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Outline

• Sparse and compressible signals

• Sparse representation in pairs of bases

• Uncertainty principles for basis pairs
◦ Uncertainty principles for time-frequency bases
◦ Uncertainty principles for general basis pairs

• Sparse representation via `1 minimization

• Sparse representation for general dictionaries
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Basic problem

=

Find x ∈ Cn s.t. Ax = y

where A = [a1, · · · ,an] ∈ Cm×n obeys

• underdetermined system: m < n

• full-rank: rank(A) = m

A: an over-complete basis / dictionary; ai: atom;
x: representation in this basis / dictionary
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Sparse representation

Clearly, there exist infinitely many feasible solutions to Ax = y ...

• Solution set: A∗(AA∗)−1︸ ︷︷ ︸
A†

y + null(A)

• A† is the pseodo-inverse of A; null(A) is the null space of A

How many “sparse” solutions are there?
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What is sparsity?

Consider a signal x ∈ Cn.

Definition 2.1 (Support)
The support of a vector x ∈ Cn is the index set of its nonzero entries,
i.e.

supp(x) := {j ∈ [n] : |xj | 6= 0}

where [p] = {1, . . . , n}.

Definition 2.2 (k-sparse signal)
The signal x is called k-sparse, if

‖x‖0 := |supp(x)| ≤ k.

‖x‖0 is called the sparsity level of x. (Note: It is a “pseudo-norm”).
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Sparse signals belong to a union-of-subspace

• For a fixed sparsity pattern (support), it defines a subspace of
dimension k in Rp.
• There’re

(p
k

)
subspaces of dimension k.
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Best k-term approximations

We’re also interested in signals that are approximately sparse (because
a lot real-world signals are not exactly sparse). This is measured by
how well they can be approximated by sparse signals.

Definition 2.3 (Best k-term approximation)
Denote the index set of the k-largest entries of |x| as Sk. The best
k-term approximation xk of x is defined as

xk(i) =
{
xi, i ∈ Sk
0, i /∈ Sk

The (best) k-term approximation error in `p norm is then given as

‖x− xk‖p =

∑
i/∈Sk

|xi|p
1/p

.
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Compressible signals

Compressibility: A signal is called compressible if

R(k) = ‖x− xk‖p

decays “fast” in k.

Lemma 2.4 (Compressibility)

For any q > p > 0 and x ∈ Rn,

‖x− xk‖q ≤
1

k1/p−1/q ‖x‖p.
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Signals in `1 Ball
Example: Set q = 2 and p = 1, we have

‖x− xk‖2 ≤
1√
k
‖x‖1.

Consider a signal x ∈ Bn
1 := {z ∈ Rn : ‖z‖1 ≤ 1}. Then x is

compressible when p = 1.

Geometrically, the `p-ball is pointy when 0 < p < 1 in high dimension.



10/69

Proof of Lemma 2.4
Without loss of generality we assume the coefficients of x is ordered
in descending order of magnitudes. We then have

‖x− xk‖qq =
n∑

j=k+1
|xj |q (by definition)

= |xk|q−p
n∑

j=k+1
|xj |p(|xj |/|xk|)q−p

≤ |xk|q−p
n∑

j=k+1
|xj |p (|xj |/|xk| ≤ 1)

≤

1
k

k∑
j=1
|xj |p


q−p

p
 n∑
j=k+1

|xj |p


≤
(1
k
‖x‖pp

) q−p
p

‖x‖pp = 1
kq/p−1 ‖x‖

q
p.
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Sparse representation in pairs of bases

=
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A special type of dictionary: two-ortho case

Motivation for over-complete dictionary: many signals are
mixtures of diverse phenomena; no single basis can describe them well

Two-ortho case: A is a concatenation of 2 orthonormal matrices

A = [Ψ,Φ] where ΨΨ∗ = Ψ∗Ψ = ΦΦ∗ = Φ∗Φ = I

• A classical example: A = [I,F ] (F : Fourier matrix)
◦ representing a signal y as a superposition of spikes and sinusoids
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Example 1

