
ECE 8201: Low-dimensional Signal Models for
High-dimensional Data Analysis

Lecture 5: FISTA

Yuejie Chi

The Ohio State University

Page 1

Reference

• Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding
algorithm for linear inverse problems. SIAM journal on imaging sciences,
2(1), 183-202.

See also:

• Nesterov, Y. (2007). Gradient methods for minimizing composite objective
function.

• Lecture notes by L. Vandenberghe.
http://www.seas.ucla.edu/~vandenbe/236C/lectures/fgrad.pdf.

Page 2

http://www.seas.ucla.edu/~vandenbe/236C/lectures/fgrad.pdf

How to solve composite optimization problems?

General composite optimization problem:

(COP) : x̂ = argmin
x
{F (x) = f(x) + g(x)}

• f(x) is convex and differentiable,

• g(x) is convex, possibly non-differentiable

Examples:

• LASSO: f(x) = 1
2‖y −Ax‖22, and g(x) = λ‖x‖1. (focus of this lecture)

• Nuclear norm minimization (later for matrix completion):

f(X) = ‖PΩ(Y −X)‖2F, g(X) = λ‖X‖∗

where ‖X‖∗ =
∑min(m,n)
i=1 σi(X), the sum of the singular values of X ∈

Rm×n.

Page 3

Motivation

Standard methods (e.g. subgradient methods) for solving COP has very slow
convergence rate (need O(1/ε2) iterations to reach ε accuracy).

We would discuss an algorithm called FISTA that

• is iterative, and has low computational cost (first-order algorithm, which
requires computation of a single gradient per iteration);

• has quadratic convergence rate;

• performs well in practice and works for a large class of problems.

FISTA stands for Fast Iterative Shrinkage-Thresholding Algorithm.

Page 4

Gradient descent

Consider the unconstrained minimization of a continuously differentiable function
f(x) as

x̂ = argmin
x

f(x)

using gradient descent: start with an initialization x0 ∈ Rn, and iterate

xk = xk−1 − tk∇f(xk−1)

where tk is a suitable step-size at step k.

Key observation: we can view the gradient descent step as solving a proximal
regularization of the linearized function f at xk−1,

xk = argmin
x

{
f(xk−1) + 〈x− xk−1,∇f(xk−1)〉+

1

2tk
‖x− xk−1‖22

}
.

Page 5

Generalized gradient descent

In the COP,
x̂ = argmin

x
f(x) + g(x)

we would like to generalize the proximal regularization idea, by extending the
update rule as

xk = argmin
x

{
f(xk−1) + 〈x− xk−1,∇f(xk−1)〉+

1

2tk
‖x− xk−1‖22+g(x)

}
.

This can be simplified (by ignoring constant terms) as

xk = argmin
x

{
1

2tk
‖x− (xk−1 − tk∇f(xk−1))‖22 + g(x)

}
(∗)

Page 6

Proximal mapping

Definition 1. The proximal mapping (operator) of a convex function g(x) is
written as

proxg(x) = argmin
u

{
1

2
‖u− x‖22 + g(u)

}
.

• g(x) = 0: proxg(x) = x.

• g(x) = IC(x) is an indicator function of a convex set C, then

proxg(x) = argmin
u∈C

‖u− x‖22

• g(x) = λ‖x‖1: proxg(x) is the shrinkage (soft-thresholding) operator and
can be decomposed entry-wise:

proxg(xi) := Tλ(xi) =

 xi − λ, xi ≥ λ
0, |xi| < λ

xi + λ, xi ≤ −λ
Page 7

Generalized gradient descent and ISTA

• The generalized gradient descent (*) can be regarded as a proximal mapping:

xk = argmin
x

{
1

2tk
‖x− (xk−1 − tk∇f(xk−1))‖22 + g(x)

}
= proxtkg(xk−1 − tk∇f(xk−1))

• When f(x) = 1
2‖y −Ax‖22, and g(x) = λ‖x‖1, this gives the update rule

for ISTA (Iterative Shrinkage-Thresholding Algorithm), or proximal gradient
descent:

xk = proxλtk‖x‖1(xk−1 − tk∇f(xk−1))

= proxλtk‖x‖1(xk−1 − tk∇f(xk−1))

= Tλtk(xk−1 − tk∇f(xk−1))

where ∇f(xk−1) = AT(Ax− y). This can be efficiently computed.

