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Basic problem

Findx e C" st. Az =y

where A = [a1,--- ,ay,] € C™*™ obeys

e underdetermined system: m < n
e full-rank: rank(A) =m

A: an over-complete basis / dictionary, a;: atom;
x: representation in this basis / dictionary



Sparse representation

Clearly, there exist infinitely many feasible solutions to Ax =y ...
e Solution set: A*(AA*) Ly + null(A)
—_———

At
e Al is the pseodo-inverse of A; null(A) is the null space of A

How many “sparse” solutions are there?




What is sparsity?

Consider a signal € C".

Definition 2.1 (Support)

The support of a vector € C™ is the index set of its nonzero entries,
i.e.

supp() := {j € [n] : [z;] # O}
where [p] = {1,...,n}.

Definition 2.2 (k-sparse signal)
The signal x is called k-sparse, if

2]l := Isupp(z)| < k.

||z||o is called the sparsity level of x. (Note: It is a “pseudo-norm”).



Sparse signals belong to a union-of-subspace

e For a fixed sparsity pattern (support), it defines a subspace of
dimension k in RP.

e There're (7)) subspaces of dimension k.
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Best k-term approximations

We're also interested in signals that are approximately sparse (because
a lot real-world signals are not exactly sparse). This is measured by
how well they can be approximated by sparse signals.

Definition 2.3 (Best k-term approximation)

Denote the index set of the k-largest entries of |x| as Si. The best
k-term approximation xj of x is defined as

. ri, 1€8

The (best) k-term approximation error in £, norm is then given as

1/p
|z — @k, = (Z Ixil”) :

i¢Sk




Compressible signals

Compressibility: A signal is called compressible if
R(k) = |l — @k,

decays “fast” in k.



Compressible signals

Compressibility: A signal is called compressible if
R(k) = |l — @k,

decays “fast” in k.

Lemma 2.4 (Compressibility)

For any ¢ > p > 0 and x € R",

1
e — il < 7= 1=l




Signals in /; Ball

Example: Set ¢ =2 and p = 1, we have

& — @iz < —= |21

|
f
Consider a signal ¢ € B} := {z € R" : ||z]|; < 1}. Then x is
compressible when p = 1.

Geometrically, the £,-ball is pointy when 0 < p < 1 in high dimension.



Proof of Lemma 2.4

Without loss of generality we assume the coefficients of a is ordered
in descending order of magnitudes. We then have

n

|z — x||d = Z |z;|7  (by definition)

Jj=k+1
n
= o™ D JalP (gl /)P
j=k+1
n
<ol Y lagl” (lajl/leel < 1)
j=k+1
a=-p
1 k p n
< EZWVD >zl
j=1 J=k+1

a—-p

1 r 1
(31212) ™ lalls = £ Nl
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Sparse representation in pairs of bases




A special type of dictionary: two-ortho case

Motivation for over-complete dictionary: many signals are
mixtures of diverse phenomena; no single basis can describe them well

Two-ortho case: A is a concatenation of 2 orthonormal matrices

A=[U®  where UV = I'T = P* = "D =1

e A classical example: A = [I,F] (F : Fourier matrix)

o representing a signal y as a superposition of spikes and sinusoids



Example 1

The following signal y; is dense in the time domain, but sparse in the
frequency domain

time-representation of y; frequency-representation of y;



Example 2

The following signal y2 is dense in both time domain and frequency
domain, but sparse in the overcomplete basis [I, F|

time representation of yo frequency representation of ys



Example 2

The following signal y2 is dense in both time domain and frequency
domain, but sparse in the overcomplete basis [I, F|

representation of yo in overcomplete basis (time + frequency)



Uniqueness of sparse representation

A natural strategy to promote sparsity:
— seek the sparsest solution to the linear system

(Pp) minimizegecr ||z|0 st Az =1y

e When is the solution unique?

e How to test whether a candidate solution is the sparsest possible?



Application: multiuser detection

e 2 (or more) users wish to communicate to the same receiver over
a shared wireless medium

e The jth user transmits a;; the receiver sees
y= > a
7 is active

e Let A=[ai; - ,ay,]| be the codebook containing all users of
messages; then
y=Ax

where the location of the non-zero entries of x indicates active
users.

