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Phase retrieval: the missing phase problem

In high-frequency (e.g. optical) applications, the (optical) detection
devices [e.g., CCD cameras, photosensitive films, and the human eye]
cannot measure the phase of a light wave.

wo 1 Owo 1 OOwo

e Optical devices measure the photon flux (no. of photons per
second per unit area), which is proportional to the magnitude.

e This leads to the so-called phase retrieval problem — inference
with only intensity measurements.



Coherent diffraction imaging

Detectors record intensities of diffracted rays
e electric field x(t1,t2) — Fourier transform Z( f1, f2)

Fig credit: Stanford SLAC

. 2
intensity of electrical field: |f(f17f2)’2 = ‘/x(tl,tz)6_12”(f1t1+f2t2)dt1dt2



Coherent diffraction imaging

Detectors record intensities of diffracted rays

e electric field x(t1,t2) — Fourier transform Z( f1, f2)

Fig credit: Stanford SLAC

. 2
intensity of electrical field: |i(f17f2)’2 = ‘/x(tl,t2)e‘ﬂﬂ(fltﬁfztz)dhdtz‘

Phase retrieval: recover signal x(t1,t2) from intensity |Z(f1, f2)|2 J




Mathematical setup
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Recover 2 € R” from m random quadratic measurements

Yr = |a;cra:h|2, k=1,...,m (10.1)



An equivalent view: low-rank factorization

Lifting: Introduce X = xa ' to linearize constraints

ye ® lajzf=aj(zz’)a = p~aXa
EEE BN ER
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ykz|a

find
s.t.

X =z to linearize constraints

;ac|2 = akT(:I:a:T)a — Y N a;Xak
§EEE EEEE
|
|
|
| |
|
X
-
yr ~ a Xag, k=1,---.m
rank(X) =



An equivalent view: low-rank factorization

Lifting: Introduce X = za ' to linearize constraints

ue ~ lagzl’ =a

find
s.t.

T

n(zz)a = yr ~ aj Xay,

Solving quadratic systems is essentially low-rank matrix completion )




Solving quadratic systems is NP-complete in general

The stone assignment problem (assign stones of weight w; into two
groups of equal weight) is NP-hard. Let

3712 = 1;Vi; (wizy + wexe + - -+ + wnaun)2 =0.
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"I can't find an efficient algorithm, but neither can all these people.”

figure credit: coding horror



Convex Relaxation



Rank-one measurements

Measurements: see (10.1)

yi:a:a:a:Tai:<aiaiT,M>, 1<i<m
N~~~ ——
::M ::A,‘,

Define the measurement operator A:

<A17X> <CL1€LI,X>
A(X) = (A2:,X> _ <aza?,X>
(A, X) (ama) K X)

T

Rank-one measurements: A; = a;a; are rank-one!



Do rank-one measurements satisfy RIP?

Suppose a; ~ N (0, I,,)
e If x is independent of {a;}, then
(a;a] ;xx") = ‘a?a:f =|z|? = HA(ZBIET)HF = vm|zz' g

e Consider A; = aiaZT:

(aia], Aj) = lai|* = nflaia||p

= [|A(A)llp > [{aia; , Aj)| = n[|Ailp



Do rank-one measurements satisfy RIP?

Suppose a; ~ N (0, I,,)

e If sample size m =< n (information limit), then

TAX) g
MAXX: rank(X)=1 "X, n

: HA Xl ~ /m ™
MM x: rank(X)=1 HFF

> \/n

0%, o)1 LG
. ran =

F > 1
: ML ~ V>
MmN x: rank(X)=1 X

o Violate RIP condition in Theorem ??



Why do we lose RIP?

Problem:

e Low-rank matrices X (e.g. a;a; ) might be too aligned with
some rank-one measurements

o loss of incoherence in some measurements

e Some measurements (A;, X) might have too high of a leverage
on A(X) when measured in || - [|p

o Change || - || to other norms!