The following signal y1 is dense in the time domain, but sparse in the
frequency domain

time-representation of y1 frequency-representation of y1
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Example 2

The following signal y2 is dense in both time domain and frequency
domain, but sparse in the overcomplete basis [I,F ]

time representation of y2 frequency representation of y2

representation of y2 in overcomplete basis (time + frequency)
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Example 2

The following signal y2 is dense in both time domain and frequency
domain, but sparse in the overcomplete basis [I,F ]

time representation of y2 frequency representation of y2

representation of y2 in overcomplete basis (time + frequency)
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Uniqueness of sparse representation

A natural strategy to promote sparsity:
— seek the sparsest solution to the linear system

(P0) minimizex∈Cp ‖x‖0 s.t. Ax = y

• When is the solution unique?

• How to test whether a candidate solution is the sparsest possible?



16/69

Application: multiuser detection

• 2 (or more) users wish to communicate to the same receiver over
a shared wireless medium

• The jth user transmits aj ; the receiver sees

y =
∑

j is active
aj

• Let A = [a1; · · · ,an] be the codebook containing all users of
messages; then

y = Ax

where the location of the non-zero entries of x indicates active
users.

Unique representation 7→ unambiguous user identification
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Connection to null space of A

Suppose x and x+ h are both solutions to the linear system, then

Ah = A(x+ h)−Ax = y − y = 0

Write h =
[
hΨ

hΦ

]
with hΨ,hΦ ∈ Cn, then

ΨhΨ = −ΦhΦ

• hΨ and −hΦ are representations of the same vector in different
bases
• (Non-rigorously) In order for x to be the sparsest solution, we

hope h is much denser, i.e. we don’t want hΨ and −hΦ to be
simultaneously sparse
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Detour: uncertainty principles for basis pairs
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Heisenberg’s uncertainty principle
A pair of complementary variables cannot both be highly
concentrated

• Quantum mechanics

Var[x]︸ ︷︷ ︸
position

· Var[p]︸ ︷︷ ︸
momentum

≥ ~2/4

◦ ~: Planck constant

• Signal processing∫ ∞
−∞

t2|f(t)|2dt︸ ︷︷ ︸
concentration level of f(t)

∫ ∞
−∞

ω2|F (ω)|2dω ≥ 1/4

◦ f(t): a signal obeying
∫∞
−∞ |f(t)|2dt = 1

◦ F (ω): Fourier transform of f(t)
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Heisenberg’s uncertainty principle

f(t) F (ω)

Roughly speaking, if f(t) vanishes outside an interval of length ∆t,
and its Fourier transform vanishes outside an interval of length ∆ω,
then

∆t ·∆ω ≥ const
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Proof of Heisenberg’s uncertainty principle

(assuming f is real-valued and tf2(t)→ 0 as |t| → ∞)

1. Rewrite
∫
ω2|F (ω)|2dω in terms of f . Since f ′(t) F→ iωF (ω),

Parseval’s theorem yields∫
ω2|F (ω)|2dω =

∫
|iωF (ω)|2dω =

∫
|f ′(t)|2dt

2. Invoke Cauchy-Schwarz:(∫
t2|f(t)|2dt

)1/2(∫
|f ′(t)|2dt

)1/2
≥ −

∫
tf(t)f ′(t)dt

= −0.5
∫
t
df2(t)

dt dt

= −0.5tf2(t)
∣∣∞
−∞ + 0.5

∫
f2(t)dt (integration by part)

= 0.5 (by our assumptions)
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Uncertainty principle for time-frequency bases

concentrated signal sparse but non-concentrated signal

More general case: concentrated signals → sparse signals
• f(t) and F (ω) are not necessarily concentrated on intervals

Question: is there a signal that can be sparsely represented both in
time and in frequency?

• Formally, for an arbitrary x, suppose x̂ = Fx.

