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Reference

e Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding
algorithm for linear inverse problems. SIAM journal on imaging sciences,

2(1), 183-202.

See also:

e Nesterov, Y. (2007). Gradient methods for minimizing composite objective

function.

e |ecture notes by L. Vandenberghe.
http://www.seas.ucla.edu/~vandenbe/236C/lectures/fgrad.pdf.
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How to solve composite optimization problems?

General composite optimization problem:

(COP): & =argmin{F(z) = f(z) +g(z)}

e f(x) is convex and differentiable,

e g(x) is convex, possibly non-differentiable

Examples:

e LASSO: f(z) = 35|ly — Az||3, and g(xz) = A|jz||;. (focus of this lecture)

e Nuclear norm minimization (later for matrix completion):
F(X)=Pa(Y = X)lle,  9(X) = AIX]l

where || X ||, = Zg?(m’n) o;(X), the sum of the singular values of X €
Ran.
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Motivation

Standard methods (e.g. subgradient methods) for solving COP has very slow
convergence rate (need O(1/€?) iterations to reach € accuracy).

We would discuss an algorithm called FISTA that

e is iterative, and has low computational cost (first-order algorithm, which
requires computation of a single gradient per iteration);

e has quadratic convergence rate;

e performs well in practice and works for a large class of problems.

FISTA stands for Fast |terative Shrinkage-Thresholding Algorithm.
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Gradient descent

Consider the unconstrained minimization of a continuously differentiable function

f(x) as

& = argmin f(x)
T

using gradient descent: start with an initialization x5 € R™, and iterate

Ty = Tr—1 — txVf(Tr—1)

where t;, is a suitable step-size at step k.

Key observation: we can view the gradient descent step as solving a proximal
regularization of the linearized function f at x;_1,

1

T} = argmin {f(f'?k—l) +( — Tp—1, V(1)) + Q—%HZB - wk—l”%} :
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Generalized gradient descent

In the COP,
& = argmin f(x) + g(x)

T

we would like to generalize the proximal regularization idea, by extending the
update rule as

: 1
T = argmin {f(il?k—l) + (T — Tp—1, Vf(Tr-1)) + Q—tkllw - wk—1|\§+9(iﬂ)} :

This can be simplified (by ignoring constant terms) as

o = arguin {5 lo ~ (@11~ 69 @) B +g(@) | ()
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Proximal mapping

Definition 1. The proximal mapping (operator) of a convex function g(x) is
written as

u

|1
pros, (&) = arguin { 5 lu ~ 3 + g(w) |
e g(x) = 0: prox,(x) = .
e g(x) = Ico(x) is an indicator function of a convex set C, then

prox,(x) = argmin |lu — |3
ucC

e g(x) = A||z||1: prox,(x) is the shrinkage (soft-thresholding) operator and
can be decomposed entry-wise:

r; — )\, XI; Z A
prox,(z;) := Ta(x;) = 0, ;| < A
x; + )\, €I; S —A

Page 7



Generalized gradient descent and ISTA

e The generalized gradient descent (*) can be regarded as a proximal mapping:
: 1 9
Ty = argmin § o[ — (Tr—1 — &V [(@r-1))[2 + 9(x)
x 2tk
= pI‘Othg(ZBk_l — thf(wk_1>)

e When f(z) = 3|ly — Az|3, and g(z) = A||z|1, this gives the update rule

for ISTA (lterative Shrinkage-Thresholding Algorithm), or proximal gradient
descent:

T = ProXyy, (o), (Th—1 — LV f(Tr-1))
= ProXy, (ol (k-1 — tV f(Zk-1))

— 7;\,5]{(33]{_1 — tkvf(wk—l))

where V f(xr_1) = AT(Ax — y). This can be efficiently computed.
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Choice of step size

e Constant step-size: ¢, =t

e Backtracking line search: start with ¢y and do ¢t = (3t until

f(x =tV f(z)) < f(z) — at||[Vf(z)|3

with0 < a,8<1,eg a=1/2

flz +tv)

\

i
fl@) =3IV @)

———

v

A |V £ ()|

Page 9



Assumptions

e g:R"™— R is a continuous convex function, possibly nonsmooth;

e {:R"+— R is a smooth convex function that is continuously differentiable
with Lipschitz constant:

IVi(®) =Vl < Lylle —yll, vz,ycR™

Example: For LASSO problems, we have L = 0.x(ATA).

e The optimal value of F' = f 4 g is I with optimal solution x*.
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Convergence of ISTA

Theorem 1. [Convergence for generalized gradient descent] Fix step size
tr =1 < 1/L,
o — 2|13
2tk
Similar results hold with backtracking for step size.

F(a?k)—F*S

e Similar to the convergence of gradient descent
e The best possible is O(1/k?) for first-order methods — can we achieve it?

