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Outline

e introduction to deep learning
e perceptron model (a single neuron)

e 1-hidden-layer (2-layer) neural network



The rise of deep neural networks

ImageNet Large Scale Visual Recognition Challenge (ILSVRC): Led by
Prof. Fei-Fei Li (Stanford).

Total number of non-empty synsets (categories): 21841;
Total number of images: 14,197,122



The rise of deep neural networks

The deeper, the better?
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AlexNet

e Won the 2012 LSVRC competition by a large margin: top-1 and
top-5 error rates of 37.5% and 17.0%.
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624-64,896-64,896-43,264—
4096-4096-1000.



AlexNet

e 60 million parameters and 650,000 neurons.
e takes 5-6 days to train on two GTX 580 3GB GPUs.
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Faster training with ReLU

Rectified linear units (ReLU):
y = max(0, )

compared to tanh and sigmoid,
training is much faster.
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RelLu doesn’t saturate.
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Figure 1: A four-layer convolutional neural
network with ReLUs (solid line) reaches a 25%
training error rate on CIFAR-10 six times faster
than an equivalent network with tanh neurons
(dashed line). The learning rates for each net-



Reduce overfitting

Important to reduce overfitting since:

number of training data < number of parameters



Reduce overfitting

Important to reduce overfitting since:

number of training data < number of parameters

e Data augmentation: apply label-invariant transforms
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Reduce overfitting

Important to reduce overfitting since:

number of training data < number of parameters

e Dropout

(b) After applying dropout.

(a) Standard Neural Net



Reduce overfitting

Important to reduce overfitting since:

number of training data < number of parameters

e Other ways of “implicit regularization”:

o early stopping
o weight decay (ridge regression)
o ...



Learned hierarchical representations

Learned representations using CNN trained on ImageNet:

Low-Level| |Mid-Level| |High-Level Trainable
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Figure credit: Y. Lecun’s slide with research credit to, Zeiler and
Fergus, 2013.



single-layer networks (perceptron)



Perceptron

Input = = [z1,...,24] € RY, weight w = [21,...,24] € R?, output
yeR;
d
y=ao (szc) =0 (Z ’LUZ‘LL’i)
i=1
where o(+) is a nonlinear activation function, e.g. o(z) = sign(z)
(hard thresholding) or o(z) = sigmoid(z) = Hi_z (soft thresholding).

Ty
\I\Ul
2 W2 \_‘ a———-—
P Yy
3 ~Ws3
—_— "

Decision making at test stage: given a test sample @, calculate y.



Nonlinear activation

Nonlinear activation is critical for complex decision boundary.




Training of a perceptron

Empirical risk minimization: Given training data {x;, y;};~, find the
weight vector w:

W = arg min — E U w; x;, y;)
wecRd n:

e find the weight parameter w that best fits the data;

e popular choice for loss function: quadratic, cross entropy, hinge,
etc..

Uw;x,y) = (yz - U('mei)>2

we'll use the quadratic loss and sigmoid activation as an
example...



Training via (stochastic) gradient descent

. N PR 2 .
w = arg min o ; (yi — U(w—raji)) = arg min, O (w)

e Gradient descent:
w1 = wp — 7, Ve, (wy)

where 1 is the step-size or learning rate.



Training via (stochastic) gradient descent

_ 1 & 2
w = arg félﬁld o ; (yi — U(wTwi)) = arg ur}réllél Cn(w)

e Gradient descent:
w1 = wp — 0 Vi (wy)
where 1 is the step-size or learning rate.

e The gradient can be calculated via chain rule.
o call §; = §;(w) = o(w ' x;), then

dw

d 1

dw 2 = (9 — yi)Ul(wTwi)wi
= (9 —y)9:(1 — ;) =

scalar

(i — 9:)° = (9i — vs)

where we used o/(2) = o(2)(1—0'(z)). This is called “delta rule”.



