ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

Sparse Representations

Yuejie Chi

Department of Electrical and Computer Engineering

Carnegie Mellon University

Spring 2018

Outline

- Sparse and compressible signals
- Sparse representation in pairs of bases
- Uncertainty principles for basis pairs
 - Uncertainty principles for time-frequency bases
 - Uncertainty principles for general basis pairs
- Sparse representation via ℓ_1 minimization
- Sparse representation for general dictionaries

Basic problem

Find
$$oldsymbol{x} \in \mathbb{C}^n$$
 s.t. $oldsymbol{A} oldsymbol{x} = oldsymbol{y}$

where $oldsymbol{A} = [oldsymbol{a}_1, \cdots, oldsymbol{a}_n] \in \mathbb{C}^{m imes n}$ obeys

- ullet underdetermined system: m < n
- full-rank: rank(A) = m

 $m{A}$: an over-complete basis / dictionary; $m{a}_i$: atom; $m{x}$: representation in this basis / dictionary

Sparse representation

Clearly, there exist infinitely many feasible solutions to $Ax=y\,$...

- ullet Solution set: $\underbrace{A^*(AA^*)^{-1}}_{A^\dagger}y + \mathsf{null}(A)$
- ullet A^\dagger is the pseodo-inverse of A; $\mathsf{null}(A)$ is the null space of A

How many "sparse" solutions are there?

What is sparsity?

Consider a signal $x \in \mathbb{C}^n$.

Definition 2.1 (Support)

The *support* of a vector $x \in \mathbb{C}^n$ is the *index set* of its nonzero entries, i.e.

$$supp(x) := \{ j \in [n] : |x_j| \neq 0 \}$$

where $[p] = \{1, ..., n\}.$

Definition 2.2 (k-sparse signal)

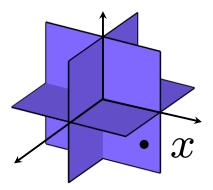
The signal x is called k-sparse, if

$$\|\boldsymbol{x}\|_0 := |\mathsf{supp}(\boldsymbol{x})| \le k.$$

 $\|x\|_0$ is called the sparsity level of x. (Note: It is a "pseudo-norm").

Sparse signals belong to a union-of-subspace

- For a fixed sparsity pattern (support), it defines a subspace of dimension k in \mathbb{R}^p .
- There're $\binom{p}{k}$ subspaces of dimension k.



Best *k*-term approximations

We're also interested in signals that are *approximately* sparse (because a lot real-world signals are not exactly sparse). This is measured by how well they can be approximated by sparse signals.

Definition 2.3 (Best k-term approximation)

Denote the index set of the k-largest entries of |x| as S_k . The best k-term approximation x_k of x is defined as

$$\boldsymbol{x}_k(i) = \begin{cases} x_i, & i \in S_k \\ 0, & i \notin S_k \end{cases}$$

The (best) k-term approximation error in ℓ_p norm is then given as

$$\|\boldsymbol{x} - \boldsymbol{x}_k\|_p = \left(\sum_{i \notin S_k} |x_i|^p\right)^{1/p}.$$

Compressible signals

Compressibility: A signal is called compressible if

$$R(k) = \|\boldsymbol{x} - \boldsymbol{x}_k\|_p$$

decays "fast" in k.

Compressible signals

Compressibility: A signal is called compressible if

$$R(k) = \|\boldsymbol{x} - \boldsymbol{x}_k\|_p$$

decays "fast" in k.

Lemma 2.4 (Compressibility)

For any q>p>0 and $\boldsymbol{x}\in\mathbb{R}^n$,

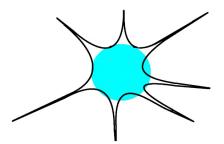
$$\|x - x_k\|_q \le \frac{1}{k^{1/p-1/q}} \|x\|_p.$$

Signals in ℓ_1 Ball

Example: Set q = 2 and p = 1, we have

$$\|m{x} - m{x}_k\|_2 \le \frac{1}{\sqrt{k}} \|m{x}\|_1.$$

Consider a signal $x \in B_1^n := \{z \in \mathbb{R}^n : ||z||_1 \le 1\}$. Then x is compressible when p = 1.



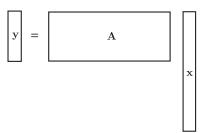
Geometrically, the $\ell_p\text{-ball}$ is pointy when 0 in high dimension.

Proof of Lemma 2.4

Without loss of generality we assume the coefficients of \boldsymbol{x} is ordered in descending order of magnitudes. We then have

$$\begin{split} \| \boldsymbol{x} - \boldsymbol{x}_k \|_q^q &= \sum_{j=k+1}^n |x_j|^q \quad \text{(by definition)} \\ &= |x_k|^{q-p} \sum_{j=k+1}^n |x_j|^p (|x_j|/|x_k|)^{q-p} \\ &\leq |x_k|^{q-p} \sum_{j=k+1}^n |x_j|^p \quad (|x_j|/|x_k| \leq 1) \\ &\leq \left(\frac{1}{k} \sum_{j=1}^k |x_j|^p \right)^{\frac{q-p}{p}} \left(\sum_{j=k+1}^n |x_j|^p \right) \\ &\leq \left(\frac{1}{k} \| \boldsymbol{x} \|_p^p \right)^{\frac{q-p}{p}} \| \boldsymbol{x} \|_p^p = \frac{1}{k^{q/p-1}} \| \boldsymbol{x} \|_p^q. \end{split}$$

