Yuejie Chi

Department of Electrical and Computer Engineering

Carnegie Mellon University

Spring 2023

Many materials of this lecture are adapted/stolen from David Silver's online lecture.

Outline

Monte Carlo policy evaluation

Temporal difference (TD) learning

Off-policy evaluation via importance sampling

Two approaches to RL

o model | P,
T (e, P e mISIMINISY) ‘\ﬁfﬁ‘;e

model-based :

/
I
samples value function
(experience) policy
4 54

Model-based approach (“plug-in”)
1. build an empirical estimate P for P
2. planning based on empirical P

Model-free approach
— learning w/o constructing model explicitly

Value function and Q-function

To T1 T2 T3 T4 s

VW(S()) ’_WL.S.I_‘th?_')L' 8'3—‘|—> S:;—‘L>85—‘I—> oo
\, ’ \, ;’ N, / «’ /‘ A /’

~— - '~ Moo o N
ag ay az ag as as
T2 T3 T4 T5
S(),ao .—I—‘sl—l—>32—|—>33—|—>84—|—>s5—|—>
(lg a1 az a3 a4 a5

Value function of policy 7: cumulative discounted reward

> Ar(sean) | so = S]

t=0

VseS: VT(s):=E

Q-function of policy :

o

V(s,a) eSxA: Q7 (s,a):=E

t=0

t
g fyrt‘sozs,a,o:a

|

Recap: Bellman’s consistency equation

e V7™ /QT: value / action-value function under policy 7

Bellman’s consistency equation

V7(5) = Eqnn(1s) [Q7 (s, 0)]
Q"(s,0) = Eb(s,)] +9 B | V(s |
N—— s ~——

'~ P(:]s,a)
immediate reward next state’s value

The value/Q function can be decomposed into two
parts:

e immediate reward E [r(s, a)]

e discounted value of at the successor state
'VES’NP(~|s,a)V(S/)

Richard Bellman

Monte Carlo policy evaluation

Monte Carlo policy evaluation

To 1 T2 T3 T4 5
So ’—I—’81—|—> —L>53—|—>54—|—>35_|_.
ao ;lf dz‘ a3’ a4' &5
ro r1 T2 T3 T4 s
Q 30,‘10 ’_I_‘ —I—>Sz—|—>53—|—>s4—|—>55_|_.
F A

Monte Carlo (MC) learns directly from experience by replacing the
expectation by empirical means.

e Sample trajectories according to .

e Calculate the value using empirical means.

Monte Carlo policy evaluation

Consider a trajectory rolled out by following policy 7:

50,@0,70,51,Q1,71,---,

The return or reward-to-go from time ¢ is

Gt =7+ YTri41 + ’}/27"t+2 ceen
o V7™ (s) = E[G¢|s: = s];

Idea: to evaluate state s, average the reward-to-gos from time-steps that
visit state s over many trajectories.

Zt Latisg=s s

Vi~ 5=

First-visit versus Every-visit

First-visit Monte Carlo:
For each episode, at the first time-step ¢ that state s is visited in an episode.

e Increase the counter N(s) + N(s) +1
e Increase the total return S(s) < S(s) + Gy
e Value is estimated by mean return: V(s) = S(s)/N(s)

Less bias, more variance

Every-visit Monte Carlo:
For each episode, at the every time-step ¢ that state s is visited in an
episode.

e Increase the counter N(s) < N(s) +1
e Increase the total return S(s) « S(s) + G
e Value is estimated by mean return: V(s) = S(s)/N(s)

More bias, less variance

Example: blackjack Monte-Carlo value estimation

After 10,000 episodes After 500,000 episodes

No
usable
ace

Policy: stick if sum of cards > 20, otherwise twist.

Incremental Monte Carlo update

The Monte-Carlo value update can be done in an incremental manner to
facilitate implementation.

N(st) + N(s) +1

V(St) < V(St) + (Gt — V(St))

Lt
N(st)

incremental update

The value V (s;) is updated towards the actual return G.