How small can ‖x̂‖0 + ‖x‖0 be ?
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Uncertainty principle for time-frequency bases

Theorem 2.5 (Donoho & Stark ’89)
Consider any nonzero x ∈ Cn, and let x̂ := Fx. Then

‖x‖0 · ‖x̂‖0︸ ︷︷ ︸
time-bandwidth product

≥ n

• x and x̂ cannot be highly sparse simultaneously

• Does not rely on the support of x and x̂

• Sanity check: if x = [1, 0, · · · , 0]> with ‖x‖0 = 1, then
‖x̂‖0 = n and hence ‖x‖0 · ‖x̂‖0 = n

Corollary 2.6 (Donoho & Stark ’89)

‖x‖0 + ‖x̂‖0 ≥ 2
√
n (by AM-GM inequality)
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Application: super-resolution

wideband sparse signal x its low-pass version xLP

Consider a sparse wideband (i.e. ‖x‖0 � n) signal x ∈ Cn, and
project it onto a baseband B (of bandwidth |B| < n) to obtain its
low-pass version xLP = ProjB(x). Then we can recover x from xLP if

2‖x‖0 · (n− |B|)︸ ︷︷ ︸
size of unobserved band

< n. (2.1)
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Application: super-resolution

Examples:
◦ If ‖x‖0 = 1, then it’s recoverable if |B| > 1

2n

◦ If ‖x‖0 = 2, then it’s recoverable if |B| > 3
4n

◦ · · ·

• First nontrivial performance guarantee for super-resolution

• Somewhat pessimistic: we need to measure half of the
bandwidth in order to recover just 1 spike

• As will be seen later, we can do much better if nonzero entries of
x are scattered
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Application: super-resolution

Proof: If ∃ another solution z = x+ h with ‖z‖0 ≤ ‖x‖0, then

• ProjB(h) = 0 =⇒ ‖Fh‖0 ≤ n− |B|

• ‖h‖0 ≤ ‖x‖0 + ‖z‖0 ≤ 2‖x‖0

This together with the assumption (2.1) gives

‖h‖0 · ‖Fh‖0 ≤ 2‖x‖0 · (n− |B|) < n,

which violates Theorem 2.5 unless h = 0.
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Proof of Theorem 2.5: a key lemma

The key to prove Theorem 2.5 is to establish the following lemma

Lemma 2.7 (Donoho & Stark ’89)

If x ∈ Cn has k nonzero entries, then x̂ := Fx cannot have k
consecutive 0’s.

Proof: Suppose xτ1 , · · · , xτk are the nonzero entries, and let z = e−
2πi
n .

1. For any consecutive frequency interval (s, · · · , s+ k − 1), the (s+ l)th

frequency component is

x̂s+l = 1√
n

∑k

j=1
xτjz

τj(s+l), l = 0, · · · , k − 1
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Proof of Lemma 2.7

Proof (continued): One can thus write

g := [x̂s+l]0≤l<k = 1√
n
Zxτ ,

where xτ :=


xτ1z

τ1s

xτ2z
τ2s

...
xτkz

τks

, Z :=


1 1 1 · · · 1
zτ1 · · · · · · · · · zτk

z2τ1 · · · · · · · · · z2τk

...
...

...
...

...
...

z(k−1)τ1 · · · · · · · · · z(k−1)τk


2. Recognizing that Z is a Vandermonde matrix yields

det(Z>) =
∏

1≤i<j≤k
(zτj − zτi) 6= 0,

and hence Z is invertible. Therefore, xτ 6= 0 ⇒ g 6= 0 as claimed.



29/69

Proof of Theorem 2.5

Suppose x is k-sparse, and suppose n/k ∈ Z.

1. Partition {1, · · · , n} into n/k intervals of length k each.

2. By Lemma 2.7, none of these intervals of x̂ can vanish. Since
each interval contains at least 1 non-zero entry, one has

‖x̂‖0 ≥
n

k

⇐⇒ ‖x‖0 · ‖x̂‖0 ≥ n

Exercise: fill in the proof for the case where k does not divide n.
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Tightness of uncertainty principle

The lower bounds in Theorem 2.5 and Corollary 2.6 are achieved by
the picket-fence signal x (a signal with uniform spacing

√
n).

