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Outline

• Motivating applications

• Mathematical formulation
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Sparse+ Low-rank Matrix Decomposition

Suppose we are given a matrix of data observations:

M = L + S,

where L is low-rank and S is sparse. We do not know the rank of L nor the
sparsity level of S.

Question: Can we recover both L and S from M? What if we only partially
observe M?

This problem has many applications in data-intensive problems.
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Principal Component Analysis

Consider p data samples X = [x1,x2, . . . ,xp] that are centered, xi ∈ Rn.
PCA seeks the direction that explains most of the variance of the data.
Mathematically, we seek the direction a ∈ Rn (principal component) that
maximizes

a = argmax
‖a‖2=1

aTXXTa = argmin
‖a‖2=1

min
b
‖X − abT‖2F

corresponding to seek the rank-one matrix approximation of X.
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Principal Component Analysis

In general, PCA is useful because the first few principal components (PCs)
explains most of the variance of the data. This amounts to finding the low-rank
approximation of X, i.e.

min
rank(L)=r

‖X −L‖2F

where r is the number of PCs.

Many applications of PCA:

• feature extraction;

• dimensionality reduction;

PCA justifies the approximate low-rank assumption on X.
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Corruptions

What if the data samples X = [x1,x2, . . . ,xp] are corrupted?

• Outliers/Gross errors due to sensor errors/attacks/etc: each entry in xi

corresponds to a sensor,
yi = xi + si

where si is a sparse vector with the nonzero entries corresponds to outliers.
The corrupted data can be written as

Y = X + S

• The nominal PCA fails even with a few outliers:

min
rank(L)=r

‖Y −L‖2F
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Illustration

The nominal PCA could fail even with one outlier:
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Video surveillance

Separation of background (low-rank) and foreground (sparse) in video:

M = L + S
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Graphical modeling

Consider a collection of random variables that are jointly Gaussian x ∼ N (0,Σ):

p(x) ∝ 1

|Σ|
exp

{
−xTΣ−1x

}
:= |P | exp

{
−xTPx

}
where P = Σ−1 is the precision matrix.

• The nonzero entries of P describes the conditional independence between
the variables, which can be depicted in a graphical model.

• Graphical model learning: Given i.i.d. samples of xi ∼ N (0,Σ), we want
to learn the support of P .

• An interesting case is when P is sparse, corresponding to the case that most
of the pairs of random variables are conditionally independent.

Page 10



Graphical modeling with latent factors

What if we only observe a subset of the variables?

• denote xo as the observed variables;

• denote xh as the hidden variables (latent factors);

The precision matrix of all data can be written as

Σ−1 =

[
P o P o,h

P h,o P h

]
We only observe the marginal precision matrix on the observed variables x0:

Σ−1
o = P o − P o,hP

−1
h P h,o

• P o is sparse due to conditional independence;

• P o,hP
−1
h P h,o is low-rank if the number of hidden variables is small;
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Structure from motion

In the pipeline of performing SFM, assume we’ve found a set of good feature
points with their corresponding 2D locations in the images.

Tomasi and Kanade’s factorization: Given n points xT
i,j ∈ R2 corresponding to

the location of the ith point in the jth frame, define the matrix

M =

x1,1 · · · x1,m
... . . . ...

xn,1 · · · xn,m

 ∈ Rn×2m, and rank(M) = 3

• Occlusions: missing entries in M ;

• Wrong feature point/correspondence: sparse corruptions in M ;
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Sparse+ Low-rank Decomposition: when is it possible?

Identifiability issues: a matrix can be simultaneously low-rank and sparse!


1 0 0 · · · 0
0 0 0 · · · 0
... ... ...
0 0 0 · · · 0

 vs


1 0 1 · · · 1
0 1 0 · · · 0
... ... 1
0 0 0 · · · 1


Would the sparse component to be spread.
we assume its support is uniformly at random.