Sparse representation in pairs of bases



A special type of dictionary: two-ortho case

Motivation for over-complete dictionary: many signals are mixtures of diverse phenomena; no single basis can describe them well

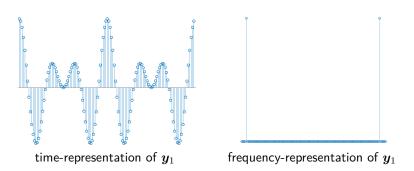
Two-ortho case: A is a concatenation of 2 orthonormal matrices

$$A = [\Psi, \Phi]$$
 where $\Psi\Psi^* = \Psi^*\Psi = \Phi\Phi^* = \Phi^*\Phi = I$

- ullet A classical example: $oldsymbol{A} = [oldsymbol{I}, oldsymbol{F}]$ $(oldsymbol{F}: \mathsf{Fourier} \ \mathsf{matrix})$
 - \circ representing a signal y as a superposition of spikes and sinusoids

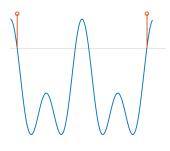
Example 1

The following signal $oldsymbol{y}_1$ is dense in the time domain, but sparse in the frequency domain



Example 2

The following signal y_2 is dense in both time domain and frequency domain, but sparse in the overcomplete basis [I, F]



time representation of \boldsymbol{y}_2

frequency representation of y_2

Example 2

The following signal y_2 is dense in both time domain and frequency domain, but sparse in the overcomplete basis [I, F]

representation of y_2 in overcomplete basis (time + frequency)

Uniqueness of sparse representation

A natural strategy to promote sparsity:

— seek the *sparsest* solution to the linear system

$$(P_0)$$
 minimize $_{\boldsymbol{x}\in\mathbb{C}^p} \|\boldsymbol{x}\|_0$ s.t. $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{y}$

- When is the solution unique?
- How to test whether a candidate solution is the sparsest possible?

Application: multiuser detection

- 2 (or more) users wish to communicate to the same receiver over a shared wireless medium
- The jth user transmits a_j ; the receiver sees

$$oldsymbol{y} = \sum_{j ext{ is active}} oldsymbol{a}_j$$

• Let $A = [a_1; \cdots, a_n]$ be the codebook containing all users of messages; then

$$y = Ax$$

where the location of the non-zero entries of $oldsymbol{x}$ indicates active users.

Unique representation \mapsto unambiguous user identification

Connection to null space of A

Suppose x and x+h are both solutions to the linear system, then

$$Ah=A(x+h)-Ax=y-y=0$$
 Write $h=\left[egin{array}{c} h_{f \Psi}\ h_{f \Phi} \end{array}
ight]$ with $h_{f \Psi},h_{f \Phi}\in \mathbb{C}^n$, then

$$\Psi h_\Psi = -\Phi h_\Phi$$

- ullet h_Ψ and $-h_\Phi$ are representations of the same vector in different bases
- (Non-rigorously) In order for x to be the sparsest solution, we hope h is much denser, i.e. we don't want h_Ψ and $-h_\Phi$ to be simultaneously sparse

Heisenberg's uncertainty principle

A pair of **complementary variables** cannot both be highly **concentrated**

• Quantum mechanics

$$\underbrace{\mathsf{Var}[x]}_{\mathsf{position}} \cdot \underbrace{\mathsf{Var}[p]}_{\mathsf{momentum}} \geq \hbar^2/4$$

ħ: Planck constant

Heisenberg's uncertainty principle

A pair of **complementary variables** cannot both be highly **concentrated**

• Quantum mechanics

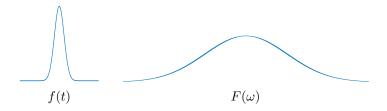
$$\underbrace{\mathsf{Var}[x]}_{\mathsf{position}} \cdot \underbrace{\mathsf{Var}[p]}_{\mathsf{momentum}} \geq \hbar^2/4$$

- ħ: Planck constant
- Signal processing

$$\underbrace{\int_{-\infty}^{\infty} t^2 |f(t)|^2 \mathrm{d}t}_{\text{concentration level of } f(t)} \int_{-\infty}^{\infty} \omega^2 |F(\omega)|^2 \mathrm{d}\omega \ge 1/4$$

- o f(t): a signal obeying $\int_{-\infty}^{\infty} |f(t)|^2 \mathrm{d}t = 1$
- \circ $F(\omega)$: Fourier transform of f(t)

Heisenberg's uncertainty principle



Roughly speaking, if f(t) vanishes outside an interval of length Δt , and its Fourier transform vanishes outside an interval of length $\Delta \omega$, then

$$\Delta t \cdot \Delta \omega \geq \text{const}$$

Proof of Heisenberg's uncertainty principle

(assuming f is real-valued and $tf^2(t) \to 0$ as $|t| \to \infty$)

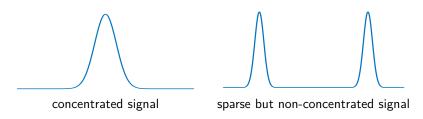
1. Rewrite $\int \omega^2 |F(\omega)|^2 d\omega$ in terms of f. Since $f'(t) \stackrel{\mathcal{F}}{\to} i\omega F(\omega)$, Parseval's theorem yields

$$\int \omega^2 |F(\omega)|^2 d\omega = \int |i\omega F(\omega)|^2 d\omega = \int |f'(t)|^2 dt$$

