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Bellman’s optimality principle

Bellman operator

TQs@ = Eir(s,a)] +7 B |maxQ(sa)
—— ,a

immediate reward ;
next state'’s value

e one-step look-ahead

Bellman’s optimality equation: Q* is the unique fixed
point to

T@)=Q"

~-contraction:

17T(Q) — T(Q ) <Q — Q' |l Richard Bellman



Synchronous Q-learning



Synchronous sampling with a generative model

— [Kearns and Singh, 1999]

generative model

For each state-action pair (s,a), at each time ¢ collect

(s,a,s)

Question: How many samples are necessary and sufficient to learn the
optimal policy without worrying about exploration?




Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Stochastic approximation for solving the Bellman equation

Robbins & Monro, 1951
Q=T(Q)
where

TQs0) = 1) +7  E - [maxQ(sa)].

immediate reward ;
next state's value



Q-learning: a classical model-free algorithm

Chris Watkins Peter Dayan

Q-learning [Watkins and Dayan, 1992] proceeds as

Qi+1(s,a) = (1= m)Q¢(s,a) + 1 Te(Qr)(s,a), >0

draw the transition (s,a,s’) for all (s,a)

=Qi(s,a) +n (r(&a) + ymax Qu(s',a') — Qu(s, a))

T(@)(s,@) = (s, 0) + 7 max Q(s, ')

T(Q)(s,a) =7(s,a) + E [max Qs a')}

s/ ~P(:|s,a) a’



Asymptotic convergence

Theorem 1 ([Watkins and Dayan, 1992])

Q-learning converges to the optimal Q-function Q* asymptotically with
probability 1 as long as

o0 o0
Znt = 00, an < 00.
t=1 t=1

e The first condition asks the learning rates to be not too small, while the
second condition ensures that they are not too large.

e Many choices of learning rates satisfy this assumption.

What about the finite-time convergence rate of Q-learning? )




Prior art: achievability

Question: How many samples are needed for ||Q — Q"o < €7

learning rates

sample complexity

paper

Even-Dar & Mansour '03 linear: 1 9Ty %
Beck & Srikant'12 constant: % %
Wainwright '19 rescaled linear: ﬁ %
Chen et al. 20 rescaled linear: ﬁi(l—"/)i (l‘fu)’élgz
constant: (1 — ~)*e? %

Chen et al.'20




A note on the learning rates

Observation: the learning rate schedule n; = % leads to a sample complexity

Dy i L
that scales exponentially in -

e Consider the following MDP with a single state s = 1, a single action
a=1,and r(1,1) =1, P(1|]1,1) = 1. Hence,

Q*(1,1) = .

e The update rule of Q-learning with learning rate n; = % gives

Q+(1,1) = (1 - ) Qe-1(1,1) + % (14+9Q¢-1(1,1))

(1 - 1) Qi 1(1,1)+



A note on the learning rates - continued

e From simple recursive relations, one can easily check that: when v — 1
and t is not too large, one has

Qt—Q*zf[[l—l} Qo — Q]

1_21;”] Q- @]

~[1—(1—7)logt]-[Qo — Q"]

%

1
This essentially implies that one needs to have ¢ 2 29(:=) jterations to

achieve |Q; — Q*| < 3|Qo — Q*].

Consequently, the rescaled linear learning rates or constant learning rates
provide better alternatives.
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Can we close the gap?
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\?‘ %
A SR
sample 4

NS
complexity
(log scale) \)ﬂ‘b
QO
&
N /
& L®
A
3 pl
a-"
boun
inimax \ower
1
> =5 (log scale)
All prior results require sample size of at least %! J

Is Q-learning sub-optimal, or is it an analysis artifact?
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A sharpened sample complexity of Q-learning

Theorem 2 ([Li et al., 2021])
For any 0 < € < 1, Q-learning yields

IQ - Q[ <
with sample complexity at most
5 (_ISIA]
O ——5 -
(@

e Improves dependency on effective horizon ﬁ

o Allows both constant and rescaled linear learning rate:

1
—_— < ’I7t <
a7 =S TGt
L+ 1log2 T L+ zlog2 T
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A curious numerical example

[S1IA|

Numerical evidence: A—n)Te?
!

