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Time, location, and office hours

I Time: Tue/Thu 5:30-6:55pm
I No lectures on 10/1 (Thu) and 11/10 (Tue) due to travel of the

instructor. We will extend each lecture by 5 minutes to
compensate these two lectures.

I Location: Bolz Hall 314

I Instructor: Dr. Yuejie Chi (chi.97@osu.edu)

I Office: 606 Dreese Lab

I Office hours: Thu: 3:00-5:00pm.



Underdetermined linear systems

We’re interested in solving underdetermined systems of linear
equations.

I Estimate x ∈ Rn from linear measurements b = Ax ∈ Rm, where
m� n.

I Seems to be hopelessly ill-posed, since more unknowns than
equations...



Compressed Sensing

Compressed Sensing/Compressive Sensing/Compressive Sampling
allows perfect recovery of underdetermined linear systems by
exploiting additional structures in x, e.g. sparsity, low-rankness, etc.

I Compressed Sensing [Name coined by David Donoho] was
pioneered by Donoho and Candès, Tao and Romberg in 2004.



Three motivating examples

Through three motivating examples, we will see such
underdetermined linear systems arise quite frequently in science and
engineering applications, and exhibit intriguing signal structures that
make the problem well-posed and solvable using, e.g.,
convex/non-convex optimization techniques.

I Sparse signal recovery

I Low-rank matrix completion

I Phase retrieval



Example 1: Sparse signal recovery

Conventional paradigm of data acquisition: acquire then compress.

Why can we compress? There’s no loss in quality between the raw
image and its JPEG compressed form.



Sparse representation

I Sparsity: Many real world signals admit sparse representation.
The signal s ∈ Cn is sparse in a basis Ψ ∈ Cn×n, as

s = Ψx;

I Images are sparse in the wavelet domain.

I The number of large coefficients in the wavelet domain is small,
which allows compression.



Sparse representation allows compression

Take a mega-pixel image

I Compute 106 wavelet coeffients

I Set to zero all but the 2.5× 104 largest coefficients

I Invert the wavelet transform



Compressed sensing: compression on the fly

I Why cannot we directly the compressed data and then
reconstruct?

yi = 〈ai , x〉, i = 1, . . . ,m

measurements sparse 
signal 

nonzero 
entries 

I Mathematically, this give rises to an underdetermined system of
equations, where the signal of interest is sparse.



Sparse recovery

Questions of interest include:

I How to design the measurement/sampling matrix?

I What are the efficient algorithms?

I Are they stable with respect to noise?

I How many measurements are necessary/sufficient?

Spoiler: It turns out m & K log n random measurements will suffice.



CS application in MRI

I Imaging speed is important in many
MRI applications, and it is of great
importance to reduce the image
acquisition time;

I MR images are acquired by sampling the
k-space (frequency domain) - take a
long time to fully sample it!

I By subsampling the k-space, the
acquisition time is reduced; however
image artifacts arise if using
conventional reconstruction.

I Novel algorithms that exploit sparsity
allows much better reconstruction.



Transform Domain Sparsity of MRI

Figure : Transform-domain sparsity of images. The DCT, wavelet, and

finite-differences transforms were calculated for the image (Left column). The

image was then reconstructed from a subset of 5, 10, and 20% of the largest

transform coefficients [Lustig et. al. 2007].



Accelerate MRI via CS Reconstruction

Figure : Reconstruction from 5-fold accelerated acquisition of first-pass contrast

enhanced abdominal angiography. (a) Reconstruction from complete data; (b) LR;

(c) ZF-w/dc; (d) CS reconstruction from random subsampling [Lustig et. al.

2007].



Many applications of CS

CS is expected to become useful when measurements are

I expensive (e.g. fuel cell imaging, near IR imaging)

I slow (e.g. MRI)

I beyond current capabilities (e.g. wideband analog to digital
conversion)

I wasteful

I missing

I etc..



Example 2: The Netflix problem

In 2006, Netflix offered a $1 million prize to improve its movie rating
prediction algorithm.

I How to estimate the missing ratings?

I About a million users, and 25,000 movies, with sparsely sampled
ratings



Low-rank matrix completion

I Completion problem: consider M ∈ Rn1×n2 to represent Netflix
data, we may model it through factorization:

I In other words, the rank r of M is much smaller than its
dimension r � min{n1, n2}.