2. Invoke Cauchy-Schwarz:

$$\begin{split} \left(\int t^2 |f(t)|^2 \mathrm{d}t\right)^{1/2} \left(\int |f'(t)|^2 \mathrm{d}t\right)^{1/2} &\geq -\int t f(t) f'(t) \mathrm{d}t \\ &= -0.5 \int t \frac{\mathrm{d}f^2(t)}{\mathrm{d}t} \mathrm{d}t \\ &= -0.5 t f^2(t)\big|_{-\infty}^{\infty} + 0.5 \int f^2(t) \mathrm{d}t \quad \text{ (integration by part)} \\ &= 0.5 \qquad \qquad \text{(by our assumptions)} \end{split}$$

Uncertainty principle for time-frequency bases



More general case: concentrated signals \rightarrow sparse signals

 \bullet f(t) and $F(\omega)$ are not necessarily concentrated on intervals

Question: is there a signal that can be sparsely represented both in time and in frequency?

ullet Formally, for an arbitrary x, suppose $\hat{x}=Fx$.

How small can $\|\hat{x}\|_0 + \|x\|_0$ be ?

Uncertainty principle for time-frequency bases

Theorem 2.5 (Donoho & Stark '89)

Consider any nonzero $x \in \mathbb{C}^n$, and let $\hat{x} := Fx$. Then

$$\underbrace{\|\boldsymbol{x}\|_0 \cdot \|\hat{\boldsymbol{x}}\|_0}_{\geq n} \geq n$$

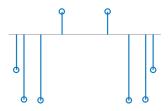
time-bandwidth product

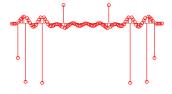
- ullet x and \hat{x} cannot be highly sparse simultaneously
- ullet Does not rely on the support of x and \hat{x}
- Sanity check: if $\boldsymbol{x} = [1,0,\cdots,0]^{\top}$ with $\|\boldsymbol{x}\|_0 = 1$, then $\|\hat{\boldsymbol{x}}\|_0 = n$ and hence $\|\boldsymbol{x}\|_0 \cdot \|\hat{\boldsymbol{x}}\|_0 = n$

Corollary 2.6 (Donoho & Stark '89)

$$\|\boldsymbol{x}\|_0 + \|\hat{\boldsymbol{x}}\|_0 \ge 2\sqrt{n}$$
 (by AM-GM inequality)

Application: super-resolution





wideband sparse signal $oldsymbol{x}$

its low-pass version x_{LP}

Consider a sparse wideband (i.e. $\|x\|_0 \ll n$) signal $x \in \mathbb{C}^n$, and project it onto a baseband B (of bandwidth |B| < n) to obtain its low-pass version $x_{\mathsf{LP}} = \mathsf{Proj}_B(x)$. Then we can recover x from x_{LP} if

$$2\|\boldsymbol{x}\|_{0} \cdot \underbrace{(n-|B|)}_{\text{size of unobserved band}} < n. \tag{2.1}$$

Application: super-resolution

Examples:

- $\circ~$ If $\|\boldsymbol{x}\|_0=2$, then it's recoverable if $|B|>\frac{3}{4}n$
- 0 ...

- First nontrivial performance guarantee for super-resolution
- Somewhat pessimistic: we need to measure half of the bandwidth in order to recover just 1 spike
- ullet As will be seen later, we can do much better if nonzero entries of $oldsymbol{x}$ are scattered

Application: super-resolution

Proof: If \exists another solution z = x + h with $||z||_0 \le ||x||_0$, then

•
$$\operatorname{Proj}_B(\boldsymbol{h}) = \boldsymbol{0} \implies \|\boldsymbol{F}\boldsymbol{h}\|_0 \le n - |B|$$

•
$$\|\boldsymbol{h}\|_0 \le \|\boldsymbol{x}\|_0 + \|\boldsymbol{z}\|_0 \le 2\|\boldsymbol{x}\|_0$$

This together with the assumption (2.1) gives

$$\|\mathbf{h}\|_0 \cdot \|\mathbf{F}\mathbf{h}\|_0 \le 2\|\mathbf{x}\|_0 \cdot (n - |B|) < n,$$

which violates Theorem 2.5 unless h = 0.

Proof of Theorem 2.5: a key lemma

The key to prove Theorem 2.5 is to establish the following lemma

Lemma 2.7 (Donoho & Stark '89)

If $x \in \mathbb{C}^n$ has k nonzero entries, then $\hat{x} := Fx$ cannot have k consecutive 0's.

Proof: Suppose $x_{\tau_1}, \cdots, x_{\tau_k}$ are the nonzero entries, and let $z = e^{-\frac{2\pi i}{n}}$.

1. For any consecutive frequency interval $(s, \cdots, s+k-1)$, the $(s+l)^{\text{th}}$ frequency component is

$$\hat{x}_{s+l} = \frac{1}{\sqrt{n}} \sum_{j=1}^{k} x_{\tau_j} z^{\tau_j(s+l)}, \quad l = 0, \dots, k-1$$

Proof of Lemma 2.7

Proof (continued): One can thus write

$$\boldsymbol{g} := [\hat{x}_{s+l}]_{0 \le l < k} = \frac{1}{\sqrt{n}} \boldsymbol{Z} \boldsymbol{x}_{\tau},$$

2. Recognizing that Z is a Vandermonde matrix yields

$$\det(\mathbf{Z}^{\top}) = \prod_{1 \le i < j \le k} (z^{\tau_j} - z^{\tau_i}) \neq 0,$$

and hence Z is invertible. Therefore, $x_{ au}
eq 0 \ \Rightarrow \ g
eq 0$ as claimed.

