
1/41

ECE 18-898G: Special Topics in Signal Processing:
Sparsity, Structure, and Inference

Neural Networks: A brief touch

Yuejie Chi

Department of Electrical and Computer Engineering

Spring 2018

2/41

Outline

• introduction to deep learning

• perceptron model (a single neuron)

• 1-hidden-layer (2-layer) neural network

3/41

The rise of deep neural networks

ImageNet Large Scale Visual Recognition Challenge (ILSVRC): Led by
Prof. Fei-Fei Li (Stanford).

Total number of non-empty synsets (categories): 21841;
Total number of images: 14,197,122

4/41

The rise of deep neural networks

The deeper, the better?

5/41

AlexNet

• Won the 2012 LSVRC competition by a large margin: top-1 and
top-5 error rates of 37.5% and 17.0%.

6/41

AlexNet

• 60 million parameters and 650,000 neurons.
• takes 5-6 days to train on two GTX 580 3GB GPUs.

5 convolutional layers
3 fully connected

layers

Softmax
output

7/41

Faster training with ReLU

• Rectified linear units (ReLU):

y = max(0, x)

• compared to tanh and sigmoid,
training is much faster.

-3 -2 -1 0 1 2 3

-1

-0.5

0

0.5

1

1.5

2

2.5

3

ReLU

tanh

sigmoid

ReLu doesn’t saturate.

8/41

Reduce overfitting

Important to reduce overfitting since:

number of training data� number of parameters

• Data augmentation: apply label-invariant transforms

8/41

Reduce overfitting

Important to reduce overfitting since:

number of training data� number of parameters

• Data augmentation: apply label-invariant transforms

9/41

Reduce overfitting

Important to reduce overfitting since:

number of training data� number of parameters

• Dropout

10/41

Reduce overfitting

Important to reduce overfitting since:

number of training data� number of parameters

• Other ways of “implicit regularization”:
◦ early stopping
◦ weight decay (ridge regression)
◦

11/41

Learned hierarchical representations

Learned representations using CNN trained on ImageNet:

Figure credit: Y. Lecun’s slide with research credit to, Zeiler and
Fergus, 2013.

12/41

single-layer networks (perceptron)

13/41

Perceptron

Input x = [x1, . . . , xd] ∈ Rd, weight w = [x1, . . . , xd] ∈ Rd, output
y ∈ R;

y = σ
(
w>x

)
= σ

(
d∑
i=1

wixi

)
where σ(·) is a nonlinear activation function, e.g. σ(z) = sign(z)
(hard thresholding) or σ(z) = sigmoid(z) = 1

1+e−z (soft thresholding).

hidden layer input layer output layer

x y W � � y

1

x1

x2

x3

w1

w2

w3

Decision making at test stage: given a test sample x, calculate y.

14/41

Nonlinear activation

Nonlinear activation is critical for complex decision boundary.

15/41

Training of a perceptron

Empirical risk minimization: Given training data {xi, yi}ni=1, find the
weight vector w:

ŵ = arg min
w∈Rd

1
n

n∑
i=1

`(w;xi, yi)

• find the weight parameter w that best fits the data;
• popular choice for loss function: quadratic, cross entropy, hinge,

etc..
`(w;xi, yi) =

(
yi − σ(w>xi)

)2

we’ll use the quadratic loss and sigmoid activation as an
example...

16/41

Training via (stochastic) gradient descent

ŵ = arg min
w∈Rd

1
2n

n∑
i=1

(
yi − σ(w>xi)

)2
:= arg min

w∈Rd
`n(w)

• Gradient descent:
wt+1 = wt − ηt∇`n(wt)

where ηt is the step-size or learning rate.

• The gradient can be calculated via chain rule.
◦ call ŷi = ŷi(w) = σ(w>xi), then

d

dw

1
2 (yi − ŷi)2 = (ŷi − yi)

dŷi(w)
dw

= (ŷi − yi)σ′(w>xi)xi

= (ŷi − yi)ŷi(1− ŷi)︸ ︷︷ ︸
scalar

xi

where we used σ′(z) = σ(z)(1−σ′(z)). This is called “delta rule”.

16/41

Training via (stochastic) gradient descent

ŵ = arg min
w∈Rd

1
2n

n∑
i=1

(
yi − σ(w>xi)

)2
:= arg min

w∈Rd
`n(w)

• Gradient descent:
wt+1 = wt − ηt∇`n(wt)

where ηt is the step-size or learning rate.
• The gradient can be calculated via chain rule.

