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Two approaches to RL

Model-based approach (“plug-in”)
1. build an empirical estimate P̂ for P
2. planning based on empirical P̂

Model-free approach
— learning w/o constructing model explicitly

2



Value function and Q-function

Value function of policy π: cumulative discounted reward

∀s ∈ S : V π(s) := E

[ ∞∑
t=0

γtr(st, at)
∣∣ s0 = s

]
Q-function of policy π:

∀(s, a) ∈ S ×A : Qπ(s, a) := E

[ ∞∑
t=0

γtrt
∣∣ s0 = s, a0 = a

]
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Recap: Bellman’s consistency equation

• V π /Qπ: value / action-value function under policy π

Bellman’s consistency equation

V π(s) = Ea∼π(·|s)
[
Qπ(s, a)

]
Qπ(s, a) = E[r(s, a)]︸ ︷︷ ︸

immediate reward

+ γ E
s′∼P (·|s,a)

[
V π(s′)︸ ︷︷ ︸

next state’s value

]

The value/Q function can be decomposed into two
parts:

• immediate reward E [r(s, a)]
• discounted value of at the successor state
γEs′∼P (·|s,a)V (s′)

Richard Bellman
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Monte Carlo policy evaluation
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Monte Carlo policy evaluation

Monte Carlo (MC) learns directly from experience by replacing the
expectation by empirical means.

• Sample trajectories according to π.
• Calculate the value using empirical means.
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Monte Carlo policy evaluation

Consider a trajectory rolled out by following policy π:

s0, a0, r0, s1, a1, r1, . . . ,

The return or reward-to-go from time t is

Gt = rt + γrt+1 + γ2rt+2 . . . .

• V π(s) = E[Gt|st = s];

Idea: to evaluate state s, average the reward-to-gos from time-steps that
visit state s over many trajectories.

V (s) ≈
∑
t:st=sGt∑
t:st=s 1
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First-visit versus Every-visit

First-visit Monte Carlo:
For each episode, at the first time-step t that state s is visited in an episode.

• Increase the counter N(s)← N(s) + 1
• Increase the total return S(s)← S(s) +Gt

• Value is estimated by mean return: V (s) = S(s)/N(s)
Less bias, more variance

Every-visit Monte Carlo:
For each episode, at the every time-step t that state s is visited in an
episode.

• Increase the counter N(s)← N(s) + 1
• Increase the total return S(s)← S(s) +Gt

• Value is estimated by mean return: V (s) = S(s)/N(s)
More bias, less variance

8



Example: blackjack Monte-Carlo value estimation

Policy: stick if sum of cards ≥ 20, otherwise twist.
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Incremental Monte Carlo update

The Monte-Carlo value update can be done in an incremental manner to
facilitate implementation.

N(st)← N(st) + 1

V (st)← V (st) + 1
N(st)

(Gt − V (st))︸ ︷︷ ︸
incremental update

The value V (st) is updated towards the actual return Gt.

This motivates a more general scheme, which is beneficial specially in
non-stationary problems, that one simply does

V (st)← V (st) + α (Gt − V (st)) ,

where α is the learning rate to enable more flexible trade-off between past
and future (e.g., forgetting faster when α > 1

N(st) ).
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Dynamic programming versus Monte Carlo

Monte Carlo does not require nor use the Markovian structure.

Dynamic programming Monte Carlo
bootstrapping sampling

Caveat of Monte Carlo methods:
• Must wait until the episode to end to calculate the reward-to-go.
• Can only be applied to MDPs when each episode terminates.
• Generally incurs a high variance, but consistent under mild conditions.
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Temporal difference (TD) learning
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Temporal difference (TD) learning

“If one had to identify one idea as central and
novel to RL, it would undoubtedly be TD learning.”

Richard Sutton

Temporal difference (TD) learning
• combines dynamic programming and Monte Carlo, by bootstrapping and

sampling simultaneously
• learns from incomplete episodes, and does not require the episode to

terminate
• “updates a guess towards a guess”
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TD learning for value evaluation

• In Monte Carlo, updating the value towards the return:

V (st)← V (st) + α (Gt − V (st))

• Instead, TD updates V (St) towards estimated return rt + γV (st+1)

V (st)←− V (st) + α
(
rt + γV (st+1)︸ ︷︷ ︸

TD target

−V (st)
)

︸ ︷︷ ︸
TD error

• TD target rt + γV (st+1): sampling + bootstrapping
• TD error δt = rt + γV (st+1) − V (st)
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TD-learning as stochastic approximation
Stochastic approximation [Robbins and Monro, 1951] for solving Bellman
equation

V = T π(V ),
where the Bellman operator T π : R|S| 7→ R|S| is defined as

∀V ∈ R|S| : T π(V ) = rπ + γPπV.

