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Outline

• One-step thresholding

• Orthogonal Matching Pursuit (OMP)

• Compressive Sampling Matching Pursuit (CoSaMP)
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Greedy algorithms

Consider the noise-free case
y = Ax

where x ∈ Rn is k-sparse, and A = [a1, . . . ,an] with unit-norm columns, i.e.
‖ai‖2 = 1.

Our goal is to estimate x from y.

If x is one-sparse as x = ei which is a basis vector in Rn, then y is just ai, and
a natural way to determine i is using matched filter:

i∗ = argmax
1≤i≤n

|〈ai,y〉|

We would like to extend this principle to handle sparsity level greater than one.

Page 4



One-step thresholding

One-Step Thresholding (OST) for support recovery (assume k is known):

1. Compute:
z = ATy

2. Find the support as the k largest entries of |z|.
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Performance of OST

It is easy to analyze the performance of OST via mutual coherence, which is
defined as

µ = max
i6=j
|〈ai,aj〉|.

Note that

z = ATy = ATAx

If the interference from other nonzero entries of x is small enough, it is possible
to read off the support of x from the largest entries of z.

Without loss of generality, assume x is k-sparse with the nonzero entries indexed
by {1, . . . , k}, in a descending order |x1| ≥ |x2| ≥ . . . ≥ |xk|.

To guarantee the success of OST, we want to show

min
1≤i≤k

|zi| > max
k+1≤i≤n

|zi|.
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Lower bound min1≤i≤k |zi|

For 1 ≤ i ≤ k,

|zi| = |aT
iAx|

= |aT
i (aixi +

∑
j 6=i

ajxj)|

= |xi +
∑
j 6=i

aT
i ajxj|

≥ |xi| −
∑
j 6=i

|aT
i aj||xj|

≥ |xi| − µ(‖x‖1 − |xi|)
≥ (1 + µ)|xi| − µ‖x‖1,

therefore, min1≤i≤k |zi| ≥ (1 + µ) mini |xi| − µ‖x‖1.
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Upper bound maxk+1≤i≤n |zi|

For k + 1 ≤ i ≤ n,

|zi| = |aT
iAx|

= |aT
i

k∑
j=1

ajxj|

≤
k∑
j=1

|aT
i aj||xj|

≤ µ‖x‖1

Page 8



Putting everything together

OST succeeds if
(1 + µ) min

i
|xi| − µ‖x‖1 > µ‖x‖1

which yields
(1 + µ) min

i
|xi| > 2µ‖x‖1.

or equivalently
mini |xi|
‖x‖1

>
2µ

(1 + µ)
.

• If |x1| = · · · = |xk|, the LHS becomes 1/k and for success support recovery
we require

1

k
> µ ∼ 1√

m

which requires m & k2.
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Better strategies

It is obvious better approaches exist, for example, by applying iterations.

The idea is through iterations, we can either iteratively identify new atoms in
the sparse representation, or refine our earlier estimate.

• Orthogonal Matching Pursuit (OMP)

• Compressive Sampling Matching Pursuit (CoSaMP)
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OMP

OMP (assume k is known):

1. Initialize: the residual r0 = y, and S0 = ∅.

2. For i = 1, . . . , k:

• choose the atom that has the largest correlation with the residual:

t = argmax
j
|〈aj, ri−1〉|

• Add t to the support set: Si = {Si−1, t};
• Update the residual as

ri = (I −ASiA
†
Si

)y.
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OMP doesn’t select the same atom twice

If j ∈ Si−1 has been selected,

〈aj, ri−1〉 = 〈aj, (I −ASiA
†
Si

)y〉

= yT(I −ASiA
†
Si

)aj = 0,

therefore j won’t be selected again by OMP.

If in each step OMP selects a correct index in T , in k iterations it will select all
indices in T and terminates.

An alternative way to terminate OMP (without the knowledge of k) is to
examine the norm of the residual ‖rj‖2 < ε.
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Tropp’s Exact Recovery Condition (ERC) for OMP

Theorem 1. [ERC] Suppose that x be a k-sparse signal supported on T .
OMP recovers the k-term representation of x whenever

max
a∈T c

‖A†Ta‖1 < 1

where † denotes pseudo-inverse.

• This condition also guarantees the success of BP, see [Tropp 2004].

• Interestingly enough, this condition only depends onA, not on the coefficients
of x - much improved from OST.