Unique representation — unambiguous user identification



Connection to null space of A

Suppose  and « + h are both solutions to the linear system, then
Ah=A(x+h)-Az=y—y=0

Write h = [ hw ] with hg, he € C", then
hg

Yhy = —Phs

e hgy and —hg are representations of the same vector in different
bases

e (Non-rigorously) In order for & to be the sparsest solution, we
hope h is much denser, i.e. we don’t want hy and —hg to be
simultaneously sparse



Detour: uncertainty principles for basis pairs



Heisenberg’s uncertainty principle

A pair of complementary variables cannot both be highly
concentrated

e Quantum mechanics

Var[z] - Var[p] > h?/4
position momentum

o h: Planck constant



Heisenberg’s uncertainty principle

A pair of complementary variables cannot both be highly
concentrated

e Quantum mechanics

Var[z] - Var[p] > h?/4
position momentum

o h: Planck constant

e Signal processing

/O:O 2| (1)t /O:O W2|F(w)2dw > 1/4

—_————
concentration level of f(t)

o f(t): asignal obeying [ [f(t)[?dt =1
o F(w): Fourier transform of f(t)



Heisenberg’s uncertainty principle

ft) F(w)

Roughly speaking, if f(t) vanishes outside an interval of length At,
and its Fourier transform vanishes outside an interval of length Aw,
then

At - Aw > const



Proof of Heisenberg’s uncertainty principle

(assuming f is real-valued and tf2(t) — 0 as [t| — 00)

1. Rewrite [w?|F(w)|?dw in terms of f. Since f'(t) 5 iwF(w),
Parseval's theorem yields

[P@Pdo = [liwre)Pa = [ Iropa

2. Invoke Cauchy-Schwarz:

(/ﬂf %Qm(/u 2@f”>—/ﬁmf@w

= —0.5/ dfj( )dt

= —O.Sth(t)’_OO + O.B/fz(t)dt (integration by part)

=0.5 (by our assumptions)



Uncertainty principle for time-frequency bases

concentrated signal sparse but non-concentrated signal

More general case: concentrated signals — sparse signals

e f(t) and F(w) are not necessarily concentrated on intervals

Question: is there a signal that can be sparsely represented both in
time and in frequency?

e Formally, for an arbitrary x, suppose & = Fx.

How small can ||&||o + ||x||o be ?



Uncertainty principle for time-frequency bases

Theorem 2.5 (Donoho & Stark '89)

Consider any nonzero x € C", and let & := Fx. Then

[zlo- 2l =n

time-bandwidth product

e x and & cannot be highly sparse simultaneously
e Does not rely on the support of & and &
e Sanity check: if x = [1,0,---,0]" with ||z|jo = 1, then
|Z|lo = n and hence ||z||o - ||Z|lo = n
Corollary 2.6 (Donoho & Stark '89)
lello+ | &llo > 2V (by AM-GM inequality)




Application: super-resolution

11
l |

wideband sparse signal its low-pass version x| p

Consider a sparse wideband (i.e. ||z|o < n) signal € C", and
project it onto a baseband B (of bandwidth |B| < n) to obtain its
low-pass version & p = Projg(x). Then we can recover x from x p if
2|lzllo- (n—[B})  <n. (2.1)
—_———

size of unobserved band



Application: super-resolution

Examples:

o If |lz|lo = 1, then it's recoverable if |B| > in
o If |z|lo = 2, then it's recoverable if |B| > 3n

O -

e First nontrivial performance guarantee for super-resolution

e Somewhat pessimistic: we need to measure half of the
bandwidth in order to recover just 1 spike

e As will be seen later, we can do much better if nonzero entries of
X are scattered



Application: super-resolution

Proof: If 3 another solution z =« + h with ||z]o < ||z||o, then
e Projg(h)=0 = || Fhlo<n—|B|
o [[Allo < llzllo + llzllo < 2[|=]lo

This together with the assumption (2.1) gives

[Rllo - [[FRllo < 2[[2[lo - (n = [B]) <n,

which violates Theorem 2.5 unless h = 0.



Proof of Theorem 2.5: a key lemma

The key to prove Theorem 2.5 is to establish the following lemma

Lemma 2.7 (Donoho & Stark ’89)

If x € C™ has k nonzero entries, then & := Fx cannot have k
consecutive 0’s.

27i

Proof: Suppose z.,,--- ,z,, are the nonzero entries, and let z = e~ "= .

1. For any consecutive frequency interval (s,--- ,s +k — 1), the (s + )"
frequency component is

1 k
i) = —— T =0, k-1
Ts41 \/ﬁ Zj:l QL'-,-JZ ’ ) y



Proof of Lemma 2.7

Proof (continued): One can thus write

X 1
g = [Tstio<ick = %Zmﬁ

e 1 11 1
T1 271 2Tk
1'7-2 ZT2S 227—1 e e e ZQTk
where ., := . L=
T
s : : : : i
L, 2 P S T €4 it

2. Recognizing that Z is a Vandermonde matrix yields

det(z")= [ (7 -27) #0,

1<i<j<k

and hence Z is invertible. Therefore, x; #0 = g # 0 as claimed.