Figure 2.1: The picket-fence signal for n = 64, which obeys Fx = x
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Uncertainty principle for general basis pairs

There are many other bases beyond time-frequency pairs
• Wavelets
• Ridgelets
• Hadamard
• ...

Generally, for an arbitrary y ∈ Cn and arbitrary bases Ψ and Φ,
suppose y = Ψα = Φβ:

How small can ‖α‖0 + ‖β‖0 be ?
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Uncertainty principle for general basis pairs

The degree of “uncertainty” depends on the basis pair.

• Example: suppose φ1,φ2 ∈ Ψ and 1√
2(φ1 + φ2),

1√
2(φ1 − φ2) ∈ Ψ. Then y = φ1 + 0.5φ2 can be sparsely

represented in both Ψ and Φ.

Message: uncertainty principle depends on
how “different” Ψ and Φ are.
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Mutual coherence

A rough way to characterize how “similar” Ψ and Φ are:

Definition 2.8 (Mutual coherence)
For any pair of orthonormal bases Ψ = [ψ1, · · · ,ψn] and Φ = [φ1, · · · ,φn],
the mutual coherence of these two bases is defined by

µ(Ψ,Φ) = max
1≤i,j≤n

|〈ψi,φj〉| = max
1≤i,j≤n

|ψ∗i φj |

• 1/
√
n ≤ µ(Ψ,Φ) ≤ 1 (homework)

• For µ(Ψ,Φ) to be small, each ψi needs to be “spread out” in
the Φ domain
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Examples

• µ(I,F ) = 1/
√
n

◦ Spikes and sinusoids are the most mutually incoherent

• Other extreme basis pair obeying µ(Φ,Ψ) = 1/
√
n: Ψ = I and

Φ = H (Hadamard matrix)
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Fourier basis vs. wavelet basis (n = 1024)

Magnitudes of Daubechies-8 wavelets in the Fourier domain (j labels
the scales of the wavelet transform with j = 1 the finest scale)

Fig. credit: Candes & Romberg ’07
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Uncertainty principle for general bases

Theorem 2.9 (Donoho & Huo ’01, Elad & Bruckstein ’02)

Consider any nonzero b ∈ Cn and any pair of orthonormal bases Ψ
and Φ. Suppose b = Ψα = Φβ. Then

‖α‖0 · ‖β‖0 ≥
1

µ2(Ψ,Φ)

Corollary 2.10 (Donoho & Huo ’01, Elad & Bruckstein ’02)

‖α‖0 + ‖β‖0 ≥
2

µ(Ψ,Φ) (by AM-GM inequality)
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Implications

• If two bases are “mutually incoherent”, then we cannot have
highly sparse representations in two bases simultaneously

• If Ψ = I and Φ = F , Theorem 2.9 reduces to

‖α‖0 · ‖β‖0 ≥ n

since µ(Ψ,Φ) = 1/
√
n, which coincides with Theorem 2.5.
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Proof of Theorem 2.9

1. WLOG, assume ‖b‖ = 1. This gives

1 = b∗b = α∗Ψ∗Φβ
=

∑p

i,j=1
αi 〈ψi,φj〉βj

≤
∑p

i,j=1
|αi| · µ(Ψ,Φ) · |βj |

≤ µ(Ψ,Φ)
(∑p

i=1
|αi|

)(∑p

j=1
|βj |

)
(2.2)

Aside: this shows ‖α‖1 · ‖β‖1 ≥ 1
µ(Ψ,Φ)
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Proof of Theorem 2.9 (continued)

2. The assumption ‖b‖ = 1 implies ‖α‖ = ‖β‖ = 1. This together
with the elementary inequality

∑k
i=1 xi ≤

√
k
∑k
i=1 x

2
i yields

∑p

i=1
|αi| ≤

√
‖α‖0

∑p

i=1
|αi|2 =

√
‖α‖0

Similarly,
∑p
i=1 |βi| ≤

√
‖β‖0.

