
ECE 18-898G: Sparsity, Structure and Inference Spring 2018

Homework 1

Due date: Wednesday, Feb. 7, 2018 (in class)

1. Norms (30 points)

Recall that the `p (p ≥ 1) norm of a vector x ∈ Rn is defined as ‖x‖p = (
∑n

i=1 |xi|p)
1/p

.

(a) Prove the following inequalities.

‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2

‖x‖∞ ≤ ‖x‖2 ≤
√
n‖x‖∞

(b) Discuss how the bounds can be improved in part (a) if we know x is a k-sparse signal, k � n.

(c) The “dual” norm of a norm ‖ · ‖\ is defined as

‖v‖∗\ = sup
‖x‖\≤1

〈x,v〉

Find the dual norms of ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞, respectively.

2. Mutual coherence (40 points)

Recall that for an arbitrary pair of orthonormal bases Ψ = [ψ1, · · · ,ψn] ∈ Rn×n and Φ = [φ1, · · · ,φn] ∈
Rn×n, the mutual coherence µ(Ψ,Φ) of these two bases is defined by

µ(Ψ,Φ) = max
1≤i,j≤n

∣∣ψ>i φj

∣∣ (1)

(a) Show that
1√
n
≤ µ(Ψ,Φ) ≤ 1.

(b) Let Ψ = I, and suppose that Φ = [φi,j ]1≤i,j≤n is a Gaussian random matrix such that the φi,j ’s
are i.i.d. random variables drawn from φi,j ∼ N (0, 1/n). Can you provide an upper estimate on µ(Ψ,Φ)
as defined in (1)? Since Φ is a random matrix, we expect your answer to be a function f(n) such that
P{µ(Ψ,Φ) > f(n)} → 0 as n scales.

Hint: to simplify analysis, you are allowed to use the crude approximation P{|z| > τ} ≈ exp(−τ2/2) for
large τ > 0, where z ∼ N (0, 1).

(c) Set n = 100. Generate a random matrix Φ as in Part (b), and compute µ(I,Φ). Report the empirical
distribution (i.e. histogram) of µ(I,Φ) out of 1000 simulations. How does your simulation result compare
to your estimate in Part (b)?
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(d) We now generalize the mutual coherence measure to accommodate a more general set of vectors
beyond two bases. Specifically, for any given matrix A = [a1, · · · ,ap] ∈ Rn×p obeying n ≤ p, define the
mutual coherence of A as

µ(A) = max
1≤i,j≤p, i 6=j

∣∣∣∣ a>i aj

‖ai‖‖aj‖

∣∣∣∣ .
Show that

µ(A) ≥
√
p− n
p− 1

· 1

n
.

This is a special case of the Welch bound.

Hint: you may want to use the following inequality: for any positive semidefinite M ∈ Rn×n, ‖M‖2F ≥
1
n (
∑n

i=1 λi(M))
2
.

3. Picket-fence signal (10 points)

Suppose that
√
n is an integer. Let x ∈ Rn be a picket-fence signal with uniform spacing

√
n such that

xi =

{
1, if i−1√

n
is an integer,

0, else,
i = 1, · · · , n.

Compute
‖x‖0 · ‖Fx‖0 and ‖x‖0 + ‖Fx‖0,

where F is the Fourier matrix such that

(F )k,l =
1√
n

exp

(
−i2π(k − 1)(l − 1)

n

)
, 1 ≤ k, l ≤ n.

How do they compare to the uncertainty principles we derive in class?

4. `1 minimization (20 points)

Suppose that A is an n × 2n dimensional matrix. Let x ∈ R2n be an unknown k-sparse vector, and
y = Ax the observed system output. This problem is concerned with `1 minimization (or basis pursuit) in
recovering x, i.e.

minimizez∈R2n ‖z‖1 s.t. Az = y. (2)

(a) An optimization problem is called a linear program (LP) if it has the form

minimizez c>z + d

s.t. Gz ≤ h
Az = b

where c,d,G,h,A, and b are known. Here, for any two vectors r and s, we say r ≤ s if ri ≤ si for all i.
Show that (2) can be converted to a linear program.

(b) Set n = 256, and let k range between 1 and 128. For each choice of k, run 10 independent numerical
experiments: in each experiment, generate A = [ai,j ]1≤i≤n,1≤j≤2n as a random matrix such that the ai,j ’s
are i.i.d. standard Gaussian random variables, generate x ∈ R2n as a random k-sparse signal (e.g. you may
generate the support of x uniformly at random, with each non-zero entry drawn from the standard Gaussian
distribution), and solve (2) with y = Ax. An experiment is claimed successful if the solution z returned by
(2) obeys ‖x−z‖2 ≤ 0.001‖x‖2. Report the empirical success rates (averaged over 10 experiments) for each
choice of k.

2