1 1 1 · · · 1
1 1 1 · · · 1
... ... ...
1 1 1 · · · 1

 vs


1 1 1 · · · 1
0 0 0 · · · 0
... ... ...
0 0 0 · · · 0


Would the low-rank component to be incoherent.
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We would like µ1 = O(1).

• Geometric condition: U = colspan(M)

• Since
∑n

i=1 ‖U
Tei‖22 = r, µ1 ≥ 1.

• If ei ∈ U , µ1 = n/r;

• If 1√
n
1 = U , µ1 = 1.

Low-rank component: Coherence

Let M be a rank-r matrix with the SVD M = UΣV T , where U ,V ∈ Rn×r.

Definition 1. [Coherence] Smallest scalar µ1 obeying

max
1≤i≤n

‖UTei‖22 ≤ µ1
r

n
, max

1≤i≤n
‖V Tei‖22 ≤ µ1

r

n
,

where ei is the ith standard basis vector.
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Low-rank component: Joint Coherence

Definition 2. [Joint Coherence] Smallest scalar µ2 obeying

‖UV T‖∞ ≤
√
µ2r

n2

This avoids UV T to be too peaky.

• µ1 ≤ µ2 ≤ µ2
1r, since

|(UV T )ij| = |uT
i vj| ≤

µ1r

n

‖UV T‖∞ ≥
1

n

∑
i

(UV T )2
ij =

1

n

∥∥∥V Tej

∥∥∥2

2

• The incoherence parameter µ1 is sufficient and necessary for MC, while µ2

is necessary for Robust PCA (connection to the planted clique problem [c.f.
Chen, 2015]).
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Algorithm

Non-convex heuristic:

(L̂, Ŝ) = argmin
L,S

rank(L) + λ‖S‖0, s.t. M = L + S.

Convex relaxation: Principal Component Pursuit (PCP)

(L̂, Ŝ) = argmin
L,S

‖L‖∗ + λ‖S‖1, s.t. M = L + S

where ‖ · ‖∗ is the nuclear norm, and ‖ · ‖1 is the entry-wise `1 norm.

• λ > 0 is some regularization parameter that balances the two terms.

• The algorithm is convex.
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Performance Guarantee

Remark:

• No tuning parameters: λ = 1/
√
n is prefixed by the theorem.

• Essentially optimal: rank(L) = O(n), ‖S‖0 = O(n2)

• Arbitrary magnitudes and sign patterns of L and S!
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Phase transition
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Connections with Matrix Completion

Comparison with Matrix Completion:

• In MC we know where the entries are missing; while in RPCA we do not
know the locations of corruptions.
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MC with Corruptions

What if we have both missing data and corruptions?

• Consider we only have partial observations of a low-rank matrix L on the
index set Ω, and the observed matrix M satisfies

Mij = Lij + Sij, (i, j) ∈ Ω

where S = (Sij) is a sparse matrix supported on Ω.

• A natural extension of RPCA:

(L̂, Ŝ) = argmin
L,S

‖L‖∗ + λ‖S‖1, s.t. M = PΩ(L + S)
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MC with Corruptions: Guarantee

• No tuning parameters: λ = 1/
√
n is prefixed by the theorem.

• Essentially optimal: rank(L) = O(n), ‖S‖0 = O(m)

• Arbitrary magnitudes and sign patterns of L and S!
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Application in Accelerated MRI

[Otazo et.al. 2014]: “The combination of compressed sensing and low-rank
matrix completion represents an attractive proposition for further increases in
imaging speed...”

L+S decomposition of fully-sampled 2D cardiac cine data corresponding to the
central x location. The low-rank component captures the correlated background
among temporal frames and the sparse component S the remaining dynamic
information (heart motion).
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Application in Accelerated MRI

L+S decomposition improves the performance of CS in accelerated MRI
significantly with lower residual aliasing artifacts.

Constructing betters priors on the signals helps performance!
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