◦ call ŷi = ŷi(w) = σ(w>xi), then

d

dw

1
2 (yi − ŷi)2 = (ŷi − yi)

dŷi(w)
dw

= (ŷi − yi)σ′(w>xi)xi

= (ŷi − yi)ŷi(1− ŷi)︸ ︷︷ ︸
scalar

xi

where we used σ′(z) = σ(z)(1−σ′(z)). This is called “delta rule”.

17/41

Stochastic gradient descent

Stochastic gradient descent uses only a mini-batch of data every
iteration.

At every iteration t,
1 Draw a mini-batch of data indexed by St ∈ {1, · · · , n};

2 Update
wt+1 = wt − ηt

∑
i∈St

∇`(wt;xi, yi)

18/41

Detour: Backpropagation

• Backpropagation is the basic algorithm to train neural network,
rediscovered several times in the literature in the 1970-80’s, but
popularized by the 1986 paper by Rumelhart, Hinton, and
Williams.
• Assuming node operations take unit time, backpropagation takes

linear time, specifically, O(Network Size) = O(V + E) to
compute the gradient, where V is the number of vertices and E
is the number of edges in the neural network.

main idea: chain rule from calculus.

d

dx
f(g(x)) = f ′(g(x))g′(x)

Let’s illustrate the process with single-output, 2-layer NN

19/41

Derivations of backpropagation

hidden layer input layer output layer

1

hidden layer input layer output layer

1

hidden layer input layer output layer

1

wm,j

hidden layer input layer output layer

x y W � � y

1

hidden layer input layer output layer

x y W � � y

1

hidden layer input layer output layer

x y W � � y

1

hidden layer input layer output layer

x y W � � y

1

hidden layer input layer output layer

x y W � � y

1

hidden layer input layer output layer

x y W � � y

1

xj

network output:

ŷ = σ

(∑
m

vmhm

)
= σ

∑
m

vmσ

∑
j

wm,jxj


loss function: f = 1

2 (y − ŷ)2.

20/41

Backpropogation I

Optimize the weights for each layer, starting with the layer closest to
outputs and working back to the layer closest to inputs.

1 To update vm’s: realize

df

dvm
= df

dŷ

dŷ

dvm

= (ŷ − y) dŷ
dvm

= (ŷ − y)σ′
(∑

m

vmhm

)
hm

= (ŷ − y)ŷ(1− ŷ)︸ ︷︷ ︸
δ

hm.

This is the same as updating the perceptron.

21/41

Backpropogation II

2 To update wm,j ’s: realize

df

dwm,j
= df

dŷ

dŷ

dhm

dhm
dwm,j

= (ŷ − y)ŷ(1− ŷ)vmhm(1− hm)xj
= δvmhm(1− hm)xj

22/41

Questions we may ask (in general)

• Representation: how well can a given network (fixed activation)
approximate / explain the training data?

• Generalization: how well can the learned ŵ behave in
prediction during testing?

• Optimization: how does the output of (S)GD wt relate to ŵ?
(or we should really plug in wt in the previous two questions!)

23/41

Nonconvex landscape of perceptron can be very bad
SGD converges to local minimizers. Are they global?

Theorem 12.1 (Auer et al., 1995)
Let σ(·) be sigmoid and `(·) be the quadratic loss function. There
exists a sequence of training samples {xi, yi}ni=1 such that `n(w) has
bnd c

d distinct local minima.

Consequence: there may exist exponentially many bad local minima
with arbitrary data! — curse of dimensionality

23/41

Nonconvex landscape of perceptron can be very bad
SGD converges to local minimizers. Are they global?

Theorem 12.1 (Auer et al., 1995)
Let σ(·) be sigmoid and `(·) be the quadratic loss function. There
exists a sequence of training samples {xi, yi}ni=1 such that `n(w) has
bnd c

d distinct local minima.

Consequence: there may exist exponentially many bad local minima
with arbitrary data! — curse of dimensionality

24/41

Why?

• saturation of the sigmoid

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

`(w; 10, 0.55) `(w; 0.7, 0.25)

◦ each sample produces a local min + flat surfaces away from the
minimizer

◦ if the local min of sample A falls into the flat region of sample B
(and vice versa), the sum of sample losses preserve both minima.

24/41

Why?

• saturation of the sigmoid

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

`(w; 10, 0.55) `(w; 0.7, 0.25)

◦ each sample produces a local min + flat surfaces away from the
minimizer

◦ if the local min of sample A falls into the flat region of sample B
(and vice versa), the sum of sample losses preserve both minima.

25/41

Why?

• We get one local minimum per sample in 1D.

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

local minima

• Curse of dimensionality: we construct the samples to get bnd c
d

distinct local minima in d dim.