• A natural question is when does this condition hold?
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Tropp’s Exact Recovery Condition (ERC) for OMP

Theorem 2. ERC holds for every superposition of k atoms from A whenever

k <
1

2
(µ−1 + 1)

or more generally, whenever

µ1(k − 1) + µ1(k) < 1

where µ1(m) is defined as the Babel function of A:

µ1(k) := max
|Λ|=k

max
i∈Λc

∑
λ∈Λ

|〈ai,aλ〉|.

Remark: Since µ = µ1(1) and µ1(k) ≤ kµ, the latter condition implies the
former condition.
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Proof for ERC

Recall the support of x is T .

After i steps, assume OMP has already identified i correct indices in T . We
would like to develop a condition that guarantees the next selected atom is also
in T .

Motivated by our earlier discussions with OST, we only need to examine if the
ratio

ρ(rk) =

∥∥AT
T crk

∥∥
∞∥∥AT

Trk
∥∥
∞

< 1.

Realizing that rk ∈ Span(AT ), we write

rk = ATA
†
Trk = AT (AT

TAT )−1AT
Trk = (A†T )TAT

Trk.
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This allows us to bound

ρ(rk) =

∥∥AT
T crk

∥∥
∞∥∥AT

Trk
∥∥
∞
≤

∥∥∥AT
T c(A

†
T )TAT

Trk

∥∥∥
∞∥∥AT

Trk
∥∥
∞

≤
∥∥∥AT

T c(A
†
T )T
∥∥∥
∞,∞

where the matrix norm ‖ · ‖p,p is defined as

‖R‖p,p := max
x

‖Rx‖p
‖x‖p

.

It is easy to check (by yourself) that

• ‖R‖∞,∞ equals the maximum absolute row sum of R;

• ‖R‖1,1 equals the maximum absolute column sum of R;

we have

ρ(rk) ≤
∥∥∥AT

T c(A
†
T )T
∥∥∥
∞,∞

=
∥∥∥A†TAT c

∥∥∥
1,1

= max
i∈T c

∥∥∥A†Tai∥∥∥
1
.
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Proof of Theorem 2

It is sufficient to show that ERC holds when

µ1(k − 1) + µ1(k) < 1

where µ1(m) is defined as the Babel function of A:

µ1(k) := max
|Λ|=k

max
i∈Λc

∑
λ∈Λ

|〈ai,aλ〉|.

Recall the ERC can be upper bounded as

max
i∈T c

∥∥∥A†Tai∥∥∥
1

= max
i∈T c

∥∥(AT
TAT )−1AT

Tai
∥∥

1

≤
∥∥(AT

TAT )−1
∥∥

1,1
max
i∈T c

∥∥AT
Tai
∥∥

1
, (∗)

Page 17



where the second term can be bounded by the Babel function

max
i∈T c

∥∥AT
Tai
∥∥

1
= max

i∈T c

∑
j∈T

|〈aj,ai〉| ≤ µ1(k).

For the first term, we set off to write AT
TAT as

AT
TAT = I + Φ

where φij = 〈aTi,aTj〉, and

‖Φ‖1,1 = max
l

∑
j 6=l

|〈aTl,aTj| ≤ µ1(k − 1).

If ‖Φ‖1,1 < 1, the von Neumann series
∑∞
k=0(−Φ)k converges to (I + Φ)−1,
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we can compute∥∥(AT
TAT )−1

∥∥
1,1

=
∥∥(I + Φ)−1

∥∥
1,1

=

∥∥∥∥∥
∞∑
k=0

(−Φ)k

∥∥∥∥∥
1,1

≤
∞∑
k=0

‖(−Φ)‖k1,1 =
1

1− ‖Φ‖1,1
≤ 1

1− µ1(k − 1)
.

Plugging this into (*), a sufficient condition to guarantee ERC is

µ1(k)

1− µ1(k − 1)
< 1

which gives
µ1(k − 1) + µ1(k) < 1.
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CoSaMP

Compressive Sampling Matching Pursuit (CoSaMP) with k known

1. Initialization: the residual r0 = y, signal estimation x0 = 0,

2. For i = 1, 2, . . .

• Identify the 2k largest coefficients of the signal proxy zi = ATri−1:

Ω = supp(z2k)

• Merge support: S = Ω ∪ supp(xi−1);
• Estimation by least-squares:

bS = A†Sy, bSc = 0;

• Pruning to obtain the next estimate: xi = bk as the k-term approximation
to b;
• Residual update:

ri = y −Axi
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Performance of CoSaMP

• The stopping criteria of CoSaMP can be either based on residual energy, or
a fixed number of iterations;

We will analyze CoSaMP for exactly k-sparse signals without measurement
noise. It is not difficult to extend the analysis to the general case.