Stochastic gradient descent

Stochastic gradient descent uses only a mini-batch of data every
iteration.
At every iteration ¢,

@ Draw a mini-batch of data indexed by S; € {1,--- ,n};

@ Update

Wil = W — Nt Z Vi (wi; xi, yi)
1€St



Detour: Backpropagation

e Backpropagation is the basic algorithm to train neural network,
rediscovered several times in the literature in the 1970-80's, but
popularized by the 1986 paper by Rumelhart, Hinton, and
Williams.

e Assuming node operations take unit time, backpropagation takes
linear time, specifically, O(Network Size) = O(V + E) to
compute the gradient, where V' is the number of vertices and E
is the number of edges in the neural network.

main idea: chain rule from calculus.
d ! /
(@) = fg(2)g ()

Let's illustrate the process with single-output, 2-layer NN



Derivations of backpropagation

input layer e

hidden layer

network output:

0 a(vahm>:a vaa Zme'rj
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m

loss function: f = % (y— )%



Backpropogation |

Optimize the weights for each layer, starting with the layer closest to
outputs and working back to the layer closest to inputs.

© To update v,,'s: realize

df _df dj
dv,, dy dvpy,
. dy
—(?/ y)m

=(§—y)o’ (Z Umhm> hom

=@ =y)9(1 =7) hm.

This is the same as updating the perceptron.



Backpropogation Il

@ To update wy, j's: realize
af ﬁ dg dhy,
dwm,j o d@ dhm dme'

= (1= )91 = §)vmhm(1 - hm)xj
= dvmhm(1 — hpn)x;




Questions we may ask (in general)

¢ Representation: how well can a given network (fixed activation)
approximate / explain the training data?

e Generalization: how well can the learned w behave in
prediction during testing?

e Optimization: how does the output of (S)GD w; relate to w?
(or we should really plug in w; in the previous two questions!)



Nonconvex landscape of perceptron can be very bad

SGD converges to local minimizers. Are they global?

Theorem 12.1 (Auer et al., 1995)

Let o(-) be sigmoid and {(-) be the quadratic loss function. There
exists a sequence of training samples {x;,y;}_, such that {,(w) has
| 2]? distinct local minima.




Nonconvex landscape of perceptron can be very bad

SGD converges to local minimizers. Are they global?
Theorem 12.1 (Auer et al., 1995)

Let o(-) be sigmoid and {(-) be the quadratic loss function. There
exists a sequence of training samples {x;,y;}_, such that {,(w) has
| 2]? distinct local minima.

Consequence: there may exist exponentially many bad local minima
with arbitrary data! — curse of dimensionality




Why?

e saturation of the sigmoid

¢(w; 10,0.55) 0(w;0.7,0.25)

o each sample produces a local min + flat surfaces away from the
minimizer



Why?

e saturation of the sigmoid

¢(w; 10,0.55) 0(w;0.7,0.25)

o each sample produces a local min + flat surfaces away from the
minimizer

o if the local min of sample A falls into the flat region of sample B
(and vice versa), the sum of sample losses preserve both minima.



Why?

e We get one local minimum per sample in 1D.

__local minima” ) ) )
-10 -8 -6 -4 2 0 2 4 6 8 10

e Curse of dimensionality: we construct the samples to get L%Jd
distinct local minima in d dim.



Statistical models come to rescue

Data/measurements follow certain statistical models and hence are
not worst-case instances.

minimizey ln(w) = — > (w; x5, ;)



Statistical models come to rescue

Data/measurements follow certain statistical models and hence are
not worst-case instances.

m— 00

minimizey, {,(w) = Zf('w;mi,yi) =  Ell(w;z,y)] = {(w)



Statistical models come to rescue

Data/measurements follow certain statistical models and hence are
not worst-case instances.

1 m
minimizey, £, (w) = - Zf(w;a}i,yi) = E[l(w; e, y)] = (w)
i=1
empirical risk ~ population risk
8 \\T [/ ® Go=[1.0] TTT77/5 >
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Figure credit: Mei, Bai and Montanari



Statistical models of training data

Assume the training data {x;,y;}~ is i.i.d. drawn from some
distribution:
(z,y) ~ p(z,y)
We are using neural networks to fit p(x, y).
e A planted-truth model: let  ~ N(0, I) and the label y is drawn
as

o regression model:

Twi)

yi = o(w”
o classification model: y; € {0,1}, where
P(yi = 1) = o(w* " a;)

e Parameter recovery: can we recover w* using {x;, y;}i—,?