Proof of Theorem 2.5

Suppose x is k-sparse, and suppose n/k € Z.
1. Partition {1,--- ,n} into n/k intervals of length k each.

2. By Lemma 2.7, none of these intervals of & can vanish. Since
each interval contains at least 1 non-zero entry, one has

n
T
&l > 7

= lzllo-[l#llo > n

Exercise: fill in the proof for the case where k does not divide n.



Tightness of uncertainty principle

The lower bounds in Theorem 2.5 and Corollary 2.6 are achieved by
the picket-fence signal « (a signal with uniform spacing \/n).
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Figure 2.1: The picket-fence signal for n = 64, which obeys Fx = x



Uncertainty principle for general basis pairs

There are many other bases beyond time-frequency pairs
Wavelets

Ridgelets

Hadamard

Generally, for an arbitrary y € C" and arbitrary bases ¥ and &,
suppose y = Yo = P3:

How small can ||a||o + ||Bllo be ?



Uncertainty principle for general basis pairs

The degree of “uncertainty” depends on the basis pair.

e Example: suppose ¢, s € ¥ and (¢1 + ¢2),

\72((151 —¢2) € ¥. Then y = ¢1 + 0. 5¢2 can be sparsely
represented in both ¥ and ®.

Message: uncertainty principle depends on
how “different” W and ® are.




Mutual coherence

A rough way to characterize how “similar” W and ® are:

Definition 2.8 (Mutual coherence)

For any pair of orthonormal bases ¥ = [¢1,- - ,%,] and ® = [¢1, - , Px],
the mutual coherence of these two bases is defined by

a2, @) = max |(vi, ¢;)| = max [i;l

o 1/y/n < pu(¥,®) <1 (homework)

e For (¥, ®) to be small, each 1); needs to be “spread out” in
the @ domain



Examples

o W(I,F)=1/v/n

o Spikes and sinusoids are the most mutually incoherent

e Other extreme basis pair obeying u(®,¥)=1/y/n: ¥ =1 and
® = H (Hadamard matrix)



Fourier basis vs. wavelet basis (n = 1024)
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Magnitudes of Daubechies-8 wavelets in the Fourier domain (j labels
the scales of the wavelet transform with j = 1 the finest scale)

Fig. credit: Candes & Romberg '07



Uncertainty principle for general bases

Theorem 2.9 (Donoho & Huo '01, Elad & Bruckstein '02)

Consider any nonzero b € C™ and any pair of orthonormal bases ¥
and ®. Suppose b =WYoo = ®3. Then
1

. >_ -
lexlo - 18110 > g5

Corollary 2.10 (Donoho & Huo '01, Elad & Bruckstein '02)

lello + [|Bllo > (by AM-GM inequality)

n(¥, @)




Implications

e If two bases are “mutually incoherent”, then we cannot have
highly sparse representations in two bases simultaneously

o If W =1 and ® = F, Theorem 2.9 reduces to

leelo - 1Bllo = 7

since u(®, ®) = 1/4/n, which coincides with Theorem 2.5.



Proof of Theorem 2.9

1. WLOG, assume ||b|]| = 1. This gives

1=bb = a"¥"'P3
- ZZ] 1 <’l;bl7¢j>6]
Sl n(%.®)- 15,

pe®) (X7 ) (X018:1) 22

Aside: this shows ||al|1 - [|B]]1 > M(\p 3) J

IN

IN




Proof of Theorem 2.9 (continued)

2. The assumption ||b]| = 1 implies ||a|| = ||B]| = 1. This together
with the elementary inequality Zle T < \/kazl z? yields

p p
S0 il < \fllado 37 Jeul? = el
Similarly, 32, 18] < v/118]lo-

3. Substitution into (2.2) concludes the proof.



Uniqueness of sparse representation

A natural strategy to promote sparsity:
— seek the sparsest solution to the linear system

(Pp) minimizegecr ||z|0 st Az =1y

e When is the solution unique?

e How to test whether a candidate solution is the sparsest possible?



Uniqueness of /; minimization

The uncertainty principle leads to the possibility of ideal sparse
representation for the system

y=[¥, Pz (2.3)

Theorem 2.11 (Donoho & Huo ’01, Elad & Bruckstein '02)
Any two distinct solutions ") and z(?) to (2.3) satisfy

(1) (2) =
x + || >

Corollary 2.12 (Donoho & Huo '01, Elad & Bruckstein '02)

If a solution x obeys ||x||o < m, then it is necessarily the unique
sparsest solution.