This motivates a more general scheme, which is beneficial specially in
non-stationary problems, that one simply does

Vi(st) < V(st) +a(Gy —V(sy)),

where « is the learning rate to enable more flexible trade-off between past
and future (e.g., forgetting faster when o > N(St))

10

Dynamic programming versus Monte Carlo

Monte Carlo does not require nor use the Markovian structure.

LA R

Dynamic programming Monte Carlo
bootstrapping sampling

Caveat of Monte Carlo methods:
e Must wait until the episode to end to calculate the reward-to-go.
e Can only be applied to MDPs when each episode terminates.

e Generally incurs a high variance, but consistent under mild conditions.

11

Temporal difference (TD) learning

12

Temporal difference (TD) learning

«
“If one had to identify one idea as central and . e *'
novel to RL, it would undoubtedly be TD learning.” «‘g’

Richard Sutton

Temporal difference (TD) learning

e combines dynamic programming and Monte Carlo, by bootstrapping and
sampling simultaneously

e |earns from incomplete episodes, and does not require the episode to
terminate

e “updates a guess towards a guess”

13

TD learning for value evaluation

e In Monte Carlo, updating the value towards the return:

V(st) < V(st) +a(Gr —V(st))

e Instead, TD updates V(S;) towards estimated return 7, + vV (s441)

V(se) = Vo) +a (1 9V (s01) =Visi))

TD target

TD error

e TD target r: + YV (st+1): sampling + bootstrapping
e TD error 0; =1t + YV (st41) — V(st)

14

TD-learning as stochastic approximation

Stochastic approximation [Robbins and Monro, 1951] for solving Bellman
equation

V=T V),
where the Bellman operator 77 : RISI — RISI is defined as
vV e RISI: T™(V)=r" +~yP"V.

o Access a stochastic realization of 77 (V):
T (V)(st) = re + 9V (s¢41)
e Update V(s;) by a weighted combination of old and new:
Vi(st) = (L= a)V(se) +aT,7(V)(s1)
=V(st) +a|re + YV (si41) — V(se)|, t>0

temporal difference

15

DP versus MC versus TD

Dynamic programming Monte Carlo
bootstrapping sampling bootstrapping-+sampling

e TD has much lower variance than MC because of bootstrapping.
e TD learn on-the-fly because of bootstrapping.

16

Example: random walk

B—®-—-~0~~0~—~EO—0
start

0.25

0.2 %)

RMS error, 0-157]
averaged
over states 0.1

0.05+

Walks / Episodes

17

n-step TD

Let the TD target look n steps into the future
VT (s) = E[ri + YV (s141)|5: = 5]
=E[ri +yrg1 + 7V (s42) |50 = 5]

(one-step bootstrap)
(two-step bootstrap)

Monte Carlo

18

n-step TD

The n-step return:
ng) =71+ oo+ YV (St4n)

e n=1: TD target
e n=o00: MC target

The n-step TD learning;:

V(se) «+— V(st) + « (G,(fn) —V(st))
—_— ——
TD error

e Mix-and-match: combine information over different n as the TD target,
e.g. using

1 (o 1 (3
§G§)+§G§).

19

From n-step TD to TD()\)

Can we efficiently combine information from all time-steps?

The A-return G combines all n-step

TD(A), A-return returns using weight (1 — A\)A"~1:
E Gy =(1-2\ Zv Gy
1 ca
where X € [0, 1].
(-2
The forward-view TD()\):
2
(= : V(sy) < V(s) +a(Gr —V(sy))
. —_——
Z: 1 " L TD error
P Update towards the A-return.

20

Forward-view TD()\)

weight given to
the 3-step retum totalarea = 1

weight given to
actual, final retum

GA _ (1 o)\) Z)\n,Ing) Weight 1_;

n=1

OFF-LINE
A-RETURN

RMS error, a5
averaged over)
first 10 episodes | ©"

21

From forward-view TD()\) to backward-view TD()\)

Forward-view TD(\):
e Like MC, requires the episode to terminate to compute G?.