Proof of Theorem 2.5

Suppose x is k-sparse, and suppose $n/k \in \mathbb{Z}$.

- 1. Partition $\{1, \dots, n\}$ into n/k intervals of length k each.
- 2. By Lemma 2.7, none of these intervals of \hat{x} can vanish. Since each interval contains at least 1 non-zero entry, one has

$$\|\hat{\boldsymbol{x}}\|_0 \ge \frac{n}{k}$$

$$\iff \|\boldsymbol{x}\|_0 \cdot \|\hat{\boldsymbol{x}}\|_0 \ge n$$

Exercise: fill in the proof for the case where k does not divide n.

Tightness of uncertainty principle

The lower bounds in Theorem 2.5 and Corollary 2.6 are achieved by the picket-fence signal x (a signal with uniform spacing \sqrt{n}).

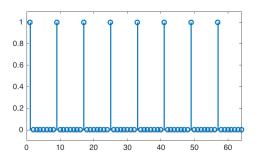


Figure 2.1: The picket-fence signal for n=64, which obeys ${m F}{m x}={m x}$

Uncertainty principle for general basis pairs

There are many other bases beyond time-frequency pairs

- Wavelets
- Ridgelets
- Hadamard
- ...

Generally, for an arbitrary $y\in\mathbb{C}^n$ and arbitrary bases Ψ and Φ , suppose $y=\Psi\alpha=\Phioldsymbol{eta}$:

How small can $\|\alpha\|_0 + \|\beta\|_0$ be ?

Uncertainty principle for general basis pairs

The degree of "uncertainty" depends on the basis pair.

• Example: suppose $\phi_1, \phi_2 \in \Psi$ and $\frac{1}{\sqrt{2}}(\phi_1 + \phi_2)$, $\frac{1}{\sqrt{2}}(\phi_1 - \phi_2) \in \Psi$. Then $\boldsymbol{y} = \phi_1 + 0.5\phi_2$ can be sparsely represented in both Ψ and Φ .

Message: uncertainty principle depends on how "different" Ψ and Φ are.

Mutual coherence

A rough way to characterize how "similar" Ψ and Φ are:

Definition 2.8 (Mutual coherence)

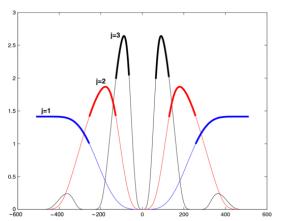
For any pair of orthonormal bases $\Psi=[\psi_1,\cdots,\psi_n]$ and $\Phi=[\phi_1,\cdots,\phi_n]$, the mutual coherence of these two bases is defined by

$$\mu(\boldsymbol{\Psi},\boldsymbol{\Phi}) = \max_{1 \leq i,j \leq n} |\langle \boldsymbol{\psi}_i, \boldsymbol{\phi}_j \rangle| = \max_{1 \leq i,j \leq n} |\boldsymbol{\psi}_i^* \boldsymbol{\phi}_j|$$

- $1/\sqrt{n} \le \mu(\Psi, \Phi) \le 1$ (homework)
- ullet For $\mu(oldsymbol{\Psi},oldsymbol{\Phi})$ to be small, each $oldsymbol{\psi}_i$ needs to be "spread out" in the $oldsymbol{\Phi}$ domain

- $\mu(I, F) = 1/\sqrt{n}$
 - o Spikes and sinusoids are the most mutually incoherent
- Other extreme basis pair obeying $\mu(\Phi,\Psi)=1/\sqrt{n}$: $\Psi=I$ and $\Phi=H$ (Hadamard matrix)

Fourier basis vs. wavelet basis (n = 1024)



Magnitudes of Daubechies-8 wavelets in the Fourier domain (j labels the scales of the wavelet transform with j=1 the finest scale)

Uncertainty principle for general bases

Theorem 2.9 (Donoho & Huo '01, Elad & Bruckstein '02)

Consider any nonzero $m{b}\in\mathbb{C}^n$ and any pair of orthonormal bases $m{\Psi}$ and $m{\Phi}$. Suppose $m{b}=m{\Psi}m{lpha}=m{\Phi}m{eta}$. Then

$$\|\boldsymbol{\alpha}\|_0 \cdot \|\boldsymbol{\beta}\|_0 \ge \frac{1}{\mu^2(\boldsymbol{\Psi}, \boldsymbol{\Phi})}$$

Corollary 2.10 (Donoho & Huo '01, Elad & Bruckstein '02)

$$\|oldsymbol{lpha}\|_0 + \|oldsymbol{eta}\|_0 \geq rac{2}{\mu(oldsymbol{\Psi},oldsymbol{\Phi})}$$
 (by AM-GM inequality)

Implications

- If two bases are "mutually incoherent", then we cannot have highly sparse representations in two bases simultaneously
- ullet If $\Psi=I$ and $\Phi=F$, Theorem 2.9 reduces to

$$\|\boldsymbol{\alpha}\|_0 \cdot \|\boldsymbol{\beta}\|_0 \ge n$$

since $\mu(\Psi, \Phi) = 1/\sqrt{n}$, which coincides with Theorem 2.5.