3. Substitution into (2.2) concludes the proof.
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Uniqueness of sparse representation

A natural strategy to promote sparsity:
— seek the sparsest solution to the linear system

(P0) minimizex∈Cp ‖x‖0 s.t. Ax = y

• When is the solution unique?

• How to test whether a candidate solution is the sparsest possible?
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Uniqueness of `0 minimization

The uncertainty principle leads to the possibility of ideal sparse
representation for the system

y = [Ψ,Φ]x (2.3)

Theorem 2.11 (Donoho & Huo ’01, Elad & Bruckstein ’02)

Any two distinct solutions x(1) and x(2) to (2.3) satisfy

‖x(1)‖0 + ‖x(2)‖0 ≥
2

µ(Ψ,Φ)

Corollary 2.12 (Donoho & Huo ’01, Elad & Bruckstein ’02)

If a solution x obeys ‖x‖0 < 1
µ(Ψ,Φ) , then it is necessarily the unique

sparsest solution.



42/69

Proof of Theorem 2.11

Define h = x(1) − x(2), and write h =
[
hΨ
hΦ

]
with hΨ,hΦ ∈ Cn.

1. Since y = [Ψ,Φ]x(1) = [Ψ,Φ]x(2), one has

[Ψ,Φ]h = 0 ⇐⇒ ΨhΨ = −ΦhΦ

2. By Corollary 2.10,

‖h‖0 = ‖hΨ‖0 + ‖hΦ‖0 ≥
2

µ(Ψ,Φ)

3. ‖x(1)‖0 + ‖x(2)‖0 ≥ ‖h‖0 ≥ 2
µ(Ψ,Φ) as claimed.
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Sparse representation via `1 minimization
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Relaxation of the highly discontinuous `0 norm

Unfortunately, `0 minimization is computationally intractable ...

Simple heuristic: replacing `0 norm with continuous (or even smooth)
approximation

|x|q vs. x
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Convexification: `1 minimization (basis pursuit)

minimizex∈Cp ‖x‖0 s.t. Ax = y

⇓
Convexifying ‖x‖0 with ‖x‖1

⇓

minimizex∈Cp ‖x‖1 s.t. Ax = y (2.4)

• |x| is the largest convex function less than 1{x 6= 0} over
{x : |x| ≤ 1}

• `1 minimization is a linear program (homework)

• `1 minimization is non-smooth optimization (since ‖ · ‖1 is
non-smooth)

• `1 minimization does not rely on prior knowledge on sparsity level
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Geometry

minx ‖x‖1 s.t. Ax = y minx ‖x‖2 s.t. Ax = y

Even pointier in the high dimension

• Level sets of ‖ · ‖1 are pointed, enabling it to promote sparsity

• Level sets of ‖ · ‖2 are smooth, often leading to dense solutions
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Effectiveness of `1 minimization

Theorem 2.13 (Donoho & Huo ’01, Elad & Bruckstein ’02)

x ∈ Cp is the unique solution to `1 minimization (2.4) if

‖x‖0 <
1
2

(
1 + 1

µ(Ψ,Φ)

)
(2.5)

• `1 minimization yields the sparse solution too!

• The recovery condition (2.5) can be improved to, e.g.,

‖x‖0 <
0.914
µ(Ψ,Φ) [Elad & Bruckstein ’02]
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Effectiveness of `1 minimization

‖x‖0 < 1
µ(Ψ,Φ) =⇒ `0 minimization works

‖x‖0 < 0.914
µ(Ψ,Φ) =⇒ `1 minimization works

The recovery condition for `1 miniization is within a factor of
1/0.914 ≈ 1.094 of the condition derived for `0 minimization
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Proof of Theorem 2.13
We need to show that ‖x+ h‖1 > ‖x‖1 holds for any other feasible
solution x+ h. To this end, we proceed as follows