Roadmap

© Step 1: Verify the landscape properties of population loss;
@ Step 2: translate properties of population loss to empirical loss;

© Step 3: argue w (minimizer of empirical loss) is close to w*
(minimizer of population loss).



Step 1: population risk

0o
o
|

e w” is the unique local minimizer that is also global. No bad local
minima!

e strongly convex near global optima ; large gradient elsewhere



Nonconvex landscape: from population to empirical

The landscape of non-convex empirical risk

Empirical risk Risk ~ Empirical risk Risk Empirical risk Risk

Risk global min Risk global min
ERM — e RISKE

”

Risk global min

ERM =—' ERM =

1. What we thought 2. What hopefully is true 3. What we will prove

Figure 1: Possibe behaviors of non-convex empirical risk.

Figure credit: Mei, Bai and Montanari



Step 2: uniform convergence of gradients & Hessian

Theorem 12.2 (Bai, Song, Montanari, 2017)

Under suitable assumptions, for any § > 0, there exists a positive

constant C' depending on (R, ) but independent of n and d, such
that as long as n > Cdlogd, we have

@ preservation of gradient:

1
P ( sup || Vhn(w) — Ve(w)]l, < 1] 2 Og”) >1-4

[wl<R n

@ preservation of Hessian:

p(sup 7260 a0) = V24000 < ,/06“08”)21_5_
lwl|<R




Step 3: establish rate of convergence for ERM

By the mean-value theorem, there exists some w’ between w and w*
such that

U (W) = Ly (w*) 4+ (Vi (w*), ® — w*) 4+ = (B — w*) " V24, (w) (W — w*

where the last line follows by optimality of w. Then

1 . N 1, N .

S i (V20 (01) [ = w* [} < 5( — ") 926, () (@ — w")
< (Vln(w?), @ — w')|
< [Vt (w")] - 1@ — w]|

2||Vin(w)|

_ [Cdlogn
_ ¥l < < .
— ||’lU w H2 — Amin(v2£n(w/)> ~ n




two-layer networks



Two-layer linear network

Given arbitrary data {x;, y;}7_y, x;,y; € RY, fit the two-layer linear
network with quadratic loss:

n
f(A,B)=Y"|ly; — ABz;|;
=1

where B € RP*4 A € R¥P, where p < d.
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e special case: auto-association (auto-encoding, identity mapping),
where y; = x;, for e.g. image compression.



Landscape of 2-layer linear network

bears some similarity with the nonconvex matrix factorization
problem;

Lack identifiability: for any invertible C, AB = (AC)(C~'B).

Define X = [w1, @2, ,@y] and Y = [y1, 2, -+, yn], then
f(A,B) =Y — ABX||;

Let Exx =>" ziz] = XX Zyy =YY",

2XY = XYT, and ZYX = YXT.

When X =Y, any optimum AB = UU ", where U is the top
p eigenvectors of X xx.



Landscape of 2-layer linear network

Theorem 12.3 (Baldi and Hornik, 1989)

Suppose X is full rank and hence X x x is invertible. Further assume
Y= nyz}g{zxy

is full rank with d distinct eigenvalues A1 > --- > Ag > 0. Then
f(A, B) has no spurious local minima, except for equivalent versions
of global minimum due to invertible transformations.

e no bad local min!

e generalizable to multi-layer linear networks.



Critical points of two-layer linear networks

Lemma 12.4 (critical points)

Any critical point satisfies
AB = PaSyx Iy,
where A satisfies
PaY =PaXPa =3Pa,

where P4 is the ortho-projector projecting onto the column span of
the sub-indexed matrix.




Critical points of two-layer linear networks

Let the EVD of & = Sy x5 Sxy be S = UAUT.

Lemma 12.5 (critical points)

At any critical point, A can be written in the form
A=[Uy, de(pfr)]c

where rank(A) =r <p, J C {1,...,d}, |J| =r and C is invertible.
Correspondingly,

UjSyxExx

_ -1
B=C last p — r rows of CL

)

where L is any d X d matrix.

Verify (A, B) is global optima if and only if 7 ={1,...,p}.



Two-layer nonlinear network

Local strong convexity under the Gaussian model [Fu et al., 2018].
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