Mixed-norm RIP

Solution: modify RIP appropriately ...

Definition 10.1 (RIP-(5/¢;)
Let £'P(A) and €P(A) be smallest quantities s.t.

(L= &EMNXF < A1 < L+ D)X lr,  ¥X :rank(X) <7




Analyzing phase retrieval via RIP-/5//;

Theorem 10.2 (Chen, Chi, Goldsmith '15)

Suppose rank(M ) = r. For any fixed integer K > 0, if

14642 K C
— B8t — < /%, then nuclear norm minimization is exact.
1-5 2
(24+K)r
e Follows same proof/form as for Theorem 6.9, except that || - ||p

(highlighted in red) is replaced by || - ||1.



Analyzing phase retrieval via RIP-/5//;

Theorem 10.2 (Chen, Chi, Goldsmith '15)

Suppose rank(M ) = r. For any fixed integer K > 0, if
14642

1—¢lb

< % then nuclear norm minimization is exact.
(24+K)r

e Back to the example in Slide 9:
o If « is independent of {a;}, then

<aia;r,waz—r> = ‘a:w|2 = ||lz|®> = ||,A(wa:T)||1 = m|zx|r

o [A(A)I = [aia, A+ (aia], Aj)l ~ (n+m)] Aille

b's
o For both cases, % are of same order
F



Analyzing phase retrieval via RIP-/5//;

A debiased operator satisfies RIP condition of Theorem 10.2 when
m 2 nr
(A] — Ay, X)
B(X):= | (As— A4, X) | ¢ R/?

e Debiasing is crucial when r > 1

e A consequence of Hanson-Wright inequality for quadratic form
(Hanson & Wright '71, Rudelson & Vershynin '03)



Theoretical guarantee for phase retrieval

(Phaselift) minimize Tr(X)
XeRan ——

|I]| for PSD matrices

st. yi=a; Xa;, 1<i<m

X >0 (since X =zx')

Theorem 10.3 (Candes et al. '13, Candeés and Li '14)

Suppose a; ind N(0,I). With high prob., PhaselLift recovers xa"
exactly as soon asm 2 n.




Extension of phase retrieval to low-rank setting

Measurements:
yi = (a;a] , M) := (A, M) 1<i<m
where M = 0 and rank(M) = r.



Extension of phase retrieval to low-rank setting

Measurements:
yi = (a;a] , M) := (A, M) 1<i<m
where M = 0 and rank(M) = r.

(PhaselLift) minimize Tr(X)
X eRnXn N——

|||« for PSD matrices

s.t. aiTXai:a;rMai, 1<i<m

X>0
Theorem 10.4 (Chen, Chi, Goldsmith ’15, Cai, Zhang ’15,
Kueng, Rauhut, Terstiege '17)

Suppose a; N (0,I). With high prob., PhaseLift recovers M
exactly as soon as m = nr.




Nonconvex Wirtinger flow



A natural least squares formulation

What nonconvex?

given: ye = lafz??, 1<k<m
4
L 1 & 2
minimize,crn =i > { x)” — yk}

k=1
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A natural least squares formulation

What nonconvex?

given: ye = lafz??, 1<k<m
4
L 1 & 2
minimize,crn =i kz_:l { x)” — yk}

e pros: often exact as long as sample size is sufficiently large

e cons: f(-) is highly nonconvex
— computationally challenging!



Wirtinger flow (Candeés, Li, Soltanolkotabi '14)

. 1 & 2
minimize, Tn E [ —yk}
k=1



Wirtinger flow (Candeés, Li, Soltanolkotabi '14)

N 1 « 2
minimize, f(x — E [ x) —yk}
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Wirtinger flow (Candeés, Li, Soltanolkotabi '14)

3 (@l -]

k=1

minimize, f(x

PN e e e . .
PPN e spectral initialization: ° < leading
’ ’ \\\ . . .