26/41

Statistical models come to rescue
Data/measurements follow certain statistical models and hence are
not worst-case instances.

minimizew `n(w) = 1
m

m∑
i=1

`(w;xi, yi)

m→∞=⇒ E[`(w;x, y)] := `(w)

empirical risk ≈ population risk

θ1

-3 -2 -1 0 1 2 3

θ
2

-3

-2

-1

0

1

2

3
θ0 = [1, 0]

θ̂n = [0.816,−0.268]

θ1

-3 -2 -1 0 1 2 3

θ
2

-3

-2

-1

0

1

2

3

θ0

Figure credit: Mei, Bai and Montanari

26/41

Statistical models come to rescue
Data/measurements follow certain statistical models and hence are
not worst-case instances.

minimizew `n(w) = 1
m

m∑
i=1

`(w;xi, yi)
m→∞=⇒ E[`(w;x, y)] := `(w)

empirical risk ≈ population risk

θ1

-3 -2 -1 0 1 2 3

θ
2

-3

-2

-1

0

1

2

3
θ0 = [1, 0]

θ̂n = [0.816,−0.268]

θ1

-3 -2 -1 0 1 2 3

θ
2

-3

-2

-1

0

1

2

3

θ0

Figure credit: Mei, Bai and Montanari

26/41

Statistical models come to rescue
Data/measurements follow certain statistical models and hence are
not worst-case instances.

minimizew `n(w) = 1
m

m∑
i=1

`(w;xi, yi)
m→∞=⇒ E[`(w;x, y)] := `(w)

empirical risk ≈ population risk

θ1

-3 -2 -1 0 1 2 3

θ
2

-3

-2

-1

0

1

2

3
θ0 = [1, 0]

θ̂n = [0.816,−0.268]

θ1

-3 -2 -1 0 1 2 3

θ
2

-3

-2

-1

0

1

2

3

θ0

Figure credit: Mei, Bai and Montanari

27/41

Statistical models of training data

Assume the training data {xi, yi}ni=1 is i.i.d. drawn from some
distribution:

(x, y) ∼ p(x, y)

We are using neural networks to fit p(x, y).
• A planted-truth model: let x ∼ N (0, I) and the label y is drawn

as
◦ regression model:

yi = σ(w?>xi)

◦ classification model: yi ∈ {0, 1}, where

P(yi = 1) = σ(w?>xi)

• Parameter recovery: can we recover w? using {xi, yi}ni=1?

28/41

Roadmap

1 Step 1: Verify the landscape properties of population loss;

2 Step 2: translate properties of population loss to empirical loss;

3 Step 3: argue ŵ (minimizer of empirical loss) is close to w?

(minimizer of population loss).

29/41

Step 1: population risk

θ1

-3 -2 -1 0 1 2 3

θ
2

-3

-2

-1

0

1

2

3

θ0

• w? is the unique local minimizer that is also global. No bad local
minima!
• strongly convex near global optima ; large gradient elsewhere

30/41

Nonconvex landscape: from population to empirical

Figure credit: Mei, Bai and Montanari

31/41

Step 2: uniform convergence of gradients & Hessian

Theorem 12.2 (Bai, Song, Montanari, 2017)
Under suitable assumptions, for any δ > 0, there exists a positive
constant C depending on (R, δ) but independent of n and d, such
that as long as n ≥ Cd log d, we have

1 preservation of gradient:

P

 sup
‖w‖≤R

‖∇`n(w)−∇`(w)‖2 ≤

√
Cd logn

n

 ≥ 1− δ.

2 preservation of Hessian:

P

 sup
‖w‖≤R

∥∥∥∇2`n(w)−∇2`(w)
∥∥∥ ≤

√
Cd logn

n

 ≥ 1− δ.

32/41

Step 3: establish rate of convergence for ERM

By the mean-value theorem, there exists some w′ between ŵ and w?

such that

`n(ŵ) = `n(w?) + 〈∇`n(w?), ŵ −w?〉+ 1
2(ŵ −w?)>∇2`n(w′)(ŵ −w?)

≤ `n(w?)

where the last line follows by optimality of ŵ. Then

1
2λmin(∇2`n(w′)) ‖ŵ −w?‖22 ≤

1
2(ŵ −w?)>∇2`n(w′)(ŵ −w?)

≤ |〈∇`n(w?), ŵ −w?〉|
≤ ‖∇`n(w?)‖ · ‖ŵ −w?‖

→ ‖ŵ −w?‖2 ≤
2‖∇`n(w?)‖

λmin(∇2`n(w′)) .

√
Cd logn

n
.