Proof of Theorem 2.11

Define h = (V) — £(), and write h = [ Z\I} ] with hy, he € C™.
o
1. Since y = [¥, ®]z(V) = [¥, ®]x?), one has
(U, ®]h =0 <= Yhy=—-Phs

2. By Corollary 2.10,

hllo = lhwllo + [[hallo =
o =l + oo > oo

3. 2D o + |£P o > [|h]jo > ﬁ as claimed.



Sparse representation via /; minimization



Relaxation of the highly discontinuous ¢, norm

Unfortunately, £y minimization is computationally intractable ...

Simple heuristic: replacing ¢y norm with continuous (or even smooth)
approximation

0.8+

0.6

0.4

0.2+

N=oo
n

QO
LU | 1}

|x|? vs. x



Convexification: ¢; minimization (basis pursuit)

minimizegecr ||z|l0 st. Az =1y

¢
Convexifying ||z |lo with |||
¢
minimizegecr ||z]|1 st. Az =y (2.4)

|| is the largest convex function less than 1{x # 0} over
{z: |z <1}

e /1 minimization is a linear program (homework)

e (1 minimization is non-smooth optimization (since | - ||1 is
non-smooth)

£1 minimization does not rely on prior knowledge on sparsity level



Geometry

T2

solution of ¢;-min

o

x1

ming ||x||; s.t. Az =1y

Even pointier in the high dimension

>

T2

solution of /o-min

\N:y

N

J 1

ming ||xlj2 s.t. Az =1y

e Level sets of || - ||; are pointed, enabling it to promote sparsity J

e Level sets of || - ||2 are smooth, often leading to dense solutions




Effectiveness of /; minimization

Theorem 2.13 (Donoho & Huo ’01, Elad & Bruckstein '02)

x € CP is the unique solution to {1 minimization (2.4) if

zllo < % (1 - #(\111@)) (2.5)

e /1 minimization yields the sparse solution too!

e The recovery condition (2.5) can be improved to, e.g.,

914
2o < u(O‘I?@) [Elad & Bruckstein '02]



Effectiveness of /; minimization

—>  f¢ minimization works

Izl < Zwa)

llz]lo < 0.914 — /1 minimization works

The recovery condition for £1 miniization is within a factor of
1/0.914 ~ 1.094 of the condition derived for {y minimization



Proof of Theorem 2.13

We need to show that ||« + h||; > ||«||1 holds for any other feasible

solution @ + h. To this end, we proceed as follows

[ + hl[1 > [l

= > i+ Y (zithil=|zl) >0

i¢supp(x) i€supp(x)

<— h;| — h;| >0 since |a + b| —
> |

i¢supp(x) i€supp(x)

= |hli>2 > |h
i€supp(x)

h; 1
: [l 2
i€supp(x)

!
Rl =2

|zl

lal = —[b])

(2.6)



Proof of Theorem 2.13 (continued)

) h
It remains to control H”hmj"

have (¥, ®]h = 0, or

. As usual, due to feasibility constraint we

Chy =-®h; <= hy=-¥*"®h;  where h= [ Zw ] :
¢

For any i, the inequality |a*b| < ||a|||/b]|1 gives
[(Rg)il = [(7®)row i - ho| < [¥7 Rl - [hglly = (¥, @) - [[ gl
On the other hand, ||hy|[1 > |(hy)i|. Putting them together yields

1

Il = gl -+ sl = ()] (14— 5) @)



Proof of Theorem 2.13 (continued)

In fact, this inequality (2.7) holds for any entry of h, giving that

[l 1

[

Finally, if ||z|o < % (1 + m) then

Rl 1
- _ < —

as claimed in (2.6), thus concluding the proof.



Sparse representation for general dictionaries



Beyond two-ortho case

minimizeg |||o s.t. y = Az

What if A € C™*P is a general overcomplete dictionary?

We will study this general case through 2 metrics

1. Mutual coherence

2. Spark



Mutual coherence for arbitrary dictionaries

Definition 2.14 (Mutual coherence)
For any A = [a1,-- ,a,] € C"*P, the mutual coherence of A is defined by
n(A)

laja,|

= max T T T
1<ij<p, i ||a;||||a;]|

e If ||a;|| =1 for all 4, then p(A) is the maximum off-diagonal
entry (in absolute value) of the Gram matrix G = A*A

e 1(A) characterizes "second-order” dependency across the atoms

{ai}

e (Welch bound) p(A) > nf;_"l), with equality attained by a

family called Grassmannian frames




Uniqueness of sparse representation via ;(A)

A theoretical guarantee similar to the two-ortho case

Theorem 2.15 (Donoho & Elad ’03, Gribonval & Nielsen '03,
Fuchs '04)

If x is a feasible solution that obeys ||z < 3 (1 + ﬁ) then x is
the unique solution to both £y and ¢1 minimization.