/ ,/ RN eigenvector of certain data matrix
/ N A
[\ I\ NN \\\\
[T SN\ .
YLD, e gradient descent:
. N <,
]

$t+1:mt_7]vf(a:t)7 t:O717




Rationale of two-stage approach

0

initial guess ©
1

basin of attraction

1. find an initial point within a local basin sufficiently close to "




Rationale of two-stage approach

initial guess x°

i
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wh
basin of attraction

basin of attraction

1. find an initial point within a local basin sufficiently close to "

2. careful iterative refinement without leaving this local basin



Initialization via spectral method

x¥ < leading eigenvector of
1 & .
Y =— Z Yk ALy
mi

e Intuition:

E[Y] = E[(a) z)*ara)] = I + 22"



Computational cost

Ax = [aZm]lSkSm

e Spectral initialization: leading eigenvector — a few
applications of A and AT

1 & o1
— Z ypara, = —A' diag{yr} A
m = m



Computational cost

Az = [aZm]lSkSm

e Spectral initialization: leading eigenvector — a few
applications of A and AT

1 & o1
— Z ypara, = —A' diag{yr} A
m = m

e Iterations: one application of A and A" per iteration

mt+1 _ xt _ ’I’]Vf(ﬁct>



Performance guarantees of WF

First theory:
Theorem 10.5 (Candes, Li, Soltanolkotabi’14)

Under i.i.d. Gaussian design, WF with spectral initialization achieves
t/2
dist(a ) < (1-7) " lofl

with high prob., provided that step size n < 1/n and
sample size: m 2 nlogn

e lteration complexity: O(nlog?)

e Sample complexity: O(nlogn)



Performance guarantees of WF

Improved theory:

Theorem 10.6 (Ma, Wang, Chi, Chen’17)

Under i.i.d. Gaussian design, WF with spectral initialization achieves
n\*
dist(@' ") < (1= 1) .

with high prob., provided that step size n = 1/logn and
sample size m 2 nlogn.

e lteration complexity: O(nlog2) \, O(lognlog?)
e Sample complexity: O(nlogn)



Numerical surprise with 7, = 0.1

10°

10° -

-||2 error
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Iteration count

Vanilla GD (WF) converges fast!




Gradient descent theory revisited

Consider unconstrained optimization problem

minimize, f(x)

Two standard conditions that enable geometric convergence of GD
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Gradient descent theory revisited

Consider unconstrained optimization problem

minimize, f(x)

Two standard conditions that enable geometric convergence of GD
e (local) restricted strong convexity (or regularity condition)

e (local) smoothness

V2f(z) =0 and is well-conditioned



Gradient descent theory revisited

f is said to be a-strongly convex and (-smooth if

0 < ol < V3f(x) < BI, Vx

25/48



Gradient descent theory revisited

lz"*! — @iz < (1 - a/B) &’ —afla |

region of local strong convexity + smoothness



Gradient descent theory revisited

lz"*! — @iz < (1 - a/B) &’ —afla |

region of local strong convexity + smoothness



Gradient descent theory revisited

lz"*! — @iz < (1 - a/B) &’ —afla |

region of local strong convexity + smoothness



Gradient descent theory revisited

lz"*! — @iz < (1 - a/B) &’ —afla |

region of local strong convexity + smoothness



Gradient descent theory revisited

e Condition number 3/« determines rate of convergence

27/48



Gradient descent theory revisited

0 < ol < V3f(x) =< BI, Va
{5 error contraction: GD (z!™! = z! — nV f(zx)) with n =1/

obeys “
ot~ ol < (1- 5 ) o' 2l

e Condition number 3/« determines rate of convergence

e Attains s-accuracy within O(Z log 1) iterations



What does this optimization theory say about WF?

Gaussian designs: ay bR N, I,), 1<k<m



What does this optimization theory say about WF?