Page 8

Choice of step size

• Constant step-size: tk = t

• Backtracking line search: start with t0 and do t = βt until

f(x− t∇f(x)) ≤ f(x)− αt‖∇f(x)‖22

with 0 < α, β < 1, e.g. α = 1/2.

Page 9

Assumptions

• g : Rn 7→ R is a continuous convex function, possibly nonsmooth;

• f : Rn 7→ R is a smooth convex function that is continuously differentiable
with Lipschitz constant:

‖∇f(x)−∇f(y)‖ ≤ Lf‖x− y‖, ∀x,y ∈ Rn.

Example: For LASSO problems, we have Lf = σmax(ATA).

• The optimal value of F = f + g is F ? with optimal solution x?.
Page 10

Convergence of ISTA

Theorem 1. [Convergence for generalized gradient descent] Fix step size
tk = t ≤ 1/L,

F (xk)− F ∗ ≤
‖x0 − x?‖22

2tk
Similar results hold with backtracking for step size.

• Similar to the convergence of gradient descent

• The best possible is O(1/k2) for first-order methods – can we achieve it?

The answer is yes, with minimal additional computational cost.

Page 11

Accelerated Gradient Descent

ISTA reaches an accuracy within O(1/k) after k steps; this is not optimal
(which is O(1/k2). The methods of Nesterov meet the optimal bound with the
same computational cost (one gradient computation per iteration).

• We will first examine Nesterov’s acceleration method (1983) for smooth
convex functions;

• We then extend it to optimizing composite functions, using FISTA (Beck
and Teboulle, 2009), which extends Nesterov’s method.

Page 12

Nesterov’s ACG for convex smooth function

Consider minimizing a convex smooth function f(x) with Lipschitz constant L:

x̂ = argmin
x

f(x)

Nesterov’s Accelerated Gradient Descent performs attains a rate of O(1/k2). It
proceeds as below:

• Start with an initialization x0 = x−1, θ0 = 0;

• for k = 1, 2, . . . ,

θk =
1 +

√
1 + 4θ2

k−1

2
,

yk = xk−1 +

(
θk−1 − 1

θk

)
(xk−1 − xk−2)

xk = yk − tk∇f(yk)
Page 13

Remark: other choice of the momentum term with θk =
k+1

2 :

yk = xk−1 +
k − 2

k + 1
(xk−1 − xk−2)

Theorem 2. [Nesterov 1983] The Nesterov’s AGD satisfies

f(yk)− f(x?) ≤
2‖x0 − x?‖22

Lk2

Achieves the optimal rate!

Page 14

FISTA

The FISTA algorithm with step size tk (e.g. tk = 1
L, where Lf is the Lipschitz

constant of f):

• Initialization: x0 = x−1 ∈ Rn, θ0 = 1,

• For k = 1, 2, . . . ,

θk =
1 +

√
1 + 4θ2

k−1

2

yk = xk−1 +

(
θk−1 − 1

θk

)
(xk−1 − xk−2)

xk = proxtkg (yk − tk∇f(yk))

FISTA is computationally efficient when the proximal operator can be computed
efficiently (e.g. LASSO).

Page 15

Interpretation

• first iteration is a proximal gradient step at y1 = x0

• next iterations are proximal gradient steps at extrapolated points yk, k ≥ 2,
with the linear combinations carefully chosen.

Page 16

Case Study: LASSO

For LASSO: set y1 = x0 ∈ Rn, θ1 = 0, and tk = 1/σmax(ATA) (constant
step-size), iterate

θk =
1 +

√
1 + 4θ2

k−1

2

yk = xk−1 +

(
θk−1 − 1

θk

)
(xk−1 − xk−2)

xk = Tλtk
(
yk − tkAT(Ayk − y)

)
The main computation cost to apply A and AT; no matrix inversion is needed.

Page 17

Convergence of FISTA

Theorem 3.