(Q==(o!"
O

samples seem necessary ...
— observed in [Wainwright, 2019a]

=)
>
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o
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=)
S

sample size per state-action: N

10°
4’)/ _ 1 ——— Q-learning
_ 3 ———- Theory: N < [1,1,’)4
2
Y 10 10 15 20 25 30 35 40
r(0,1) =0, r(1,1)=r(1,2)=1 discount complexity: 155
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Q-learning is not minimax optimal

Theorem 3 ([Li et al., 2021])

For any 0 < e <1, there exist an MDP such that to achieve
|1Q — Q*||loo <€, Q-learning needs at least a sample complexity of

*(asoa)

e Tight algorithm-dependent lower bound

e Holds for both constant and rescaled linear learning rates

a=1
a=2
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Where we stand now

sample
complexity
(log scale)
; ; ; |SIIA
Q-learning requires a sample size of Tor)icz J
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Why is Q-learning sub-optimal?

Over-estimation of Q-functions [Thrun and Schwartz, 1993, Hasselt, 2010]:

e max,ec4 EX(a) tends to be over-estimated (high positive bias) when
EX (a) is replaced by its empirical estimates using a small sample size.

16



Why is Q-learning sub-optimal?

The over-estimation of Q-functions often gets worse with a large number of
actions [Van Hasselt et al., 2016].
B max, Q(s,a) — Vi(s)
m Q'(s, argmax,Q(s, a)) — Vi(s)
number of actions

15
1.0
0.5
0.0 H
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Figure 1: The orange bars show the bias in a single Q-
learning update when the action values are Q(s,a) =
Vi(s) + €, and the errors {¢, }-; are independent standard
normal random variables. The second set of action values
@', used for the blue bars, was generated identically and in-
dependently. All bars are the average of 100 repetitions.

error

X
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Double Q-learning

To mitigate the impact of over-estimation, [Hasselt, 2010] proposed double
Q-learning, which uses two Q-estimates and updates one of them randomly
at each round:

Q'(s,a) = (1= n)Q (s,a) + (r<s7a> +vQQ<s7arng}3XQl<s’,a>>> ’
aec
or

Q*(s,a) = (1 —n)Q*(s,a) +n; (7‘(57(1) + 7Q' (s, argmax QQ(SI,CL))> )

acA

e Decouple the randomness in value updates and action selection.

e Empirically very successful when integrated with deep RL
[Van Hasselt et al., 2016].
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TD-learning: when the action space is a singleton

‘i-

4?)

Richard Sutton

Stochastic approximation for solving Bellman equation V = T (V)

Vis1(s) = (L= me)Va(s) + mTe(Vi)(s)
= Vi(s) + m[r(s) + Vi) = Vils)], £ 0

temporal difference

Te(V)(s) = 7(s) + 4V (s")

TV)s)=r(s)+~y E V()
s/~ P(:]5)
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Sample complexity of TD-learning

Theorem 4 ([Li et al., 2021])
For any 0 < e <1, TD-learning yields

IV =Vl <e

with sample complexity at most
o S|
(—=)

e Near minimax-optimal (matches the minimax lower bound when the
action space is a singleton) without the need of averaging or variance
reduction.

o Allows both constant and rescaled linear learning rate.
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Asynchronous Q-learning

21



Markovian samples and behavior policy

observed: So——>(81—~—S2—~—>83—~—84—~—>85 —;
e k_." N ! ' ! ~_—" (~ A

ao ai az as ay as

mo(-[s0) m([s1) mu(-ls2) mo([s3) mb(-[sa) mo(:[s5)

Y

Iearn: 80— S1— S2 —; 83— S4—; 85—
H H 7 4
/ /

;\_a'l ;\_a', ‘\_al
aop al as as a4
1 T T

T
T (ls0) w(ls1) 7 (|s2) 7 (|sa) 7*(|sa) 7 (lss)