Gaussian designs: ay bR N, I,), 1<k<m
Population level (infinite samples)

E[V?f(@)] =3 (ll2l3 I + 222" ) — (|[*;1 + 22°2"")

locally positive definite and well-conditioned

I, X E[V*f(2)] < 10L, (|2*]=1)

Consequence: Given good initialization, WF converges within
O(log 1) iterations if sample size m — oo
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What does this optimization theory say about WF?

Gaussian designs: ay bR N, I,), 1<k<m

Finite-sample level (m =< nlogn)

V2f(x) =0 but ill-conditioned (even locally)

condition number < n

%In < V3f(x) < O(n)I,

Consequence (Candeés et al '14): WEF attains e-accuracy within
O(nlog ) iterations if m =< nlogn




A peek into the Hessian

The Hessian satisfies:

1 & 9
Vif (x) = o Z [3(@?3}) (ay mh) } ajaT
J=1
3 — 5
= X[ - (@]e)]asa]
=A1
+ % Z (a; xh)Q aja] —2 (I, + 222" ") + 2 (I, + 22"2"7),
j=1
:A2 Z:A3



Detour: some basic facts

Assume a; Lig N (0,1,) for every 1 < j < m.
e With probability at least 1 — O(me~1""), {a;} obey

lajl, < vén

max
1<j<m

e With probability exceeding 1 — O(mn~1?)

max ‘a;azu‘ < 5y/logn

1<j<m

e Fix any small constant § > 0. With probability at least
1 — Cye™%™ one has

<4,

1 m
—Y aa; — I
m j=1

as long as m > ¢gn for some sufficiently large constant ¢y > 0.



Smoothness of Hessian

Ay

i(a m)2a]a —Q(I —|—2:cuwﬂ)

J:

2
m

Asg =2 (In + 2$chazﬂ)



Smoothness of Hessian

2 5 ol T
Ez::(a m) a;a; Q(In—l-Qwaz )
A3:2(In+2xhwﬂ)

e Aj is well-controlled:

IAs] <2 (L] + 22T ) = 6



Smoothness of Hessian

2 & ol oobT
Ez::(a m) a;a; Q(In+2:z:a: )
A3:2(In+2xhwﬂ)

e Aj is well-controlled:

IAs] <2 (L] + 22T ) = 6

e When n = O(nlogn), Az is well-controlled:
| Az|| < 26.

for arbitrary small § for a fixed x".



A peek into the smoothness of Hessian

The term A7 is problematic:

Z (@ —a)||a;j (@+a%)|aja;

Al <




A peek into the smoothness of Hessian

The term A7 is problematic:

m
A < Z (x —2%)||a; (z + )| a;a]
e In the local neighborhood ||z — || < %Hazhﬂ = -, we have

pax ‘ajT (a: — :ch>’ < /n by Cauchy-Schwartz

max ‘aT (ac + :ch>’ < 2 max ‘a-T:cu’ + max ’ajT (ZB — a:h)‘
1<j<m |7 1<j<m |7 1<j<m

< Vlogn +vn < /n

(think when « is aligned with a;)



A peek into the smoothness of Hessian

The term A7 is problematic:

m
A < Z (x —2%)||a; (z + )| a;a]
e In the local neighborhood ||z — || < %Hazhﬂ = -, we have

pax ‘ajT (a: — :ch>’ < /n by Cauchy-Schwartz

max ‘aT (ac + :ch>’ < 2 max ‘a-T:cu‘ + max ’ajT (ZB — a:h)‘
1<j<m |7 1<j<m |7 1<j<m

< Vlogn +vn < /n

(think when « is aligned with a;)

=
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A second look at gradient descent theory

Which region enjoys both strong convexity and smoothness?

V(@)= — 3 [3(a;2)’ - (aj2")"] ara]



A second look at gradient descent theory

Which region enjoys both strong convexity and smoothness?

