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What is sparsity?

A signal is said to be sparse when most of its components vanish.

• Formally, x ∈ Rp is said to be k-sparse if it has at most k
nonzero entries

• Think of a k-sparse signal as having k degrees of freedom

Engineers wish to describe / approximate data in the most
parsimonious terms!
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Only a small number of parameters matter

wavelet
trans-
form

throw
away
85%
coeffi-
cients

Signal is very sparse in some transform domain (e.g. wavelet)

2



Only a small number of parameters matter

wavelet
trans-
form

throw
away
85%
coeffi-
cients

Signal is very sparse in some transform domain (e.g. wavelet)

2



Only a small number of parameters matter

wavelet
trans-
form

throw
away
85%
coeffi-
cients

Signal is very sparse in some transform domain (e.g. wavelet)

2



Only a small number of parameters matter

wavelet
trans-
form

throw
away
85%
coeffi-
cients

Signal is very sparse in some transform domain (e.g. wavelet)
2



Only a small number of parameters matter

• Compute 106 wavelet coeffients
• Keep only the 25K largest coefficients
• Inverse wavelet transform
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Only a small number of parameters matter

Raw: 15MB

JPEG: 150KB

There is (almost) no loss in quality between the raw image and its
JPEG compressed form
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General philosophy

We are drowning in information and starving for knowledge

Rutherford Roger

• Massive data acquisition
• Most data is redundant and can be thrown away

Will such “information sparsity” be useful in data acquisition,
statistical inference and information recovery?
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Advantages of sparsity

• Interpretability of our estimate / fitted model
• particularly important when sample size � # unknowns

• Computational convenience
• in many cases we have scalable procedures to promote sparsity

• “Bet on sparsity” principle
• use a procedure that does well in sparse problems, since no

procedure does well in dense problems
• “less is more”: sparse model might be easier to estimate than

dense models
• Occam’s razor
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Example: compressed sensing
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Magnetic Resonance Imaging (MRI)
Body Examples

Abdominal Blood Vessels Knee
*K. Pauly, G. Gold, RAD220

MR scanner MR image

K. Pauly, G. Gold, RAD220
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What an MRI machine sees

Measured data y(k1, k2) ←− Fourier transform of image f(x1, x2)
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Fourier transform

y(k1, k2) ≈
∑

x1

∑
x2

f(x1, x2)e−i2π(k1x1+k2x2)
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How do we form an image?

image f(x1, x2) ←− inverse Fourier transform of measurements

f(x1, x2) ≈
∑ ∑

y(k1, k2)ei2π(k1x1+k2x2)
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MRI data collection is inherently slow

Done!
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M. Lustig
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Fact: impact of MRI on children health is limited

Children cannot stay still or breathhold!
• (deep) anesthesia required
• respiration suspension
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Is it possible to take fewer samples to reduce scan
time?

uniform undersampling by a factor of 2
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Fewer equations than unknowns!

=

How can we possibly solve an
underdetermined system?

We need at least as many equations
as unknowns!

Carl Friedrich Gauss

16



Fewer equations than unknowns!

=

How can we possibly solve an
underdetermined system?

We need at least as many equations
as unknowns!

Carl Friedrich Gauss
16



A surprising experiment

Fourier transform

Highly subsampled

CS algorithm:

min
∑
x

||∇f(x)||1 subj. to data constraints

classical
reconstruction

compressed sensing
reconstruction
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Structured solutions

=

How can we possibly solve?

Need some structure

x is k-sparse → at most k degrees of freedom
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Ingredients for success

=

• Exploit signal structure: sparsity

• Recovery via efficient algorithms (e.g. convex optimization)

• Incoherent sensing mechanism
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Translation to practice...

Rather than taking nearly six minutes with multiple breath-holds, a
Cardiac Cine scan can now be done within 25 seconds – in
free-breathing.
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Going beyond sparsity
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Netflix challenge: predict unseen ratings

? ? ? ?

?

?

??

??

???

?

?
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Can we infer the missing entries?



X ? ? ? X ?
? ? X X ? ?
X ? ? X ? ?
? ? X ? ? X
X ? ? ? ? ?
? X ? ? X ?
? ? X X ? ?


• Underdetermined system (more unknowns than revealed entries)
• Seems hopeless
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What if unknown matrix has structure?

? ? ? ?

?

?

??

??

???

?

?

A few factors explain most of the data
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What if unknown matrix has structure?

? ? ? ?

?

?

??

??

???

?

?

