Yuejie Chi

Department of Electrical and Computer Engineering

Carnegie Mellon University

Spring 2018

1/41

Outline

e introduction to deep learning
e perceptron model (a single neuron)

e 1-hidden-layer (2-layer) neural network

The rise of deep neural networks

ImageNet Large Scale Visual Recognition Challenge (ILSVRC): Led by
Prof. Fei-Fei Li (Stanford).

Total number of non-empty synsets (categories): 21841;
Total number of images: 14,197,122

The rise of deep neural networks

The deeper, the better?

28.2

25.8

| 152 layers ‘

A 16.4

3 I I I

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

AlexNet

e Won the 2012 LSVRC competition by a large margin: top-1 and
top-5 error rates of 37.5% and 17.0%.

ENS
3
197 128 2048 2048 \dense
13
3
I
3\ -
13
00
192 128 Max
Max 5 Max pooling 2978 2048
pooling pooling

a8

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624-64,896-64,896-43,264—
4096-4096-1000.

AlexNet

e 60 million parameters and 650,000 neurons.
e takes 5-6 days to train on two GTX 580 3GB GPUs.

3 fully connected
5 convolutional layers layers

Softmax
output

Max

Faster training with ReLU

Rectified linear units (ReLU):
y = max(0,)

compared to tanh and sigmoid,
training is much faster.

—RelLU
25 |—tanh
—sigmoid

RelLu doesn’t saturate.

] 05
s \
g S
o -~ -
2 -~ _
£ S—_—
S 025 -~
£
0 5 10 15 20 25 30 35 40
Epochs

Figure 1: A four-layer convolutional neural
network with ReLUs (solid line) reaches a 25%
training error rate on CIFAR-10 six times faster
than an equivalent network with tanh neurons
(dashed line). The learning rates for each net-

Reduce overfitting

Important to reduce overfitting since:

number of training data < number of parameters

Reduce overfitting

Important to reduce overfitting since:

number of training data < number of parameters

e Data augmentation: apply label-invariant transforms

NMAMBE
T
= [4

Reduce overfitting

Important to reduce overfitting since:

number of training data < number of parameters

e Dropout

(b) After applying dropout.

(a) Standard Neural Net

Reduce overfitting

Important to reduce overfitting since:

number of training data < number of parameters

e Other ways of “implicit regularization”:

o early stopping
o weight decay (ridge regression)
o ...

Learned hierarchical representations

Learned representations using CNN trained on ImageNet:

Low-Level| |Mid-Level| |High-Level Trainable
— — —t
Feature Feature Feature Classifier

Figure credit: Y. Lecun’s slide with research credit to, Zeiler and
Fergus, 2013.

single-layer networks (perceptron)

Perceptron

Input = = [z1,...,24] € RY, weight w = [21,...,24] € R?, output
yeR;
d
y=ao (szc) =0 (Z ’LUZ‘LL’i)
i=1
where o(+) is a nonlinear activation function, e.g. o(z) = sign(z)
(hard thresholding) or o(z) = sigmoid(z) = Hi_z (soft thresholding).

Ty
\I\Ul
2 W2 _‘ a———-—
P Yy
3 ~Ws3
—_— "

Decision making at test stage: given a test sample @, calculate y.

Nonlinear activation

Nonlinear activation is critical for complex decision boundary.

Training of a perceptron

Empirical risk minimization: Given training data {x;, y;};~, find the
weight vector w:

W = arg min — E U w; x;, y;)
wecRd n:

e find the weight parameter w that best fits the data;

e popular choice for loss function: quadratic, cross entropy, hinge,
etc..

Uw;x,y) = (yz - U('mei)>2

we'll use the quadratic loss and sigmoid activation as an
example...

Training via (stochastic) gradient descent

. N PR 2 .
w = arg min o ; (yi — U(w—raji)) = arg min, O (w)

e Gradient descent:
w1 = wp — 7, Ve, (wy)

where 1 is the step-size or learning rate.

Training via (stochastic) gradient descent

_ 1 & 2
w = arg félﬁld o ; (yi — U(wTwi)) = arg ur}réllél Cn(w)

e Gradient descent:
w1 = wp — 0 Vi (wy)
where 1 is the step-size or learning rate.

e The gradient can be calculated via chain rule.
o call §; = §;(w) = o(w ' x;), then

dw

d 1

dw 2 = (9 — yi)Ul(wTwi)wi
= (9 —y)9:(1 — ;) =

scalar

(i — 9:)° = (9i — vs)

where we used o/(2) = o(2)(1—0'(z)). This is called “delta rule”.