V(@)= — 3 [3(a;2)’ - (aj2")"] ara]

e Not smooth if  and a;, are too close (coherent)
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A second look at gradient descent theory

Which region enjoys both strong convexity and smoothness?
aj

la] (z — )| < /logn

&< 22

e x is not far away from x”

e x is incoherent w.r.t. sampling vectors (incoherence region)

(1/2) - I, = V*f(x) < O(logn) - I,,



A second look at gradient descent theory

Which region enjoys both strong convexity and smoothness?
012 aq

T(@ - af
|a] (@ —a)| _ Tog T laf (z — 24| _

~ logn
& [ &

fl — a8l

e x is not far away from x”

e x is incoherent w.r.t. sampling vectors (incoherence region)

(1/2) - I, = V*f(x) < O(logn) - I,,



Re-examine the Hessian in incoherence region

The term A; is okay now:

m
1A < || 25" (a] (@~ 2)] o] (2 +2%)|aja]
j=1



Re-examine the Hessian in incoherence region

The term A is okay now:

m

3
EZ ‘ajT (x —w“)‘ |a,]T (az+m”)‘ ajajT )
=1

[RSY/=

e In the local neighborhood and incoherence region, we have
max ‘ajT (a: — azh)’ < Vlogn by Cauchy-Schwartz
1<j<m

max ‘aT (sc + a:h)’ < 2 max ‘aTwh’ + max ’ajT (a: — wh)‘
1<j<m |7 1<j<m |/ 1<j<m

< Vlogn + v/logn = v/logn




Re-examine the Hessian in incoherence region

The term A is okay now:

m

3
EZ ‘ajT (x —w“)‘ |a,]T (az+m”)‘ ajajT )
=1

[RSY/=

e In the local neighborhood and incoherence region, we have
max ‘ajT (a: — azh)’ < Vlogn by Cauchy-Schwartz
1<j<m

max ‘aT (sc + a:h)’ < 2 max ‘aTwh’ + max ’ajT (a: — wh)‘
1<j<m |7 1<j<m |/ 1<j<m

< Vlogn + v/logn = v/logn

1 m
| AL S logmn - Hm Za]—a; = logn,
j=1




A second look at gradient descent theory

region of local strong convexity + smoothness

e Generic optimization theory only ensures that iterates remain in
{5 ball but not incoherence region
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A second look at gradient descent theory

region of local strong convexity + smoothness

e Generic optimization theory only ensures that iterates remain in
£y ball but not incoherence region



Surprising message: GD is implicitly regularized
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Surprising message: GD is implicitly regularized

region of local strong convexity + smoothness



Surprising message: GD is implicitly regularized

region of local strong convexity + smoothness

GD implicitly forces iterates to remain incoherent J




Implicit Regularization

4 25
—n =20 —n =20
——n =100 n =100
35 n = 200
——n = 1000
., 3
8 8
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maxi<;<m |a;ra:t ’

(@) =l ll,

Figure 10.1: The incoherence measure vs. iteration count. The results are
shown for n € {20,100, 200, 1000} and m = 10n, with the step size taken
to be n; = 0.1.

(b) maxi<;j<m ajT (xt—a)]

VewnaT,



Theoretical guarantees

Theorem 10.7 (Ma, Wang, Chi, Chen’17)
Under i.i.d. Gaussian design, WF with spectral initialization achieves
o maxy |a] x!| < Vlogn||zf|2 (incoherence)




Theoretical guarantees

Theorem 10.7 (Ma, Wang, Chi, Chen’17)

Under i.i.d. Gaussian design, WF with spectral initialization achieves
o maxy |a] x!| < Vlogn||zf|2 (incoherence)
o dist(z!, z") < (1 - g)t |z®||2 (linear convergence)

provided that step size n < 1/logn and sample size m 2 nlogn.