\,

\,
- o -

Observed:  {s;,a;,r7}i>0 generated by behavior policy
—_———

stationary Markovian trajectory

Goal: learn optimal value V* and Q* based on sample trajectory
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Key quantities of sample trajectory

observed: (So——(81——S2—~ >S5 —— 84 ——>85 —
: _al' (\_¢” (\_fll (\_f" (\_f’ \s ‘l,
ao a1 az as ag as
) T D) ) T 1

learn:  (so——(s1

'~ '~ '~ oo ~—e Nt

oF % % F

7*(lso) 7*(ls1) 7*(|s2) 7*(|ss) 7*([sa) 7*(-Is5)

e minimum state-action occupancy probability (uniform coverage)

Hmin := min l’["ﬂ'b(s7a’)
——

stationary distribution

e mixing time: tnix, which captures the time to reach the steady state
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Asynchronous Q-learning

Chris Watkins Peter Dayan

Stochastic approximation for solving Bellman equation @ = T(Q)

Qit1(st,a) = (1 — 1) Qr(s1, ar) +mTe(Qe)(st,a0), >0

only update (s¢,a¢)-th entry

To(@)(s0,a1) = (s, ar) + 7 max Q(ses1, a)

T@Q)(s,a) =r(s,0)+v  E  [maxQ(s',a")

s/~P(lsia) b oo

]
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Q-learning on Markovian samples

observed: (So——>81——S2——> 83— (84 —~—>85 —;
/

m([50) mo(-|s1) mb(-ls2) mo([s3) mu(-[sa) mu(-|ss)

535

~

Q(s,a)

e asynchronous: only a single entry is updated each iteration

e resembles Markov-chain coordinate descent

o off-policy: target policy 7* # behavior policy

bs)

a1) \

(32,

az)
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Sample complexity of asynchronous Q-learning

Theorem 5 ([Li et al., 2022])
Forany 0 <e < ﬁ sample complexity of async Q-learning to yield
|Q — Q*||oo < € is at most (up to some log factor)
1 tmix
/1fmin(1 - 7)552 N .“min(1 - 7)

e The first term can be improved further to m [Li et al., 2021]
for0<e<1.
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A collection of prior art: async Q-learning

Question: how many samples are needed to ensure [|Q — Q*[|o < &7

sample
complexity
5
\SIAl
this work
>|S|| Al
if we take pmin X ﬁ teover X ;’:1';
All prior results require sample size of at least ., |S|?|.A|?! ]
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Effect of mixing time on sample

complexity

1 tmix
+
llfmin(]- - 7)582 ,umin(1 - '7)

o reflects cost taken to reach steady state

e one-time expense (almost independent of ¢)
— it becomes amortized as algorithm runs

Markov Chains
and Mixing Times

Second Edition
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Minimax lower bound

minimax lower bound asyn Q-learning
(Azar et al.’13) (ignoring dependency on tmix)
1 1
Nmin(1 - 'Y)352 Mmin(1 - ’\/)552
Can we improve dependency on discount complexity ﬁ? J
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One strategy: variance reduction

—[Wainwright, 2019b, Li et al., 2022]

Variance-reduced Q-learning updates
Qulsesar) = (1= m)Qu-1(s1,00) + 0 (Ti Q1) =T (@) + T(@) ) (51, 1)
—————
use Q to help reduce variability

e (J: some reference Q-estimate

o« T empirical Bellman operator (using a batch of samples)
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Variance-reduced Q-learning

—[Wainwright, 2019b, Li et al., 2022]

update variance-reduced

Q-learning
)‘)‘)‘)‘
epoch 1 epoch 2 epoch 3

for each epoch
1. update Q and T(Q)

2. run variance-reduced Q-learning updates
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Main result: /..-based sample complexity

Theorem 6 ([Li et al., 2022])

For any 0 < e < 1, sample complexity for (async) variance-reduced
Q-learning to yield ||Q — Q* |« < ¢ is at most on the order of
1 t ix
5+ —F~
.umin(1 - 7)‘ € .LLmin(1 - ’Y)

a7 -y 1 }
2 7 Emix

e more aggressive learning rates: n; = min{

e minimax-optimal for 0 < e <1
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