Recovering more lines than the number of sensors is made possible by
exploiting the second-order statistics;

● Future work: how to compare conventional algorithms with those of convex
optimization?
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Q&A

Publications available on arXiv:

● Robust Spectral Compressed Sensing via Structured Matrix Completion, IEEE
Trans. Information Theory, http://arxiv.org/abs/1304.8126

● Off-the-Grid Line Spectrum Denoising and Estimation with Multiple
Measurement Vectors, submitted, http://arxiv.org/abs/1408.2242

Thank You! Questions?
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