‖x+ h‖1 > ‖x‖1

⇐=
∑

i/∈supp(x)
|hi|+

∑
i∈supp(x)

(|xi + hi| − |xi|) > 0

⇐=
∑

i/∈supp(x)
|hi| −

∑
i∈supp(x)

|hi| > 0 (since |a+ b| − |a| ≥ −|b|)

⇐= ‖h‖1 > 2
∑

i∈supp(x)
|hi|

⇐=
∑

i∈supp(x)

|hi|
‖h‖1

<
1
2

⇐= ‖x‖0
‖h‖∞
‖h‖1

<
1
2 (2.6)
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Proof of Theorem 2.13 (continued)

It remains to control ‖h‖∞‖h‖1
. As usual, due to feasibility constraint we

have [Ψ,Φ]h = 0, or

Ψhψ = −Φhφ ⇐⇒ hψ = −Ψ∗Φhφ where h =
[
hψ
hφ

]
.

For any i, the inequality |a∗b| ≤ ‖a‖∞‖b‖1 gives

|(hψ)i| = |(Ψ∗Φ)row i · hφ| ≤ ‖Ψ∗Φ‖∞ · ‖hφ‖1 = µ(Ψ,Φ) · ‖hφ‖1

On the other hand, ‖hψ‖1 ≥ |(hψ)i|. Putting them together yields

‖h‖1 = ‖hφ‖1 + ‖hψ‖1 ≥ |(hψ)i|
(

1 + 1
µ(Ψ,Φ)

)
(2.7)
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Proof of Theorem 2.13 (continued)

In fact, this inequality (2.7) holds for any entry of h, giving that

‖h‖∞
‖h‖1

≤ 1
1 + 1

µ(Ψ,Φ)

Finally, if ‖x‖0 < 1
2

(
1 + 1

µ(Ψ,Φ)

)
, then

‖x‖0 ·
‖h‖∞
‖h‖1

<
1
2

as claimed in (2.6), thus concluding the proof.
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Sparse representation for general dictionaries
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Beyond two-ortho case

minimizex ‖x‖0 s.t. y = Ax

What if A ∈ Cn×p is a general overcomplete dictionary?

We will study this general case through 2 metrics

1. Mutual coherence

2. Spark
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Mutual coherence for arbitrary dictionaries

Definition 2.14 (Mutual coherence)
For any A = [a1, · · · ,ap] ∈ Cn×p, the mutual coherence of A is defined by

µ(A) = max
1≤i,j≤p, i 6=j

|a∗iaj |
‖ai‖‖aj‖

• If ‖ai‖ = 1 for all i, then µ(A) is the maximum off-diagonal
entry (in absolute value) of the Gram matrix G = A∗A

• µ(A) characterizes “second-order” dependency across the atoms
{ai}

• (Welch bound) µ(A) ≥
√

p−n
n(p−1) , with equality attained by a

family called Grassmannian frames
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Uniqueness of sparse representation via µ(A)

A theoretical guarantee similar to the two-ortho case

Theorem 2.15 (Donoho & Elad ’03, Gribonval & Nielsen ’03,
Fuchs ’04)

If x is a feasible solution that obeys ‖x‖0 < 1
2

(
1 + 1

µ(A)

)
, then x is

the unique solution to both `0 and `1 minimization.
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Tightness?

Suppose p = cn for some constant c > 2, then Welch bound gives

µ(A) ≥ 1/
√

2n.

