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Outline

e Motivating applications

e Mathematical formulation
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Sparse+ Low-rank Matrix Decomposition

Suppose we are given a matrix of data observations:

M=L+S,

where L is low-rank and S is sparse. We do not know the rank of L nor the
sparsity level of S.

Question: Can we recover both L and S from M? What if we only partially
observe M?

This problem has many applications in data-intensive problems.
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Principal Component Analysis

Consider p data samples X = [x1,x9,...,x,] that are centered, x; € R".
PCA seeks the direction that explains most of the variance of the data.

Mathematically, we seek the direction a € R™ (principal component) that
maximizes

. . T
a = argmaxa’ X X' a = argminmin | X — ab’||%
lalla=1 lalla=1®

corresponding to seek the rank-one matrix approximation of X.
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Principal Component Analysis

In general, PCA is useful because the first few principal components (PCs)
explains most of the variance of the data. This amounts to finding the low-rank

approximation of X, i.e.
i X — L|?
ain | ¥

where r is the number of PCs.

Many applications of PCA:

e feature extraction:;

e dimensionality reduction;

PCA justifies the approximate low-rank assumption on X.
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Corruptions

What if the data samples X = [x1,x2,...,x,| are corrupted?

e Outliers/Gross errors due to sensor errors/attacks/etc: each entry in x;
corresponds to a sensor,
Y, =T; +8;
where s; is a sparse vector with the nonzero entries corresponds to outliers.
The corrupted data can be written as

Y=X+S
e T he nominal PCA fails even with a few outliers:

i Y — L||?
ain | |7
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lllustration

The nominal PCA could fail even with one outlier:

L i

L
s
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Video surveillance

Separation of background (low-rank) and foreground (sparse) in video:
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Graphical modeling

Consider a collection of random variables that are jointly Gaussian & ~ N (0, X):

p(x) éexp {—wTE_lw} .= |P|exp {—z' Pz}

where P = X! is the precision matrix.

e The nonzero entries of P describes the conditional independence between
the variables, which can be depicted in a graphical model.

e Graphical model learning: Given i.i.d. samples of x; ~ N (0,X), we want
to learn the support of P.

e An interesting case is when P is sparse, corresponding to the case that most
of the pairs of random variables are conditionally independent.
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Graphical modeling with latent factors

What if we only observe a subset of the variables?
e denote x, as the observed variables;
e denote x; as the hidden variables (latent factors);

The precision matrix of all data can be written as

-1 Po Po,h
2= [Ph,o P,

We only observe the marginal precision matrix on the observed variables x:
—1 ~1
>, =P,—P,,P, Py,
e P, is sparse due to conditional independence;

° Po,thlPh,o Is low-rank if the number of hidden variables is small;
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Structure from motion

In the pipeline of performing SFM, assume we've found a set of good feature
points with their corresponding 2D locations in the images.

Tomasi and Kanade's factorization: Given n points wZT] € R? corresponding to
the location of the ¢th point in the jth frame, define the matrix

M=|: . : | €R"™™ and rank(M) =3

e Occlusions: missing entries in M ;

e Wrong feature point/correspondence: sparse corruptions in M
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Sparse+ Low-rank Decomposition: when is it possible?

|dentifiability issues: a matrix can be simultaneously low-rank and sparse!

1 0 0 0 1 0 1 1
0 0 O 0 0 1 0 0
P V3 S|
o 00 - 0 0 0 O 1]
Would the sparse component to be spread.
we assume its support is uniformly at random.
11 1 1 1 1 1 1
1 1 1 1 0 0 O 0
. . H VS . : :
11 1 - 1] o 00 - 0

Would the low-rank component to be incoherent.
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Low-rank component: Coherence

Let M be a rank-r matrix with the SVD M = UXV?’, where U,V € R"*".

Definition 1. [Coherence] Smallest scalar 11 obeying

T 112 r T_ 112 r
. < _ ‘/ . < —
lrgffg{n Uil H1 1%?% IV=eill2 < =

where e; is the i1th standard basis vector.