Proof of Theorem 2.9

1. WLOG, assume $\|\boldsymbol{b}\| = 1$. This gives

$$1 = \boldsymbol{b}^* \boldsymbol{b} = \boldsymbol{\alpha}^* \boldsymbol{\Psi}^* \boldsymbol{\Phi} \boldsymbol{\beta}$$

$$= \sum_{i,j=1}^p \alpha_i \langle \boldsymbol{\psi}_i, \boldsymbol{\phi}_j \rangle \beta_j$$

$$\leq \sum_{i,j=1}^p |\alpha_i| \cdot \mu(\boldsymbol{\Psi}, \boldsymbol{\Phi}) \cdot |\beta_j|$$

$$\leq \mu(\boldsymbol{\Psi}, \boldsymbol{\Phi}) \left(\sum_{i=1}^p |\alpha_i| \right) \left(\sum_{j=1}^p |\beta_j| \right) \quad (2.2)$$

Aside: this shows $\| \pmb{\alpha} \|_1 \cdot \| \pmb{\beta} \|_1 \geq \frac{1}{\mu(\pmb{\Psi}, \pmb{\Phi})}$

Proof of Theorem 2.9 (continued)

2. The assumption $\| {m b} \| = 1$ implies $\| {m \alpha} \| = \| {m \beta} \| = 1$. This together with the elementary inequality $\sum_{i=1}^k x_i \leq \sqrt{k \sum_{i=1}^k x_i^2}$ yields

$$\sum_{i=1}^{p} |\alpha_i| \le \sqrt{\|\alpha\|_0 \sum_{i=1}^{p} |\alpha_i|^2} = \sqrt{\|\alpha\|_0}$$

Similarly,
$$\sum_{i=1}^{p} |\beta_i| \leq \sqrt{\|\beta\|_0}$$
.

3. Substitution into (2.2) concludes the proof.

Uniqueness of sparse representation

A natural strategy to promote sparsity:

— seek the *sparsest* solution to the linear system

$$(P_0)$$
 minimize $_{oldsymbol{x} \in \mathbb{C}^p} \|oldsymbol{x}\|_0$ s.t. $oldsymbol{A} oldsymbol{x} = oldsymbol{y}$

- When is the solution unique?
- How to test whether a candidate solution is the sparsest possible?

Uniqueness of ℓ_0 minimization

The uncertainty principle leads to the possibility of ideal sparse representation for the system

$$y = [\Psi, \Phi]x \tag{2.3}$$

Theorem 2.11 (Donoho & Huo '01, Elad & Bruckstein '02)

Any two distinct solutions $oldsymbol{x}^{(1)}$ and $oldsymbol{x}^{(2)}$ to (2.3) satisfy

$$\|\boldsymbol{x}^{(1)}\|_0 + \|\boldsymbol{x}^{(2)}\|_0 \ge \frac{2}{\mu(\boldsymbol{\Psi}, \boldsymbol{\Phi})}$$

Corollary 2.12 (Donoho & Huo '01, Elad & Bruckstein '02)

If a solution x obeys $\|x\|_0 < \frac{1}{\mu(\Psi,\Phi)}$, then it is necessarily the unique sparsest solution.

Proof of Theorem 2.11

Define
$$m{h}=m{x}^{(1)}-m{x}^{(2)}$$
, and write $m{h}=\left[egin{array}{c} m{h}_{\Psi} \\ m{h}_{\Phi} \end{array}
ight]$ with $m{h}_{\Psi},m{h}_{\Phi}\in\mathbb{C}^n.$

1. Since $oldsymbol{y} = [oldsymbol{\Psi}, oldsymbol{\Phi}] oldsymbol{x}^{(1)} = [oldsymbol{\Psi}, oldsymbol{\Phi}] oldsymbol{x}^{(2)}$, one has

$$[\Psi,\Phi]h=0 \quad\Longleftrightarrow\quad \Psi h_\Psi=-\Phi h_\Phi$$

2. By Corollary 2.10,

$$\|m{h}\|_0 = \|m{h}_{\Psi}\|_0 + \|m{h}_{\Phi}\|_0 \ge \frac{2}{\mu(m{\Psi}, m{\Phi})}$$

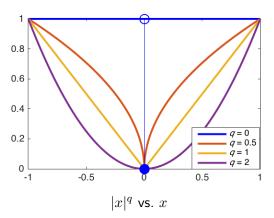
3. $\| {m x}^{(1)} \|_0 + \| {m x}^{(2)} \|_0 \geq \| {m h} \|_0 \geq rac{2}{\mu(\Psi, \Phi)}$ as claimed.

Sparse representation via ℓ_1 minimization

Relaxation of the highly discontinuous ℓ_0 norm

Unfortunately, ℓ_0 minimization is computationally intractable ...