=⇒ for the “most incoherent” (and hence best possible) dictionary,
the recovery condition reads

‖x‖0 = O(
√
n)

This says: to recover a
√
n-sparse signal (and hence

√
n degrees of

freedom), we need an order of n samples
• The measurement burden is way too high!
• Mutual coherence might not capture the information bottleneck!
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Another metric: Spark

Definition 2.16 (Spark, Donoho & Elad ’03)
spark(A) is the size of the smallest linearly dependent column subset
of A, i.e.

spark(A) = min
z
‖z‖0 s.t. Az = 0

• A way of characterizing null-space of A using `0 norm

• Comparison to rank
◦ rank(A): largest number of columns from A that are linearly

independent
◦ spark(A) is far more difficult to compute than rank(A)

• 2 ≤ spark(A) ≤ rank(A) + 1 for nontrivial A
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Examples

A =


1 0 0 0 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0



• spark(A) = 3

• rank(A) = 4
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Examples

Suppose
√
n ∈ Z. Then A = [I,F ] ∈ Cn×2n obeys

spark(A) = 2
√
n

• Hint: consider the concatenation of two picket-fence signals each
with

√
n peaks
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Examples

Suppose the entries of A are i.i.d. standard Gaussian, then

spark(A) = n+ 1

with probability 1, since no n columns are linearly dependent.
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Uniqueness via spark

Spark provides a simple criterion for uniqueness:

Theorem 2.17

If x is a solution to Ax = y and obeys ‖x‖0 < spark(A)/2, then x is
necessarily the unique sparsest possible solution.

• If A is an i.i.d. Gaussian matrix (and hence spark(A) = n+ 1),
then this condition reads

‖x‖0 < (n+ 1)/2

i.e., n samples enable us to recover n/2 units of information!
◦ much better than the condition based on µ(A)
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Proof of Theorem 2.17
Consider any other feasible solution z 6= x.
1. Since Az = Ax = y, one has

A(x− z) = 0,

i.e. the columns of A at indices coming from the support of x− z
are linearly dependent

2. By definition,
spark(A) ≤ ‖x− z‖0

3. The fact ‖x‖0 + ‖z‖0 ≥ ‖x− z‖0 then gives
‖x‖0 + ‖z‖0 ≥ spark(A)

4. If ‖x‖0 < spark(A)/2, then
‖z‖0 ≥ spark(A)/2 > ‖x‖0
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Connecting Spark with mutual coherence

Theorem 2.18 (Donoho & Elad ’03)

spark(A) ≥ 1 + 1/µ(A)
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Connecting Spark with mutual coherence

Corollary 2.19 (Donoho & Elad ’03)

If a solution x obeys ‖x‖0 < 0.5(1 + 1/µ(A)), then it is the sparsest
possible solution.

• Corollary 2.19 is, however, much weaker than Theorem 2.17
• Example (2-ortho case):

◦ Corollary 2.19 gives ‖x‖0 = O(
√
n) at best, since µ(A) ≥ 1/

√
n

◦ Theorem 2.17 may give a bound as large as ‖x‖0 = O(n) since
spark(A) may be as large as n
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Proof of Theorem 2.18

WLOG, assume ‖ai‖ = 1, ∀i, then the Gram matrix G := A∗A obeys

Gi,i = 1 ∀i and |Gi,j | ≤ µ(A) ∀i 6= j (2.8)

1. Consider any k × k principal submatrix GJ,J of G with J an index
subset. If GJ,J � 0, then the k columns of A at indices in J are
linearly independent

2. If this holds for all k × k principal submatrices, then by definition
spark(A) > k

3. Finally, by Gershgorin circle theorem, one would have GJ,J � 0 if
|Gi,i| >

∑
j∈J, j 6=i |Gi,j |, which would follow if (by (2.8))

1 > (k − 1)µ(A)

i.e. k can be as large as 1 + b1/µ(A)c
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Gershgorin circle theorem

Lemma 2.20 (Gershgorin circle theorem)
The eigenvalues of M = [mi,j ]1≤i,j≤n lie in the union of n discs
disc(ci, ri), 1 ≤ i ≤ n, centered at ci = mii and with radius
ri =

∑
j:j 6=i |mij |.
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Summary

• For many dictionaries, if a signal is representable in a highly
sparse manner, then it is often guaranteed to be the unique
sparse solution.

• Seeking a sparse solution often becomes a well-posed question
with interesting properties
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