Tightness?

Suppose p = cn for some constant ¢ > 2, then Welch bound gives
u(A) > 1/v/2n.

== for the "most incoherent” (and hence best possible) dictionary,
the recovery condition reads

lz]lo = O(v/n)

This says: to recover a \/n-sparse signal (and hence /i degrees of
freedom), we need an order of n samples

e The measurement burden is way too high!

e Mutual coherence might not capture the information bottleneck!



Another metric: Spark

Definition 2.16 (Spark, Donoho & Elad '03)

spark(A) is the size of the smallest linearly dependent column subset

of A, i.e. )
spark(A) = min |z]lo st. Az=0

e A way of characterizing null-space of A using ¢y norm

e Comparison to rank

o rank(A): largest number of columns from A that are linearly
independent

o spark(A) is far more difficult to compute than rank(A)

o 2 <spark(A) < rank(A) + 1 for nontrivial A



Examples

S O =
O = O
o= O O
— o O O

e spark(A) =3

e rank(A) =14

O =



Examples

Suppose /1 € Z. Then A = [I, F] € C"*?" obeys

spark(A) = 2v/n

e Hint: consider the concatenation of two picket-fence signals each
with \/n peaks



Examples

Suppose the entries of A are i.i.d. standard Gaussian, then
spark(A) =n+1

with probability 1, since no n columns are linearly dependent.



Uniqueness via spark

Spark provides a simple criterion for uniqueness:

Theorem 2.17

If x is a solution to Ax =y and obeys ||z||o < spark(A)/2, then x is
necessarily the unique sparsest possible solution.

e If Ais an i.i.d. Gaussian matrix (and hence spark(A) = n + 1),
then this condition reads

zllo < (n+1)/2

i.e., n samples enable us to recover n/2 units of information!
o much better than the condition based on (1(A)



Proof of Theorem 2.17

Consider any other feasible solution z # x.

1. Since Az = Ax = y, one has
A(x —z) =0,

i.e. the columns of A at indices coming from the support of x — z
are linearly dependent

2. By definition,
spark(A) < ||z — z||o
3. The fact ||z|o + ||z]l0 > || — 2z]|o then gives
[2]lo + [|z[lo = spark(A)
4. If ||z|lo < spark(A)/2, then
1Zllo = spark(A)/2 > |[z]lo



Connecting Spark with mutual coherence

Theorem 2.18 (Donoho & Elad ’03)

spark(A) > 14+ 1/u(A)




Connecting Spark with mutual coherence

Corollary 2.19 (Donoho & Elad ’03)

If a solution x obeys ||z|o < 0.5(1 + 1/u(A)), then it is the sparsest
possible solution.

e Corollary 2.19 is, however, much weaker than Theorem 2.17
e Example (2-ortho case):
o Corollary 2.19 gives ||x||o = O(y/n) at best, since u(A) > 1/y/n

o Theorem 2.17 may give a bound as large as ||z||o = O(n) since
spark(A) may be as large as n



Proof of Theorem 2.18

WLOG, assume ||a;|| = 1, Vi, then the Gram matrix G := A* A obeys

Gm‘ =1 Vi and |Gi7j‘ < ,u(A) Vi 75 j (28)

1. Consider any k x k principal submatrix G ;; of G with J an index
subset. If G ;s > 0, then the k columns of A at indices in J are
linearly independent

2. If this holds for all k£ x k principal submatrices, then by definition
spark(A) > k

3. Finally, by Gershgorin circle theorem, one would have G ; ; - O if
|Giil > > j£i1Gijl, which would follow if (by (2.8))

1> (k= Du(A)

i.e. k can be as large as 1 + [1/u(A)]



Gershgorin circle theorem

Lemma 2.20 (Gershgorin circle theorem)

The eigenvalues of M = [m; j|i<i j<n lie in the union of n discs
disc(c;, ), 1 < i <mn, centered at ¢; = m;; and with radius

T = Zj:j;éi m;).

Z [ma ]

Ji>1

min




Summary

e For many dictionaries, if a signal is representable in a highly
sparse manner, then it is often guaranteed to be the unique
sparse solution.

e Seeking a sparse solution often becomes a well-posed question
with interesting properties
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