Simple heuristic: replacing ℓ_0 norm with continuous (or even smooth) approximation



Convexification: ℓ_1 minimization (basis pursuit)

$$\min_{\boldsymbol{x}\in\mathbb{C}^p} \ \|\boldsymbol{x}\|_0 \quad \text{s.t. } \boldsymbol{A}\boldsymbol{x} = \boldsymbol{y}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\text{Convexifying } \|\boldsymbol{x}\|_0 \text{ with } \|\boldsymbol{x}\|_1$$

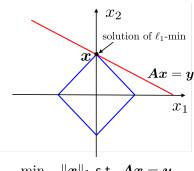
$$\downarrow \qquad \qquad \downarrow$$

$$\min_{\boldsymbol{x}\in\mathbb{C}^p} \ \|\boldsymbol{x}\|_1 \quad \text{s.t. } \boldsymbol{A}\boldsymbol{x} = \boldsymbol{y}$$

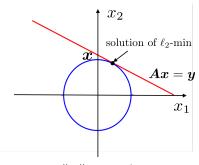
$$(2.4)$$

- |x| is the largest convex function less than $\mathbf{1}\{x \neq 0\}$ over $\{x: |x| \leq 1\}$
- ℓ_1 minimization is a linear program (homework)
- ullet ℓ_1 minimization is non-smooth optimization (since $\|\cdot\|_1$ is non-smooth)
- ullet ℓ_1 minimization does not rely on prior knowledge on sparsity level

Geometry



 $\min_{oldsymbol{x}} \|oldsymbol{x}\|_1$ s.t. $oldsymbol{A}oldsymbol{x} = oldsymbol{y}$



 $\min_{oldsymbol{x}} \|oldsymbol{x}\|_2$ s.t. $oldsymbol{A}oldsymbol{x} = oldsymbol{y}$

Even pointier in the high dimension

- ullet Level sets of $\|\cdot\|_1$ are pointed, enabling it to promote sparsity
- ullet Level sets of $\|\cdot\|_2$ are smooth, often leading to dense solutions

Effectiveness of ℓ_1 minimization

Theorem 2.13 (Donoho & Huo '01, Elad & Bruckstein '02)

 $oldsymbol{x} \in \mathbb{C}^p$ is the unique solution to ℓ_1 minimization (2.4) if

$$\|\boldsymbol{x}\|_{0} < \frac{1}{2} \left(1 + \frac{1}{\mu(\boldsymbol{\Psi}, \boldsymbol{\Phi})} \right) \tag{2.5}$$

- ℓ_1 minimization yields the sparse solution too!
- The recovery condition (2.5) can be improved to, e.g.,

$$\|oldsymbol{x}\|_0 < rac{0.914}{\mu(oldsymbol{\Psi},oldsymbol{\Phi})}$$
 [Elad & Bruckstein '02]

Effectiveness of ℓ_1 minimization

$$\|x\|_0 < rac{1}{\mu(\Psi,\Phi)} \implies \ell_0$$
 minimization works $\|x\|_0 < rac{0.914}{\mu(\Psi,\Phi)} \implies \ell_1$ minimization works

The recovery condition for ℓ_1 miniization is within a factor of $1/0.914 \approx 1.094$ of the condition derived for ℓ_0 minimization

Proof of Theorem 2.13

We need to show that $||x + h||_1 > ||x||_1$ holds for any other feasible solution x + h. To this end, we proceed as follows

$$\|\boldsymbol{x} + \boldsymbol{h}\|_{1} > \|\boldsymbol{x}\|_{1}$$

$$\iff \sum_{i \notin \operatorname{supp}(\boldsymbol{x})} |h_{i}| + \sum_{i \in \operatorname{supp}(\boldsymbol{x})} (|x_{i} + h_{i}| - |x_{i}|) > 0$$

$$\iff \sum_{i \notin \operatorname{supp}(\boldsymbol{x})} |h_{i}| - \sum_{i \in \operatorname{supp}(\boldsymbol{x})} |h_{i}| > 0 \quad (\operatorname{since} |a + b| - |a| \ge -|b|)$$

$$\iff \|\boldsymbol{h}\|_{1} > 2 \sum_{i \in \operatorname{supp}(\boldsymbol{x})} |h_{i}|$$

$$\iff \sum_{i \in \operatorname{supp}(\boldsymbol{x})} \frac{|h_{i}|}{\|\boldsymbol{h}\|_{1}} < \frac{1}{2}$$

$$\iff \|\boldsymbol{x}\|_{0} \frac{\|\boldsymbol{h}\|_{\infty}}{\|\boldsymbol{h}\|_{1}} < \frac{1}{2}$$

$$(2.6)$$

Proof of Theorem 2.13 (continued)

It remains to control $\frac{\|h\|_\infty}{\|h\|_1}$. As usual, due to feasibility constraint we have $[\Psi,\Phi]h=0$, or

$$m{\Psi}m{h}_{\psi} = -m{\Phi}m{h}_{\phi} \quad \Longleftrightarrow \quad m{h}_{\psi} = -m{\Psi}^*m{\Phi}m{h}_{\phi} \qquad ext{where } m{h} = \left|egin{array}{c} m{h}_{\psi} \ m{h}_{\phi} \end{array}
ight| \,.$$

For any i, the inequality $|a^*b| \leq \|a\|_{\infty} \|b\|_1$ gives

$$|(\boldsymbol{h}_{\psi})_i| = |(\boldsymbol{\Psi}^*\boldsymbol{\Phi})_{\mathsf{row}\ i} \cdot \boldsymbol{h}_{\phi}| \leq \|\boldsymbol{\Psi}^*\boldsymbol{\Phi}\|_{\infty} \cdot \|\boldsymbol{h}_{\phi}\|_1 = \mu(\boldsymbol{\Psi}, \boldsymbol{\Phi}) \cdot \|\boldsymbol{h}_{\phi}\|_1$$