€;

e Geometric condition: U = colspan(M)

o Since .7 U e||2 =7, 1 > 1.

o Ife; cU, uy =n/r;

We would like [y = 0(1)_ o If %1 — U, = 1. __
age



Low-rank component: Joint Coherence

Definition 2. [Joint Coherence] Smallest scalar uo obeying

UV < /B2

n2

This avoids UV to be too peaky.

o 11 < pg < pr, since

Hir
UV = [ujv;] <=~
v, > EZ(UVT ——HvTe H2

oo n J

1

e The incoherence parameter 1 is sufficient and necessary for MC, while o
is necessary for Robust PCA (connection to the planted clique problem [c.f.

Chen, 2015]).
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Algorithm

Non-convex heuristic:

(L, 8) = argminrank(L) + A||S|lo, st. M =L+ 8.
L,S

Convex relaxation: Principal Component Pursuit (PCP)

(L, 8) = argmin | L|[, + \|S||, st M=L+8
L.S

where || - ||« is the nuclear norm, and || - ||; is the entry-wise ¢1 norm.

e )\ > 0 is some regularization parameter that balances the two terms.

e The algorithm is convex.
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Performance Guarantee

o Lg isn x n of rank(Lg) < pyn pu~(logn)=?2
@ Sp is n x n, random sparsity pattern of cardinality m < p3n2
Then with probability 1 — O(n=1°), PCP with \ = 1/./n is exact:

L=1Lo., S=5

Same conclusion for rectangular matrices with A\ = 1/v/max dim

Remark:
e No tuning parameters: A = 1/4/n is prefixed by the theorem.

e Essentially optimal: rank(L) = O(n), ||S]|lo = O(n?)

e Arbitrary magnitudes and sign patterns of L and S
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Phase transition
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(c) Matrx Completion

Figure 1: Correct recovery for varying rank and sparsity. Fraction of correct recoveries
across 10 trials, as a function of rank(Lg) (x-axis) and sparsity of Sy (y-axis). Here, ny = ng =
400. In all cases, Ly = XY* is a product of independent n x r i.i.d. A/(0,1/n) matrices. Trials
are considered successful if ||L —Lg||r /|| Lo||r < 10~2. Left: low-rank and sparse decomposition,
sgn(Sg) random. Middle: low-rank and sparse decomposition, Sp = Pgsgn(Lg). Right: matrix
completion. For matrix completion, p, is the probability that an entry is omitted from the
observation.
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Connections with Matrix Completion

Comparison with Matrix Completion:

' 7 7 7 x 77 x B B B x &

2 7 x x 7 7 2 B x x B E

x ? 7 x ? 7 x B B x B &

7 7 x 7 7 x EE x & & x
?2 2?2 2?2 2 2

T > 2 A A A A

i . Rl o L T
MC: missing RPCA: corrupted

e In MC we know where the entries are missing; while in RPCA we do not
know the locations of corruptions.
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MC with Corruptions

What if we have both missing data and corruptions?

e Consider we only have partial observations of a low-rank matrix L on the
Index set (), and the observed matrix M satisfies

M;; = Lij + Si;, (i,7) € Q
where S = (5;,) is a sparse matrix supported on §2.

e A natural extension of RPCA:

(L, 8) = argmin || L|[, + A|S|li, st. M =Pqo(L+S)
L.S
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MC with Corruptions: Guarantee

o Lo isn x n as before, rank(Lo) < pynp~(logn) 2

o Q.ps random set of size® m = 0.1n>

@ each observed entry is corrupted with probability T < 5
Then with probability 1 — O(n=19), PCP with A = 1//0.1n is exact:

L =1Ly

Same conclusion for rectangular matrices with A\ = 1/+/0.1max dim

?missing fraction is arbitrary

e No tuning parameters: A = 1/4/n is prefixed by the theorem.

e Essentially optimal: rank(L) = O(n), |

Sllo = O(m)

e Arbitrary magnitudes and sign patterns of L and S
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Application in Accelerated MRI

[Otazo et.al. 2014]: "“The combination of compressed sensing and low-rank
matrix completion represents an attractive proposition for further increases in

imaging speed...”

L+S decomposition of fully-sampled 2D cardiac cine data corresponding to the
central x location. The low-rank component captures the correlated background
among temporal frames and the sparse component S the remaining dynamic

information (heart motion).
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Application in Accelerated MRI

L+S decomposition improves the performance of CS in accelerated MRI
significantly with lower residual aliasing artifacts.

CS

L+S

Constructing betters priors on the signals helps performance!
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