Homework 1

Due date: Wednesday, Feb. 7, 2018 (in class)

1. Norms (30 points)

Recall that the ℓ_p $(p \ge 1)$ norm of a vector $\boldsymbol{x} \in \mathbb{R}^n$ is defined as $\|\boldsymbol{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$.

(a) Prove the following inequalities.

$$\|\boldsymbol{x}\|_{2} \leq \|\boldsymbol{x}\|_{1} \leq \sqrt{n} \|\boldsymbol{x}\|_{2}$$

$$\|\boldsymbol{x}\|_{\infty} \leq \|\boldsymbol{x}\|_{2} \leq \sqrt{n} \|\boldsymbol{x}\|_{\infty}$$

- (b) Discuss how the bounds can be improved in part (a) if we know x is a k-sparse signal, $k \ll n$.
- (c) The "dual" norm of a norm $\|\cdot\|_{\natural}$ is defined as

$$\|oldsymbol{v}\|_{
atural}^* = \sup_{\|oldsymbol{x}\|_{oldsymbol{b}} \leq 1} \langle oldsymbol{x}, oldsymbol{v}
angle$$

Find the dual norms of $\|\cdot\|_1$, $\|\cdot\|_2$, and $\|\cdot\|_{\infty}$, respectively.

2. Mutual coherence (40 points)

Recall that for an arbitrary pair of orthonormal bases $\Psi = [\psi_1, \dots, \psi_n] \in \mathbb{R}^{n \times n}$ and $\Phi = [\phi_1, \dots, \phi_n] \in \mathbb{R}^{n \times n}$, the mutual coherence $\mu(\Psi, \Phi)$ of these two bases is defined by

$$\mu(\mathbf{\Psi}, \mathbf{\Phi}) = \max_{1 \le i, j \le n} \left| \mathbf{\psi}_i^{\top} \mathbf{\phi}_j \right| \tag{1}$$

(a) Show that

$$\frac{1}{\sqrt{n}} \le \mu(\mathbf{\Psi}, \mathbf{\Phi}) \le 1.$$

(b) Let $\Psi = I$, and suppose that $\Phi = [\phi_{i,j}]_{1 \leq i,j \leq n}$ is a Gaussian random matrix such that the $\phi_{i,j}$'s are i.i.d. random variables drawn from $\phi_{i,j} \sim \mathcal{N}(0,1/n)$. Can you provide an upper estimate on $\mu(\Psi,\Phi)$ as defined in (1)? Since Φ is a random matrix, we expect your answer to be a function f(n) such that $\mathbb{P}\{\mu(\Psi,\Phi) > f(n)\} \to 0$ as n scales.

Hint: to simplify analysis, you are allowed to use the crude approximation $\mathbb{P}\{|z| > \tau\} \approx \exp(-\tau^2/2)$ for large $\tau > 0$, where $z \sim \mathcal{N}(0, 1)$.

(c) Set n=100. Generate a random matrix Φ as in Part (b), and compute $\mu(\boldsymbol{I}, \Phi)$. Report the empirical distribution (i.e. histogram) of $\mu(\boldsymbol{I}, \Phi)$ out of 1000 simulations. How does your simulation result compare to your estimate in Part (b)?

(d) We now generalize the mutual coherence measure to accommodate a more general set of vectors beyond two bases. Specifically, for any given matrix $\mathbf{A} = [\mathbf{a}_1, \cdots, \mathbf{a}_p] \in \mathbb{R}^{n \times p}$ obeying $n \leq p$, define the mutual coherence of \mathbf{A} as

$$\mu(\boldsymbol{A}) = \max_{1 \leq i, j \leq p, \ i \neq j} \left| \frac{\boldsymbol{a}_i^{\top} \boldsymbol{a}_j}{\|\boldsymbol{a}_i\| \|\boldsymbol{a}_j\|} \right|.$$

Show that

$$\mu(\mathbf{A}) \ge \sqrt{\frac{p-n}{p-1} \cdot \frac{1}{n}}.$$

This is a special case of the Welch bound.

Hint: you may want to use the following inequality: for any positive semidefinite $M \in \mathbb{R}^{n \times n}$, $||M||_{\mathrm{F}}^2 \geq \frac{1}{n} \left(\sum_{i=1}^n \lambda_i(M) \right)^2$.

3. Picket-fence signal (10 points)

Suppose that \sqrt{n} is an integer. Let $x \in \mathbb{R}^n$ be a picket-fence signal with uniform spacing \sqrt{n} such that

$$x_i = \begin{cases} 1, & \text{if } \frac{i-1}{\sqrt{n}} \text{ is an integer,} \\ 0, & \text{else,} \end{cases}$$
 $i = 1, \dots, n.$

Compute

$$\|x\|_0 \cdot \|Fx\|_0$$
 and $\|x\|_0 + \|Fx\|_0$,

where F is the Fourier matrix such that

$$(\mathbf{F})_{k,l} = \frac{1}{\sqrt{n}} \exp\left(-i\frac{2\pi(k-1)(l-1)}{n}\right), \quad 1 \le k, l \le n.$$

How do they compare to the uncertainty principles we derive in class?

4. ℓ_1 minimization (20 points)

Suppose that A is an $n \times 2n$ dimensional matrix. Let $x \in \mathbb{R}^{2n}$ be an unknown k-sparse vector, and y = Ax the observed system output. This problem is concerned with ℓ_1 minimization (or basis pursuit) in recovering x, i.e.

$$\min_{z \in \mathbb{R}^{2n}} \|z\|_1 \quad \text{s.t. } Az = y. \tag{2}$$

(a) An optimization problem is called a linear program (LP) if it has the form

$$ext{minimize}_{oldsymbol{z}} \qquad oldsymbol{c}^{ op} oldsymbol{z} + oldsymbol{d} \ ext{s.t.} \qquad oldsymbol{G} oldsymbol{z} \leq oldsymbol{h} \ oldsymbol{A} oldsymbol{z} = oldsymbol{b} \ ext{}$$

where c, d, G, h, A, and b are known. Here, for any two vectors r and s, we say $r \leq s$ if $r_i \leq s_i$ for all i. Show that (2) can be converted to a linear program.

(b) Set n=256, and let k range between 1 and 128. For each choice of k, run 10 independent numerical experiments: in each experiment, generate $\mathbf{A}=[a_{i,j}]_{1\leq i\leq n, 1\leq j\leq 2n}$ as a random matrix such that the $a_{i,j}$'s are i.i.d. standard Gaussian random variables, generate $\mathbf{x}\in\mathbb{R}^{2n}$ as a random k-sparse signal (e.g. you may generate the support of \mathbf{x} uniformly at random, with each non-zero entry drawn from the standard Gaussian distribution), and solve (2) with $\mathbf{y}=\mathbf{A}\mathbf{x}$. An experiment is claimed successful if the solution \mathbf{z} returned by (2) obeys $\|\mathbf{x}-\mathbf{z}\|_2 \leq 0.001\|\mathbf{x}\|_2$. Report the empirical success rates (averaged over 10 experiments) for each choice of k.