On the other hand, $\|m{h}_{\psi}\|_1 \geq |(m{h}_{\psi})_i|$. Putting them together yields

$$\|\boldsymbol{h}\|_{1} = \|\boldsymbol{h}_{\phi}\|_{1} + \|\boldsymbol{h}_{\psi}\|_{1} \ge |(\boldsymbol{h}_{\psi})_{i}| \left(1 + \frac{1}{\mu(\boldsymbol{\Psi}, \boldsymbol{\Phi})}\right)$$
 (2.7)

Proof of Theorem 2.13 (continued)

In fact, this inequality (2.7) holds for any entry of h, giving that

$$\frac{\|\boldsymbol{h}\|_{\infty}}{\|\boldsymbol{h}\|_{1}} \leq \frac{1}{1 + \frac{1}{\mu(\boldsymbol{\Psi}, \boldsymbol{\Phi})}}$$

Finally, if $\|m{x}\|_0 < \frac{1}{2}\left(1+\frac{1}{\mu(m{\Psi},m{\Phi})}\right)$, then

$$\|\boldsymbol{x}\|_0 \cdot \frac{\|\boldsymbol{h}\|_{\infty}}{\|\boldsymbol{h}\|_1} < \frac{1}{2}$$

as claimed in (2.6), thus concluding the proof.

Beyond two-ortho case

minimize
$$_{m{x}} \| m{x} \|_0$$
 s.t. $m{y} = m{A}m{x}$

What if $A \in \mathbb{C}^{n \times p}$ is a general overcomplete dictionary?

We will study this general case through 2 metrics

- 1. Mutual coherence
- 2. Spark

Mutual coherence for arbitrary dictionaries

Definition 2.14 (Mutual coherence)

For any $m{A} = [m{a}_1, \cdots, m{a}_p] \in \mathbb{C}^{n imes p}$, the mutual coherence of $m{A}$ is defined by

$$\mu(\boldsymbol{A}) = \max_{1 \leq i, j \leq p, \ i \neq j} \frac{|\boldsymbol{a}_i^* \boldsymbol{a}_j|}{\|\boldsymbol{a}_i\| \|\boldsymbol{a}_j\|}$$

- If $\|a_i\| = 1$ for all i, then $\mu(A)$ is the maximum off-diagonal entry (in absolute value) of the Gram matrix $G = A^*A$
- ullet $\mu(oldsymbol{A})$ characterizes "second-order" dependency across the atoms $\{oldsymbol{a}_i\}$
- (Welch bound) $\mu(A) \ge \sqrt{\frac{p-n}{n(p-1)}}$, with equality attained by a family called *Grassmannian frames*

Uniqueness of sparse representation via $\mu(A)$

A theoretical guarantee similar to the two-ortho case

Theorem 2.15 (Donoho & Elad '03, Gribonval & Nielsen '03, Fuchs '04)

If x is a feasible solution that obeys $\|x\|_0 < \frac{1}{2} \left(1 + \frac{1}{\mu(A)}\right)$, then x is the unique solution to both ℓ_0 and ℓ_1 minimization.

Tightness?

Suppose p=cn for some constant c>2, then Welch bound gives

$$\mu(\mathbf{A}) \geq 1/\sqrt{2n}$$
.

 \Longrightarrow for the "most incoherent" (and hence best possible) dictionary, the recovery condition reads

$$\|\boldsymbol{x}\|_0 = O(\sqrt{n})$$

This says: to recover a \sqrt{n} -sparse signal (and hence \sqrt{n} degrees of freedom), we need an order of n samples

- The measurement burden is way too high!
- Mutual coherence might not capture the information bottleneck!

Another metric: Spark

Definition 2.16 (Spark, Donoho & Elad '03)

spark($m{A}$) is the size of the smallest linearly dependent column subset of $m{A}$, i.e. ${\sf spark}(m{A}) = \min \|m{z}\|_0 \ \ {\sf s.t.} \ \ m{A} m{z} = m{0}$

$$ullet$$
 A way of characterizing null-space of $oldsymbol{A}$ using ℓ_0 norm

- Comparison to rank
 - \circ rank($m{A}$): largest number of columns from $m{A}$ that are linearly independent
 - \circ spark $(oldsymbol{A})$ is far more difficult to compute than $\mathrm{rank}(oldsymbol{A})$
- $2 \leq \operatorname{spark}(\boldsymbol{A}) \leq \operatorname{rank}(\boldsymbol{A}) + 1$ for nontrivial \boldsymbol{A}

$$m{A} = \left[egin{array}{ccccc} 1 & 0 & 0 & 0 & 1 \ 0 & 1 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 \end{array}
ight]$$

- $\operatorname{spark}(\boldsymbol{A}) = 3$
- $\bullet \ \operatorname{rank}(\boldsymbol{A}) = 4$

Suppose
$$\sqrt{n}\in\mathbb{Z}.$$
 Then ${m A}=[{m I},{m F}]\in\mathbb{C}^{n imes 2n}$ obeys
$${\rm spark}({m A})=2\sqrt{n}$$

 \bullet Hint: consider the concatenation of two picket-fence signals each with \sqrt{n} peaks

Suppose the entries of \boldsymbol{A} are i.i.d. standard Gaussian, then

$$\operatorname{spark}(\boldsymbol{A}) = n + 1$$

with probability 1, since no \boldsymbol{n} columns are linearly dependent.