Theorem 3. [Needell and Tropp, 2008] Assume A satisfies the RIP with
δ2k ≤ 0.05. For any k-sparse signal x, the reconstruction in the ith iteration xi
is k-sparse, and satisfies

‖x− xi+1‖2 ≤ 0.26 · ‖x− xi‖2.

Moreover, CoSaMP is exact after at most 6(k + 1) iterations.

Similar performance as BP order-wise.
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A useful lemma

Proposition 1. Suppose A has restricted isometry constant δr. Let T be a
set of indices, and let x be a vector. Provided that r ≥ |T ∪ supp(x)|,

‖AT
TAT cxT c‖2 ≤ δr‖xT c‖2.

Proof: Define S = supp(x)\T , we have xS = xT c. Thus,

‖AT
TAT cxT c‖2 = ‖AT

TASxS‖2
≤ ‖AT

TAS‖ · ‖xS‖2 ≤ δr‖xT c‖2.

where we used ‖AT
TAS‖ ≤ δr from the near orthogonality-preserving property

of RIP.

Proposition 2. For positive integers c and r, δcr ≤ cδ2r.

Page 22



Progress of CoSaMP in one iteration

Without loss of generality we write xo = xi as the previous reconstruction, and
the new reconstruction as xn = xi+1.

Denote the error as ν = x−xo, which is 2k-sparse. The measurement residual
can be written as

r = y −Axo = A(x− xo) := Aν.

1. Identification: the identified indices captures most of the energy in s.

‖νΩc‖2 ≤ 0.1053‖ν‖2

Proof: Denote the support of ν as R = supp(ν). By the choice Ω, we have
‖zR‖2 ≤ ‖zΩ‖2. Squaring the inequality and canceling the terms in R ∩ Ω,
we have

‖zR\Ω‖2 ≤ ‖zΩ\R‖2.
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On one side,

‖zΩ\R‖2 = ‖AT
Ω\RAν‖2 ≤ δ2k‖ν‖2

On the other side,

‖zR\Ω‖2 = ‖AT
R\ΩAν‖2 = ‖AT

R\ΩA(νR\Ω + νΩ)‖2

≥ ‖AT
R\ΩAR\ΩνR\Ω‖2 − ‖AT

R\ΩAνΩ)‖2

≥ (1− δ2k)‖νR\Ω‖2 − δ2k‖ν‖2
= (1− δ2k)‖νΩc‖2 − δ2k‖ν‖2.

Combining these we have

(1− δ2k)‖νΩc‖2 − δ2k‖ν‖2 ≤ δ2k‖ν‖2

which gives

‖νΩc‖2 ≤
2δ2k

1− δ2k
‖ν‖2 ≤ 0.1053‖ν‖2.
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2. Merge support: The signal x has little energy outside the merged support
S = Ω ∪ supp(xo).

‖xSc‖2 ≤ ‖νΩc‖2

Proof: ‖xSc‖2 = ‖(x− xo)Sc‖2 = ‖νSc‖2 ≤ ‖νΩc‖2.

3. Estimation by least-squares on AS:

‖x− b‖2 ≤ 1.2352‖xSc‖2

Proof: Note that ‖x − b‖2 ≤ ‖(x − b)S‖2 + ‖xSc‖2. To bound the first
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term, we have (A†SAS = I)

‖xS − bS‖2 = ‖xS −A†Sy‖2 = ‖xS −A†SAx‖2
= ‖xS −A†S(ASxS +AScxSc)‖2
= ‖(AT

SAS)−1AT
SAxSc‖2

≤ ‖(AT
SAS)−1‖2‖AT

SAxSc‖2

≤ δ4k
1− δ3k

‖xSc‖2 ≤ 0.2352‖xSc‖2.

4. Pruning: the error introduced by pruning is small.

Proof:

‖x− xn‖2 = ‖x− b+ b− xn‖2 ≤ ‖x− b‖2 + ‖b− xn‖2 ≤ 2‖x− b‖2

since xn is the best k-term approximation of b.
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Putting everything together, we have

‖x− xn‖2 ≤ 2‖x− b‖2 (pruning)

≤ 2 · 1.2352‖xSc‖2 (estimation)

≤ 2.4706‖νΩc‖2 (merge support)

≤ 2.4706 · 0.1053‖ν‖2 (identification)

< 0.26‖ν‖2 = 0.26‖xo‖2.
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Iteration Count

The number of iterations is at most 6(k + 1), and could be as small as log k.

It heavily relies on the coefficient profile.
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