33/41

two-layer networks

34/41

Two-layer linear network
Given arbitrary data {xi,yi}ni=1, xi,yi ∈ Rd, fit the two-layer linear
network with quadratic loss:

f(A,B) =
n∑
i=1
‖yi −ABxi‖22

where B ∈ Rp×d, A ∈ Rd×p, where p ≤ d.

hidden layer input layer output layer

1

hidden layer input layer output layer

1

hidden layer input layer output layer

1

B
x

A

• special case: auto-association (auto-encoding, identity mapping),
where yi = xi, for e.g. image compression.

35/41

Landscape of 2-layer linear network

• bears some similarity with the nonconvex matrix factorization
problem;

• Lack identifiability: for any invertible C, AB = (AC)(C−1B).

• Define X = [x1,x2, · · · ,xn] and Y = [y1,y2, · · · ,yn], then

f(A,B) = ‖Y −ABX‖2F

• Let ΣXX =
∑n
i=1 xix

>
i = XX> , ΣY Y = Y Y >,

ΣXY = XY >, and ΣY X = Y X>.

• When X = Y , any optimum AB = UU>, where U is the top
p eigenvectors of ΣXX .

36/41

Landscape of 2-layer linear network

Theorem 12.3 (Baldi and Hornik, 1989)
Suppose X is full rank and hence ΣXX is invertible. Further assume

Σ := ΣY XΣ−1
XXΣXY

is full rank with d distinct eigenvalues λ1 > · · · > λd > 0. Then
f(A,B) has no spurious local minima, except for equivalent versions
of global minimum due to invertible transformations.

• no bad local min!
• generalizable to multi-layer linear networks.

37/41

Critical points of two-layer linear networks

Lemma 12.4 (critical points)
Any critical point satisfies

AB = PAΣY XΣ−1
XX ,

where A satisfies

PAΣ = PAΣPA = ΣPA,

where PA is the ortho-projector projecting onto the column span of
the sub-indexed matrix.

38/41

Critical points of two-layer linear networks

Let the EVD of Σ = ΣY XΣ−1
XXΣXY be Σ = UΛU>.

Lemma 12.5 (critical points)
At any critical point, A can be written in the form

A = [UJ ,0d×(p−r)]C

where rank(A) = r ≤ p, J ⊂ {1, . . . , d}, |J | = r and C is invertible.
Correspondingly,

B = C−1
[

U>JΣY XΣ−1
XX

last p− r rows of CL

]
,

where L is any d× d matrix.

Verify (A,B) is global optima if and only if J = {1, . . . , p}.

39/41

Two-layer nonlinear network

Local strong convexity under the Gaussian model [Fu et al., 2018].

hidden layer input layer output layer

1

hidden layer input layer output layer

1

hidden layer input layer output layer

1

hidden layer input layer output layer

x y W �

1

hidden layer input layer output layer

x y W �

1

hidden layer input layer output layer

x y W � � y

1

hidden layer input layer output layer

x y W � � y

1

hidden layer input layer output layer

x y W � � y

1

hidden layer input layer output layer

x y W � � y

1

hidden layer input layer output layer

x y W � � y

1

hidden layer input layer output layer

x y W � � y

1

hidden layer input layer output layer

x y W � � y +

1

40/41

Reference I

[1] ”ImageNet,” www.image-net.org/.

[2] ”Deep learning,” Lecun, Bengio, and Hinton, Nature, 2015.

[3] ”ImageNet classification with deep convolutional neural networks,”
Krizhevsky et al., NIPS, 2012.

[4] ”Learning representations by back-propagating errors,” Rumelhart,
Hinton, and Williams, Nature, 1986.

[5] ”Dropout: A simple way to prevent neural networks from overfitting,”
Srivastava et al., JMLR, 2014.

[6] ”Dropout Training as Adaptive Regularization,” Wager et al., NIPS,
2013.

[7] ”On the importance of initialization and momentum in deep learning,”
Sutskever et al., ICML, 2013.

[8] ”Exponentially many local minima for single neurons,” P. Auer, M.
Herbster and K. Warmuth, NIPS, 1995.

www.image-net.org/

41/41

Reference II

[9] ”The landscape of empirical risk for non-convex losses,” S. Mei, Y. Bai,
and A. Montanari, arXiv preprint arXiv:1607.06534, 2016.

[10] ”Neural networks and principal component analysis: Learning from
examples without local minima,” P. Baldi and K. Hornik, Neural
Networks, 1989.

[11] ”Local Geometry of One-Hidden-Layer Neural Networks for Logistic
Regression,” Fu, Chi, Liang, arXiv preprint arXiv:1802.06463, 2018.