Can we have TD(A) run on-the-fly? \

22

Eligibility traces

Credit assignment: most frequent or most recent

Eligibility traces combine both heuristics:

Ei(s) =yA\Ei—1(s) + I(s; = s), with Eg(s) =0

accumulating eligibility trace

times of visits to a state

23

Backward-view TD()\)

o Keep an eligible trace for every state s

e Update value V(s) for every state s, in proportional to TD-error
0t = rr41 + YV (St41) — V(s¢) and eligibility trace Ey(s):

V(s) < V(s) + ad:Ey(s)

When A =0, E:(s) =I(s; = s), and it reduces to TD(0), the basic TD.

24

Equivalence of forward/backward-view TD()\)

o Consider episodic environments (episode length T')

Theorem 1

The sum of updates is identical for forward-view and backward-view TD(\)

Zoa;tEt ZaG —V(s))(sy = s)

backward updates forward updates

e Forward view provides theory

e Backward view provides mechanism

25

Forward /backward-view TD()\)

Consider an episode where s is visited once at time-step k.

e TD(A) eligibility trace discounts time since visit,

0, t<k

Ei(s) = yAE-1(s) +1(s; =) = {(M)t—k t>k

e Backward TD()) updates accumulate error online:

T T
Z adi By (s az ANRS, = a (GA V(sk))
t=1 t=k

e By end of episode it accumulates total error for A-return

26

Telescoping in TD()\)

TD errors telescope to A-error (check!),

8t 4+ (YA)des1 4+ (YA)?brg2 + - -
=1+ 7V (st41) — V(se)
+ (Y11 Y (YA V (8142) — YAV (S241)
+ (YA rig2 +Y(YA)?V (s143) — (FA)*V (se42) + - ..
= —V(st) + (1 = M)A (re + 9V (s141))

+ (1= A (e + 971 + YV (s142))
+ (1 —)\))\2(7”1 + Y41 + '727‘t+2 + ’}/3V(St+3)) + -
=G} —V(s1)
where -
Gi\ = (1 — A) Z)\n—l [T‘T, =+ YTri41 + ...+ ’ynV(StJ’,n)} .
n=1

27

Off-policy evaluation via importance sampling

28

Off-policy evaluation

Sometimes we are interested in evaluating policy 7 different from behavior
policy p.
e Learn from observing humans or
other agents

e Re-use experience generated from
old policies

e Learn about optimal policy while
following exploratory policy

e Learn about multiple policies
while following one policy

Can we adapt our ideas so far to off-policy evaluation? J

29

Importance sampling

Reevaluation an expectation over one distribution to another:

Ex~r[f(X)] = 3 P(X)f(X)
B P(X)
=Y e g)
P(X)

= x| g 7]

P(X)

Q(X)

o Allows evaluating a policy 7 (drawn from P) when sampling from
another policy u (drawn from Q).

e The importance weights:

30

Importance sampling for off-policy Monte Carlo

Multiply importance sampling corrections along whole episode:

Gr/m — m(ae|se) m(aii1]si41) W(CLT|5T)G
pH =
plaglse) plaglsit1) plarlst)

t

Update value towards corrected return:
Viss) « Vi(st) +a (Gf/“ - V(st)>

m(als)
wn(als)
m(als)

n(als)

e High variance when is large

e Does not apply when
target policy 7

is zero: behavior policy © does not cover the

31

Importance sampling for off-policy TD

e Weight TD target by importance sampling [Precup et al., 2001]

m(ag|st)
p(ailst)

V(s) = Vise) +a =20+ 4V (s141) = Vi)

e Lower variance than Monte-Carlo importance sampling

32

References |

[

B

Precup, D., Sutton, R. S., and Dasgupta, S. (2001).
Off-policy temporal-difference learning with function approximation.
In ICML, pages 417-424.

Robbins, H. and Monro, S. (1951).
A stochastic approximation method.
The annals of mathematical statistics, pages 400-407.

33

	Monte Carlo policy evaluation
	Temporal difference (TD) learning
	Off-policy evaluation via importance sampling