The answer is yes, with minimal additional computational cost.
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Accelerated Gradient Descent

ISTA reaches an accuracy within O(1/k) after k steps; this is not optimal
(which is O(1/k?). The methods of Nesterov meet the optimal bound with the
same computational cost (one gradient computation per iteration).

e We will first examine Nesterov's acceleration method (1983) for smooth
convex functions;

e We then extend it to optimizing composite functions, using FISTA (Beck
and Teboulle, 2009), which extends Nesterov's method.
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Nesterov’'s ACG for convex smooth function

Consider minimizing a convex smooth function f(x) with Lipschitz constant L:

& = argmin f(x)

xr

Nesterov's Accelerated Gradient Descent performs attains a rate of O(1/k?). It
proceeds as below:

e Start with an initialization g = x_1, 6y = 0;

o fork=1,2,...,

L+ /1+467_,
2 Y

01— 1
Tr_1+ ( u ;k ) (L)1 — xp_2)

xr =Yr — e Vf(yr)

=S
S
|

Yk
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Remark: other choice of the momentum term with 6, = %:

k—2( )
=T 1+ ——(Tp_1 — Tp_
Yk k—1 L 1 k—1 k—2

Theorem 2. [Nesterov 1983] The Nesterov’s AGD satisfies

2]z — |3

f(yk) o f(w*) < LE2

Achieves the optimal rate!
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FISTA

The FISTA algorithm with step size t; (e.g. tr =
constant of f):

%, where Ly is the Lipschitz

e Initialization: xg = x_1; € R", 6y = 1,

o Fork=1,2,...,

Y = L1 T ( 0 ) (Tr—1 — Tg—2)
k

xy = prox; ., (Yr — eV f(yr))

FISTA is computationally efficient when the proximal operator can be computed
efficiently (e.g. LASSO).

Page 15



Interpretation

e first iteration is a proximal gradient step at y; = xg

e next iterations are proximal gradient steps at extrapolated points yi, k > 2,
with the linear combinations carefully chosen.

z(k) = proX,,g (¥ — VS (y))
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Case Study: LASSO

For LASSO: set y; = o € R", 0 = 0, and tx = 1/omax(ATA) (constant
step-size), iterate

L4 /1+467
0y, = :

Or_1—1
Yk Zin;—1+( i (91 )(wk—1 —wkz—2)
k

xi = T, (Ye — thAT(Ay, — y))

The main computation cost to apply A and AT; no matrix inversion is needed.
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Convergence of FISTA

Theorem 3.

k|2
F(xy) — F(x*) < 2Lllzo — 2l (i>

=Tkt 1)? k2
10° :
= = =ISTA
----- MTWIST
FISTA
]
10 l—
-ID_E 1 1 1 1
0 2000 4000 6000 8000 10000

Figure 5. Comparison of function value errors F(x;) — Fi(x") of ISTA, MTWIST, and FISTA.
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Proof of Theorem 3

e Introduce another sequence vy, which satisfies

Vi = Xp—1 + Ok(Tr — Tp—1)

1 1
Y = —Vp—1+ |1 —— | Tr_1

e [wo useful facts:

l. v, = v_1 + Qk(wk — ykz)

2 (1-g) ez =62,
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Important inequalities

Upper bound of f from Lipschitz property:
IVf(x) =V iyl < Lyl —yl, Ve yeR"

we have

fly) < fla) + V@) (- 2)+ Ly 2l ey
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Important inequalities

Upper bound of g from definition of proximal operator:

1

9(y) < 9(z) + (w—y)'(y - 2), Vw,z,y = prox,(w)

Proof: since y = prox,,(w) minimizes tg(u) + Hlw — u||3 by definition, we
have
0 € tdg(y) + (y —w)

1

F(w—y) €dg(y),

By the definition of subgradient we have Vz,

o(2) > g(y) + ;(w — 4)7 (=~ )
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Progress in one iteration

Define xt =xp, T =1, Yy =Yg, 0 =0, v =v_1, v = vy,

e upper bound from Lipschitz property: if 0 <t < 1/L,

fa) < Fy) + Vi) @ — )+ oy~ 23

e upper bound from the definition of prox-operator (™ = prox,, (y—tV f(y))):

o(@) < g(2) + V@) (z ~2) + (@ —y)(z —2), V2

e add the upper bounds and use convexity of f:

1 1
P(@®) < F(2)+(x* —9)"(z —2*) + S|y — =" |3 vz
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e make convex combination of upper bounds for z = x and z = x*:

lﬂxﬂ—F*—(1—%)@%@%nﬁjzﬁﬁﬁj—%F*—(1—%)F@ﬁ

1 1 1
+ _ aN\T [ Zp* _ = _ pt _ _ 2
@~y (jo (1 o —at) + gy - @

B / 0
_ L
20%1

| | 1 1 1
(Iy = o+ (1= ol - ¥ = go™+ (1 - o)

(Ilv ="z = [lv™" — =*[3)

We now have, at the kth iteration:

1 1 X
Ot (F(@y) = F*) + Sllok — a3 < (67 = 0k) tF (@1) = F*) + Sllvg — 2|5

1
= 0} _1t(F(xp_1) — F*) + §Hvk—1 — x5
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Applying the above relationship recursively, we obtain

1 1

Ot (F(xr) — F*) + 5ok = x*||3 < 05t(F (o) — F*) + 5llvo = (|3
1 *
=~ o — 2
therefore, plug in t = %
1 * (12 2L * |12
F(x,) — F* < %HC’?O —x¥||5 < it 1)2||£130 —x*||5.
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Alternative formulation

Alternative formulation:
e Initialization: y; = xo € R", and L is the Lipschitz constant;
e Fix step size t;, = %

e Fork=1,2,...,

T} = Prox,, , (yr — eV f(yr))

— 1.+ k=2 (), — Tp_1)
Yk+1 = Tk k1 L k—1

Convergence speed O(1/k?) in k steps.
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Computational-Statistical Trade-off

If there is indeed a ground truth &* and we wish @ is close to *; we have a
sequence of {x;} and hope x; converges to &. At a fixed k, we may bound

lep — ™o < zp —Zly + -7

computational error statistical error

Active research in studying the computational-statistical trade-offs in statistical
estimation.
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