Low-rank matrix completion

Questions of interest include:

I What are the efficient algorithms for matrix completion?

I Are they stable with respect to noise and outliers?

I How many measurements are necessary/sufficient?

Spoiler: Under appropriate conditions, matrix completion is possible
from m & r max{n1, n2} log2(max{n1, n2}) samples.



Applications in computer vision

Separation of background (low-rank) and foreground (sparse) in video:



Example 3: Phase retrieval

In optics, we only observe the magnitude of measurements but not
the phase.

What can we tell about the structure from the intensity of its Fourier
transform?



X-rays crystallography

I Useful in many applications, such as X-rays crystallography,
which allows determination of atomic structures within a crystal

I Example: discovery of Double-Helix structure of DNA (1962
Nobel Prize)

I 10 Nobel Prizes in X-ray crystallography so far



Phase retrieval

We formulate the phase retrieval problem as follows.

I Let the measurements vectors be {ai ∈ Rn}mi=1.

I For each i , we measure

yi = |〈ai , x〉|2, i = 1, . . . ,m.

I How to recover x ∈ Rn?

I Standard Gerchberg-Saxton (or Fienup) iterative algorithms
suffer from local minima.

Note these equations are quadratic in x, and no sparsity is assumed
for x, so m ≥ n would be necessary.



Applying lifting

I Expand

yi = |〈ai , x〉|2

= (a∗
i x)(a∗

i x)∗

= a∗
i (xx∗)ai := a∗

i Xai ,

where X = xx∗ is a rank-one symmetric matrix.

I To recover x, it is equivalent to recovering X (up to rotational
ambiguity).

I We again convert the problem to an underdetermined linear
system!



Phase retrieval

Questions of interest include:

I How to design the measurement/sampling matrix?

I What are the efficient algorithms?

I Are they stable with respect to noise?

I How many measurements are necessary/sufficient?

Spoiler: Under appropriate conditions, phase retrieval is possible from
m & n samples.



Variations on a common theme

I We can solve an underdetermined linear system if one has more
information about the underlying signal, together with a
well-posed sampling scheme.

I We will show for the three examples above, there is a convex
optimization algorithm that provides near-optimal performance
guarantees.

I We will also discuss extensions of the theory:
I What if my measurements are nonlinear?
I What if I have some low-dimensional signal structure that is not

sparse/low-rank?



If time allows...

I Dimensionality reduction

I Dictionary learning

I Online learning



Warning

I There will not be textbooks, only references...

I Boyd and Vandenberghe, Convex Optimization, Available online.
I Foucart and Rauhut, A Mathematical Introduction to

Compressive Sampling. Available online.
I Vershynin, Introduction to the non-asymptotic analysis of random

matrices. Available on arxiv:1011.3027.
I We will also provide references on related papers in the literature.

I There will be quite a few PROOFS....

I This course is research-oriented.



Prerequisites

I Probabilty

I Linear algebra

I Knowledge in convex optimization is a plus

I Mathematical maturity

I Know how to use MATLAB



Grading

I Homework: 25%

I We shall have no more than five homeworks.

I Midterm paper: 25% (Due at the beginning of Week 9)

I Literature review that sets the stage for the final project.

I Final Project: 50% (in-class presentation 15% + final report 35%)

I Around week 12, we will ask for a short project proposal/progress
report to make sure you’re on the right track.

I In-class presentation during Week 16, with the final report due at
the end of Week 16.



Projects

I Projects should be independent work.

I Topics are flexible: it can be related to your current research, but use
something learned from this course.

I A good project should contain something novel and useful:

I it could be applications of existing algorithms to a new domain;
I it could be proposal of a new algorithm;
I it could be new theoretical analysis of an existing algorithm;
I etc...

It is important that you justify its novelty!



Project evaluation

I In-class presentation

I Each student will be allocated 15 minutes - this is about the time
for a conference presentation.

I Final report

I The final report should follow the format of an IEEE journal
paper. (It could become a publication of yours!)



How to best prepare for the lectures

Read, read, read!

I Chapter 1-2 [Foucart-Rauhut]

I Introduction to Compressed Sensing
Book chapter by Davenport et.al.
http://statweb.stanford.edu/~markad/publications/

ddek-chapter1-2011.pdf

http://statweb.stanford.edu/~markad/publications/ddek-chapter1-2011.pdf
http://statweb.stanford.edu/~markad/publications/ddek-chapter1-2011.pdf