Stochastic gradient descent

Stochastic gradient descent uses only a mini-batch of data every
iteration.
At every iteration ¢,

@ Draw a mini-batch of data indexed by S; € {1,--- ,n};

@ Update

Wil = W — Nt Z Vi (wi; xi, yi)
1€St

Detour: Backpropagation

e Backpropagation is the basic algorithm to train neural network,
rediscovered several times in the literature in the 1970-80's, but
popularized by the 1986 paper by Rumelhart, Hinton, and
Williams.

e Assuming node operations take unit time, backpropagation takes
linear time, specifically, O(Network Size) = O(V + E) to
compute the gradient, where V' is the number of vertices and E
is the number of edges in the neural network.

main idea: chain rule from calculus.
d ! /
(@) = fg(2)g ()

Let's illustrate the process with single-output, 2-layer NN

Derivations of backpropagation

input layer e

hidden layer

network output:

0 a(vahm>:a vaa Zme'rj
m j

m

loss function: f = % (y—)%

Backpropogation |

Optimize the weights for each layer, starting with the layer closest to
outputs and working back to the layer closest to inputs.

© To update v,,'s: realize

df _df dj
dv,, dy dvpy,
. dy
—(?/ y)m

=(§—y)o’ (Z Umhm> hom

=@ =y)9(1 =7) hm.

This is the same as updating the perceptron.

Backpropogation Il

@ To update wy, j's: realize
af ﬁ dg dhy,
dwm,j o d@ dhm dme'

= (1=)91 = §)vmhm(1 - hm)xj
= dvmhm(1 — hpn)x;

Questions we may ask (in general)

¢ Representation: how well can a given network (fixed activation)
approximate / explain the training data?

e Generalization: how well can the learned w behave in
prediction during testing?

e Optimization: how does the output of (S)GD w; relate to w?
(or we should really plug in w; in the previous two questions!)

Nonconvex landscape of perceptron can be very bad

SGD converges to local minimizers. Are they global?

Theorem 12.1 (Auer et al., 1995)

Let o(-) be sigmoid and {(-) be the quadratic loss function. There
exists a sequence of training samples {x;,y;}_, such that {,(w) has
| 2]? distinct local minima.

Nonconvex landscape of perceptron can be very bad

SGD converges to local minimizers. Are they global?
Theorem 12.1 (Auer et al., 1995)

Let o(-) be sigmoid and {(-) be the quadratic loss function. There
exists a sequence of training samples {x;,y;}_, such that {,(w) has
| 2]? distinct local minima.

Consequence: there may exist exponentially many bad local minima
with arbitrary data! — curse of dimensionality

Why?

e saturation of the sigmoid

¢(w; 10,0.55) 0(w;0.7,0.25)

o each sample produces a local min + flat surfaces away from the
minimizer

Why?

e saturation of the sigmoid

¢(w; 10,0.55) 0(w;0.7,0.25)

o each sample produces a local min + flat surfaces away from the
minimizer

o if the local min of sample A falls into the flat region of sample B
(and vice versa), the sum of sample losses preserve both minima.

Why?

e We get one local minimum per sample in 1D.

__local minima”)))
-10 -8 -6 -4 2 0 2 4 6 8 10

e Curse of dimensionality: we construct the samples to get L%Jd
distinct local minima in d dim.

Statistical models come to rescue

Data/measurements follow certain statistical models and hence are
not worst-case instances.

minimizey ln(w) = — > (w; x5, ;)

Statistical models come to rescue

Data/measurements follow certain statistical models and hence are
not worst-case instances.

m— 00

minimizey, {,(w) = Zf('w;mi,yi) = Ell(w;z,y)] = {(w)

Statistical models come to rescue

Data/measurements follow certain statistical models and hence are
not worst-case instances.

1 m
minimizey, £, (w) = - Zf(w;a}i,yi) = E[l(w; e, y)] = (w)
i=1
empirical risk ~ population risk
8 \\T [/ ® Go=[1.0] TTT77/5 >

B = [0.816,-0.268

0o
°

T 77

Figure credit: Mei, Bai and Montanari

Statistical models of training data

Assume the training data {x;,y;}~ is i.i.d. drawn from some
distribution:
(z,y) ~ p(z,y)
We are using neural networks to fit p(x, y).
e A planted-truth model: let ~ N(0, I) and the label y is drawn
as

o regression model:

Twi)

yi = o(w”
o classification model: y; € {0,1}, where
P(yi = 1) = o(w* " a;)

e Parameter recovery: can we recover w* using {x;, y;}i—,?

Roadmap

© Step 1: Verify the landscape properties of population loss;
@ Step 2: translate properties of population loss to empirical loss;

© Step 3: argue w (minimizer of empirical loss) is close to w*
(minimizer of population loss).

Step 1: population risk

0o
o
|

e w” is the unique local minimizer that is also global. No bad local
minima!

e strongly convex near global optima ; large gradient elsewhere

Nonconvex landscape: from population to empirical

The landscape of non-convex empirical risk

Empirical risk Risk ~ Empirical risk Risk Empirical risk Risk

Risk global min Risk global min
ERM — e RISKE

”

Risk global min

ERM =—' ERM =

1. What we thought 2. What hopefully is true 3. What we will prove

Figure 1: Possibe behaviors of non-convex empirical risk.