A few factors explain most of the data −→ low-rank
approximation
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Big data

images videos

?? 

text web data

Huge data sizes
but often

low-dimensional structure

Engineering applications: unknown matrix is often (approx.) low rank
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Low-rank matrix completion?

Ground truth

50× 50 low-rank
matrix 26



Another surprising experiment

Observed samples



Another surprising experiment

Observed samples Estimate via nuclear norm
min

minimize sum-of-singular-values︸ ︷︷ ︸
nuclear norm

subj. to data constraints



Another surprising experiment

Ground truth Estimate via nuclear norm
min

minimize sum-of-singular-values︸ ︷︷ ︸
nuclear norm

subj. to data constraints



Another problem: principal component analysis

X =
[
x1 . . . xn

]



Another problem: principal component analysis

minimize ‖X −L‖ subject to rank(L) ≤ k
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Robust principal component analysis

Recover low-dimensional structure from corrupted data

Y = L + S

• Y : data matrix (observed)
• L: low-rank component

(unobserved)
• S: sparse outliers (unobserved)



× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×



Can we separate L and S?
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De-mixing by (non)convex programming

Spoiler: convex relaxation often enables perfect separation;
nonconvex ones might work even better!

Example: separation of background (low-rank) and foreground
(sparse) in videos



Keywords of this course

• Low-dimensional structure (e.g. sparsity, low rank)

• Statistical models of data collection (incoherent sensing
mechanism, often has some“randomness”)

• Efficient algorithms (convex optimization, numerical methods,
gradient descent, etc.)

We can recover many low-dimensional structures of interest from
highly incomplete data by efficient algorithms

33
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Logistics
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Basic information

• Mon/Wed: 4:30 – 6:00 pm

• Instructor’s office hours: Thursday 2-3:30pm, PH B25

• TA’s office hours: Rohan Varma, Monday 10-12, PH B44
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Why you should consider taking this course

• There will be quite a few THEOREMS and PROOFS ...

• Promote deeper understanding of scientific results

• Nonrigorous / heuristic from time to time

• “Nonrigorous” but grounded in rigorous theory
• Help develop intuition

• No exams!
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Tentative topics

First half: Fundamentals:
• Sparse representation
• Sparse linear regression and model selection
• Sparsity in graphical models
• Compressed sensing and sparse recovery
• Low-rank matrix recovery and matrix completion

Second half: Special topics:
• phase retrieval / solving systems of quadratic equations
• Super-resolution and spectral estimation
• dictionary learning
• Neural networks
• implicit regularization: how optimization interacts with statistical

inference

37



Tentative topics

First half: Fundamentals:
• Sparse representation
• Sparse linear regression and model selection
• Sparsity in graphical models
• Compressed sensing and sparse recovery
• Low-rank matrix recovery and matrix completion

Second half: Special topics:
• phase retrieval / solving systems of quadratic equations
• Super-resolution and spectral estimation
• dictionary learning
• Neural networks
• implicit regularization: how optimization interacts with statistical

inference

37



Textbooks

We recommend these two books, but will not follow them closely ...
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Other useful references

• Mathematics of sparsity (and a few other things), Emmanuel Candes,
International Congress of Mathematicians, 2014.

• Sparse and redundant representations: from theory to applications in
signal and image processing , Michael Elad, Springer, 2010.

• Graphical models, exponential families, and variational inference,
Martin Wainwright, and Michael Jordan, Foundations and Trends in
Machine Learning, 2008.

• Introduction to the non-asymptotic analysis of random matrices,
Roman Vershynin, Compressed Sensing: Theory and Applications,
2010.

• Convex optimization, Stephen Boyd, and Lieven Vandenberghe,
Cambridge University Press, 2004.

• Topics in random matrix theory , Terence Tao, American Mathematical
Society, 2012.

More references will be provided at each lecture.
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Prerequisites

• linear algebra
• probability
• a programming language (e.g. Matlab, Python, ...)
• knowledge in basic convex optimization is a plus

• Concentration inequalities and non-asymptotic random matrix
theory
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Grading

• Homeworks (30%): ∼4 problem sets

• Midterm Paper Presentations (20%)
• An in-class presentation on a selected paper from a given pool is

arranged in lieu of the midterm.
• About 20 min each, highlight at least one key result

• Term project (50%)
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Term project

Two forms
• literature review on a research topic (individual)
• original research (can be individual or a group of two)

• You are strongly encouraged to combine it with your own research

Three milestones

• Proposal (March 28): up to 2 pages (NIPS format). Plan early!
• Presentation (last week of class)
• Report (May 14): up to 4 pages with unlimited appendix
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