F (xk)− F (x?) ≤
2L‖x0 − x?‖22

(k + 1)2
∼ O

(
1

k2

)

Page 18

Proof of Theorem 3

• Introduce another sequence vk, which satisfies

vk := xk−1 + θk(xk − xk−1)

yk =
1

θk
vk−1 +

(
1− 1

θk

)
xk−1

• Two useful facts:

1. vk = vk−1 + θk(xk − yk)

2.
(
1− 1

θk

)
θ2
k = θ2

k−1

Page 19

Important inequalities

Upper bound of f from Lipschitz property:

‖∇f(x)−∇f(y)‖ ≤ Lf‖x− y‖, ∀x,y ∈ Rn.

we have

f(y) ≤ f(x) +∇f(x)T(y − x) +
Lf
2
‖y − x‖22, ∀x,y

Page 20

Important inequalities

Upper bound of g from definition of proximal operator:

g(y) ≤ g(z) + 1

t
(w − y)T(y − z), ∀w, z,y = proxtg(w)

Proof: since y = proxtg(w) minimizes tg(u) + 1
2‖w − u‖22 by definition, we

have
0 ∈ t∂g(y) + (y −w)

i.e.
1

t
(w − y) ∈ ∂g(y),

By the definition of subgradient we have ∀z,

g(z) ≥ g(y) + 1

t
(w − y)T(z − y)

Page 21

Progress in one iteration

Define x+ = xk, x = xk−1, y = yk, θ = θk, v = vk−1, v+ = vk,

• upper bound from Lipschitz property: if 0 < t ≤ 1/L,

f(x+) ≤ f(y) +∇f(y)T(x+ − y) +
1

2t
‖y − x+‖22

• upper bound from the definition of prox-operator (x+ = proxtg(y−t∇f(y))):

g(x+) ≤ g(z) +∇f(y)T(z − x+) +
1

t
(x+ − y)T(z − x+), ∀z

• add the upper bounds and use convexity of f :

F (x+) ≤ F (z) + 1

t
(x+ − y)T(z − x+) +

1

2t
‖y − x+‖22, ∀z

Page 22

• make convex combination of upper bounds for z = x and z = x?:

F (x+)−F ? −
(
1− 1

θ

)
(F (x)− F ?) = F (x+)− 1

θ
F ? −

(
1− 1

θ

)
F (x)

≤ 1

t
(x+ − y)T

(
1

θ
x? + (1− 1

θ
)x− x+

)
+

1

2t
‖y − x+‖22

=
1

2t

(
‖y − 1

θ
x? + (1− 1

θ
)x‖22 − ‖x+ − 1

θ
x? + (1− 1

θ
)x‖22

)
=

1

2θ2t

(
‖v − x?‖22 − ‖v+ − x?‖22

)
We now have, at the kth iteration:

θ2
kt (F (xk)− F ?) +

1

2
‖vk − x?‖22 ≤

(
θ2
k − θk

)
t(F (xk−1)− F ?) +

1

2
‖vk−1 − x?‖22

= θ2
k−1t(F (xk−1)− F ?) +

1

2
‖vk−1 − x?‖22

Page 23

Applying the above relationship recursively, we obtain

θ2
kt (F (xk)− F ?) +

1

2
‖vk − x?‖22 ≤ θ2

0t(F (x0)− F ?) +
1

2
‖v0 − x?‖22

=
1

2
‖x0 − x?‖22

therefore, plug in t = 1
L,

F (xk)− F ? ≤
1

2θ2
kt
‖x0 − x?‖22 ≤

2L

(k + 1)2
‖x0 − x?‖22.

Page 24

Alternative formulation

Alternative formulation:

• Initialization: y1 = x0 ∈ Rn, and Lf is the Lipschitz constant;

• Fix step size tk =
1
L.

• For k = 1, 2, . . . ,

xk = proxtkg (yk − tk∇f(yk))

yk+1 = xk +

(
k − 2

k + 1

)
(xk − xk−1)

Convergence speed O(1/k2) in k steps.

Page 25

Computational-Statistical Trade-off

If there is indeed a ground truth x? and we wish x̂ is close to x?; we have a
sequence of {xk} and hope xk converges to x̂. At a fixed k, we may bound

‖xk − x?‖2 ≤ ‖xk − x̂‖2︸ ︷︷ ︸
computational error

+ ‖x̂− x?‖2︸ ︷︷ ︸
statistical error

Active research in studying the computational-statistical trade-offs in statistical
estimation.

Page 26