Figure credit: Mei, Bai and Montanari

Step 2: uniform convergence of gradients & Hessian

Theorem 12.2 (Bai, Song, Montanari, 2017)

Under suitable assumptions, for any § > 0, there exists a positive

constant C' depending on (R,) but independent of n and d, such
that as long as n > Cdlogd, we have

@ preservation of gradient:

1
P (sup || Vhn(w) — Ve(w)]l, < 1] 2 Og”) >1-4

[wl<R n

@ preservation of Hessian:

p(sup 7260 a0) = V24000 < ,/06“08”)21_5_
lwl|<R

Step 3: establish rate of convergence for ERM

By the mean-value theorem, there exists some w’ between w and w*
such that

U (W) = Ly (w*) 4+ (Vi (w*), ® — w*) 4+ = (B — w*) " V24, (w) (W — w*

where the last line follows by optimality of w. Then

1 . N 1, N .

S i (V20 (01) [= w* [} < 5(— ") 926, () (@ — w")
< (Vln(w?), @ — w')|
< [Vt (w")] - 1@ — w]|

2||Vin(w)|

_ [Cdlogn
_ ¥l < < .
— ||’lU w H2 — Amin(v2£n(w/)> ~ n

two-layer networks

Two-layer linear network

Given arbitrary data {x;, y;}7_y, x;,y; € RY, fit the two-layer linear
network with quadratic loss:

n
f(A,B)=Y"|ly; — ABz;|;
=1

where B € RP*4 A € R¥P, where p < d.

B_7 v~ A
& /_Z/ S
TN g\K\///

»‘Qkk >\ XN
@GO A0~
/>/\’§<\) ea/i&
@52 7Y~
SN a

input layer ~x

g output layer

hidden layer

e special case: auto-association (auto-encoding, identity mapping),
where y; = x;, for e.g. image compression.

Landscape of 2-layer linear network

bears some similarity with the nonconvex matrix factorization
problem;

Lack identifiability: for any invertible C, AB = (AC)(C~'B).

Define X = [w1, @2, ,@y] and Y = [y1, 2, -+, yn], then
f(A,B) =Y — ABX||;

Let Exx =>" ziz] = XX Zyy =YY",

2XY = XYT, and ZYX = YXT.

When X =Y, any optimum AB = UU ", where U is the top
p eigenvectors of X xx.

Landscape of 2-layer linear network

Theorem 12.3 (Baldi and Hornik, 1989)

Suppose X is full rank and hence X x x is invertible. Further assume
Y= nyz}g{zxy

is full rank with d distinct eigenvalues A1 > --- > Ag > 0. Then
f(A, B) has no spurious local minima, except for equivalent versions
of global minimum due to invertible transformations.

e no bad local min!

e generalizable to multi-layer linear networks.

Critical points of two-layer linear networks

Lemma 12.4 (critical points)

Any critical point satisfies
AB = PaSyx Iy,
where A satisfies
PaY =PaXPa =3Pa,

where P4 is the ortho-projector projecting onto the column span of
the sub-indexed matrix.

Critical points of two-layer linear networks

Let the EVD of & = Sy x5 Sxy be S = UAUT.

Lemma 12.5 (critical points)

At any critical point, A can be written in the form
A=[Uy, de(pfr)]c

where rank(A) =r <p, J C {1,...,d}, |J| =r and C is invertible.
Correspondingly,

UjSyxExx

_ -1
B=C last p — r rows of CL

)

where L is any d X d matrix.

Verify (A, B) is global optima if and only if 7 ={1,...,p}.

Two-layer nonlinear network

Local strong convexity under the Gaussian model [Fu et al., 2018].

w
TN
.€\7/7L/’ g SN
VQKA \l Y
- @TD-—HB -
&)\)§* o // /
‘é’f‘ /
SN /

input layer ~ifgy output layer

hidden layer

Reference |

[1]
2]
[3]

[4]
[5]
[6]
[7]
[8]

"ImagelNet,” www.image-net.org/.
"Deep learning," Lecun, Bengio, and Hinton, Nature, 2015.

"ImageNet classification with deep convolutional neural networks,"
Krizhevsky et al., NIPS, 2012.

"Learning representations by back-propagating errors,” Rumelhart,
Hinton, and Williams, Nature, 1986.

"Dropout: A simple way to prevent neural networks from overfitting,”
Srivastava et al., JMLR, 2014.

"Dropout Training as Adaptive Regularization,” Wager et al., NIPS,
2013.

"On the importance of initialization and momentum in deep learning,”
Sutskever et al., ICML, 2013.

"Exponentially many local minima for single neurons,” P. Auer, M.
Herbster and K. Warmuth, NIPS, 1995.

www.image-net.org/

Reference |l

[9] " The landscape of empirical risk for non-convex losses,” S. Mei, Y. Bai,
and A. Montanari, arXiv preprint arXiv:1607.06534, 2016.

[10] "Neural networks and principal component analysis: Learning from
examples without local minima,” P. Baldi and K. Hornik, Neural
Networks, 1989.

[11] "Local Geometry of One-Hidden-Layer Neural Networks for Logistic
Regression,” Fu, Chi, Liang, arXiv preprint arXiv:1802.06463, 2018.