Uniqueness via spark

Spark provides a simple criterion for uniqueness:

Theorem 2.17

If x is a solution to Ax = y and obeys $||x||_0 < \text{spark}(A)/2$, then x is necessarily the unique sparsest possible solution.

• If A is an i.i.d. Gaussian matrix (and hence spark(A) = n + 1), then this condition reads

$$\|\boldsymbol{x}\|_0 < (n+1)/2$$

i.e., n samples enable us to recover n/2 units of information! \circ much better than the condition based on $\mu(A)$

Proof of Theorem 2.17

Consider any other feasible solution $z \neq x$.

1. Since Az = Ax = y, one has

$$A(x-z)=0,$$

i.e. the columns of $oldsymbol{A}$ at indices coming from the support of $oldsymbol{x}-oldsymbol{z}$ are linearly dependent

2. By definition,

$$\mathsf{spark}(oldsymbol{A}) \leq \|oldsymbol{x} - oldsymbol{z}\|_0$$

3. The fact $\|x\|_0 + \|z\|_0 \ge \|x - z\|_0$ then gives

$$\|oldsymbol{x}\|_0 + \|oldsymbol{z}\|_0 \geq \mathsf{spark}(oldsymbol{A})$$

4. If $\|\boldsymbol{x}\|_0 < \operatorname{spark}(\boldsymbol{A})/2$, then

$$\|oldsymbol{z}\|_0 \geq \mathsf{spark}(oldsymbol{A})/2 > \|oldsymbol{x}\|_0$$

Connecting Spark with mutual coherence

Theorem 2.18 (Donoho & Elad '03)

$$\operatorname{spark}(\boldsymbol{A}) \ge 1 + 1/\mu(\boldsymbol{A})$$

Connecting Spark with mutual coherence

Corollary 2.19 (Donoho & Elad '03)

If a solution x obeys $||x||_0 < 0.5(1 + 1/\mu(A))$, then it is the sparsest possible solution.

- Corollary 2.19 is, however, much weaker than Theorem 2.17
- Example (2-ortho case):
 - o Corollary 2.19 gives $\|\boldsymbol{x}\|_0 = O(\sqrt{n})$ at best, since $\mu(\boldsymbol{A}) \geq 1/\sqrt{n}$
 - o Theorem 2.17 may give a bound as large as $\|x\|_0 = O(n)$ since spark(A) may be as large as n

Proof of Theorem 2.18

WLOG, assume $\|a_i\|=1$, orall i, then the Gram matrix $G:=A^*A$ obeys

$$G_{i,i} = 1 \quad \forall i \quad \text{and} \quad |G_{i,j}| \le \mu(\mathbf{A}) \quad \forall i \ne j$$
 (2.8)

- 1. Consider any $k \times k$ principal submatrix $G_{J,J}$ of G with J an index subset. If $G_{J,J} \succ 0$, then the k columns of A at indices in J are linearly independent
- 2. If this holds for all $k \times k$ principal submatrices, then by definition $\mathrm{spark}({\bf A}) > k$
- 3. Finally, by Gershgorin circle theorem, one would have $G_{J,J} \succ 0$ if $|G_{i,i}| > \sum_{j \in J, \ j \neq i} |G_{i,j}|$, which would follow if (by (2.8))

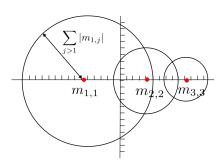
$$1 > (k-1)\mu(\boldsymbol{A})$$

i.e. k can be as large as $1 + \lfloor 1/\mu(\mathbf{A}) \rfloor$

Gershgorin circle theorem

Lemma 2.20 (Gershgorin circle theorem)

The eigenvalues of $M = [m_{i,j}]_{1 \leq i,j \leq n}$ lie in the union of n discs $\operatorname{disc}(c_i, r_i)$, $1 \leq i \leq n$, centered at $c_i = m_{ii}$ and with radius $r_i = \sum_{i:j \neq i} |m_{ij}|$.



Summary

- For many dictionaries, if a signal is representable in a highly sparse manner, then it is often guaranteed to be the unique sparse solution.
- Seeking a sparse solution often becomes a well-posed question with interesting properties

Reference

- [1] "Sparse and redundant representations: from theory to applications in signal and image processing," M. Elad, Springer, 2010.
- [2] "Uncertainty principles and signal recovery," D. Donoho and P. Stark, SIAM Journal on Applied Mathematics, 1989.
- [3] "Uncertainty principles and ideal atomic decomposition," D. Donoho and X. Huo, IEEE Trans. on Info. Theory, 2001.
- [4] "A generalized uncertainty principle and sparse representation in pairs of bases," M. Elad and A. Bruckstein, IEEE Trans. on Info. Theory, 2002.
- [5] "Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ_1 minimization," D. Donoho, and M. Elad, Proceedings of the National Academy of Sciences, 2003.
- [6] "Sparsity and incoherence in compressive sampling," E. Candes, and J. Romberg, Inverse Problems, 2007.

Reference

- [7] "Atomic decomposition by basis pursuit," S. Chen, D. Donoho, M. A. Saunders, SIAM review, 2001.
- [8] "On sparse representations in arbitrary redundant bases," J. Fuchs, IEEE Trans. on Info. Theory, 2004.
- [9] "Sparse representations in unions of bases," R. Gribonval, and M. Nielsen, IEEE Trans. on Info. Theory, 2003.