Key ingredient: leave-one-out analysis
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Technical difficulty: x! is statistically dependent with {a;};
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Key ingredient: leave-one-out analysis

Technical difficulty: x! is statistically dependent with {a;};

Leave-one-out trick: For each 1 <[ < m, introduce leave-one-out
iterates () by dropping Ith sample

A0 ADp yO =1AOg?
EE Em
o |
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Nl Ew
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EEEEN s
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Leave-one-out trick

e For each 1 <[ < m, we define the leave-one-out empirical loss
function as

2

@)= 3 |(a]2) -y

and the auxiliary trajectory {mt7(l)}t>0 is constructed by running

WF w.r.t. fO(x).

e The initialization %" is computed based on

1

! T

y® .= - g yja;a; .
Jig#l

e Clearly, the entire sequence {:ct’(l)}t>0 is independent of the [th

sampling vector a;.



Key ingredient: leave-one-out analysis

Qa
et |
N
N\,
y
|4

incoherence region
w.r.t. a;

e Step 1: Leave-one-out iterates {x>()} are independent of a;,
and are hence incoherent w.r.t. a; with high prob.

max ‘al—r (x® — mh)) < V/logn.

1<I<m



Key ingredient: leave-one-out analysis

aj
{at
[ DN
t AN
Zr
fa'} \
N
| &
incoherence region
w.r.t. a;

e Step 1: Leave-one-out iterates {x>()} are independent of a;,
and are hence incoherent w.r.t. a; with high prob.

max ‘al—r (x® — mh)) < V/logn.

1<I<m



Key ingredient: leave-one-out analysis

a;

ety

&~
t \
X
fa'} \
N
| &

incoherence region
w.r.t. a;

e Step 2: Leave-one-out iterates () & true iterates !
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Key ingredient: leave-one-out analysis

ey
@ ~o
{=') “)/
3
| &

incoherence region
w.r.t. a;

e Step 3: Finish by triangle inequality
la) (z! — )| < |a] (4O — 29| + |a] (z' — z"O)]

< la] (@ — 20| + [la] Ha;t _ q;t,(l)H

at
< Vlogn +vn % = +/logn.



Proximity of leave-one-out iterates

1 1
2t ptt (1)

— 2l VS (mt) B [wt,(l) B nvf(z) (mt,(l))]
o' (o) - 10 -] - [9(a) - 910 1)
— gt — 2t n [Vf (mt) — Vf(mt’(l))] - % [(a?mt’(l))Q — (a?mh)ﬂ (alTa:t’m)al7

=D
=Yy ::Uél)

e By incoherence:

! ail|2 2 2
0l < 1212 | @] 2 0)? — (a] @)’ ol 2410

vnlogn logn
Sn————logn S ——
m n

where the last line follows from m = nlogn.



Proximity of leave-one-out iterates

2Tt L)

=z’ —yVf (2') — [2"Y — v O (V)]
— 0V f (mt) . [mt,(l) . T]Vf(a:t’(l))] —n [Vf(mt’(l)) _ me(mt’(”)]
=gt — b _ n [Vf (:ct) - Vf(wt’(l))] — % [(arwt’(l)f — (a?wh)g} (al—rmt‘“))az

O
= =D

e By fundamental theorem of calculus:

{ / Vif dT} (:U —xb (l)),

where z (1) = b0 + 7(z! — 24"). As long as < 1/logn is
small enough,

||V1 H2 (1-n/2) ||:1: Ml)Hz'



Proximity of leave-one-out iterates

2Tt L

— &' Vi (2t) - [2"O — gD (250)]
=zt - nVf (wt) - [:ct‘“) - an(mt’(l))] -7 [Vf(wt’(l)) - Vf(”(mt’(l))]
=z -2 —y [Vf () - Vf(act’(l))] - % {(al—rwt’(”f - (a?m”)g] (a] " W)ay,

=
=y ::Vél)

e Putting things together:

||£Ct+1 _ mt+1,(l)H2 < (1 _ ,’7/2) ||$t _ xt,(l)H2 ten llOin

logn

<
~ n

by induction.



Incoherence region in high dimensions
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high-dimensional (mental representation)

incoherence region is vanishingly small
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