• Access a stochastic realization of T π(V ):

T πt (V )(st) = rt + γV (st+1)

• Update V (st) by a weighted combination of old and new:

V (st)← (1− α)V (st) + αT πt (V )(st)

= V (st) + α
[
rt + γV (st+1)− V (st)

]
︸ ︷︷ ︸

temporal difference

, t ≥ 0
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DP versus MC versus TD

Dynamic programming Monte Carlo TD learning
bootstrapping sampling bootstrapping+sampling

• TD has much lower variance than MC because of bootstrapping.
• TD learn on-the-fly because of bootstrapping.
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Example: random walk
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n-step TD
Let the TD target look n steps into the future

V π(s) = E
[
rt + γV π(st+1)|st = s

]
(one-step bootstrap)

= E
[
rt + γrt+1 + γ2V π(st+2)|st = s

]
(two-step bootstrap)

= · · ·
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n-step TD

The n-step return:

G
(n)
t = rt + γrt+1 + . . .+ γnV (st+n)

• n = 1: TD target
• n =∞: MC target

The n-step TD learning:

V (st)←− V (st) + α
(
G

(n)
t − V (st)

)︸ ︷︷ ︸
TD error

• Mix-and-match: combine information over different n as the TD target,
e.g. using

1
2G

(2)
t + 1

2G
(3)
t .
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From n-step TD to TD(λ)

Can we efficiently combine information from all time-steps?

The λ-return Gλt combines all n-step
returns using weight (1− λ)λn−1:

Gλt = (1− λ)
∞∑
n=1

λn−1G
(n)
t

where λ ∈ [0, 1].

The forward-view TD(λ):

V (st)← V (st) + α (Gλt − V (st))︸ ︷︷ ︸
TD error

Update towards the λ-return.
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Forward-view TD(λ)

Gλt = (1−λ)
∞∑
n=1

λn−1G
(n)
t

Example: forward-view TD(λ) on random walk
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From forward-view TD(λ) to backward-view TD(λ)

Forward-view TD(λ):
• Like MC, requires the episode to terminate to compute Gλt .

Question
Can we have TD(λ) run on-the-fly?
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Eligibility traces

Credit assignment: most frequent or most recent

Eligibility traces combine both heuristics:

Et(s) = γλEt−1(s) + I(st = s), with E0(s) = 0
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Backward-view TD(λ)

• Keep an eligible trace for every state s
• Update value V (s) for every state s, in proportional to TD-error
δt = rr+1 + γV (st+1)− V (st) and eligibility trace Et(s):

V (s)← V (s) + αδtEt(s)

When λ = 0, Et(s) = I(st = s), and it reduces to TD(0), the basic TD.
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Equivalence of forward/backward-view TD(λ)

• Consider episodic environments (episode length T )

Theorem 1
The sum of updates is identical for forward-view and backward-view TD(λ)

T∑
t=1

αδtEt(s)︸ ︷︷ ︸
backward updates

=
T∑
t=1

α(Gλt − V (st))I(st = s)︸ ︷︷ ︸
forward updates

• Forward view provides theory

• Backward view provides mechanism
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Forward/backward-view TD(λ)

Consider an episode where s is visited once at time-step k.
• TD(λ) eligibility trace discounts time since visit,

Et(s) = γλEt−1(s) + I(st = s) =
{

0, t < k

(γλ)t−k, t ≥ k

• Backward TD(λ) updates accumulate error online:

T∑
t=1

αδtEt(s) = α

T∑
t=k

(γλ)t−kδt = α
(
Gλk − V (sk)

)
• By end of episode it accumulates total error for λ-return
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Telescoping in TD(λ)

TD errors telescope to λ-error (check!),

δt + (γλ)δt+1 + (γλ)2δt+2 + · · ·
= rt + γV (st+1)− V (st)
+ (γλ)rt+1 + γ(γλ)V (st+2)− γλV (st+1)
+ (γλ)2rt+2 + γ(γλ)2V (st+3)− (γλ)2V (st+2) + . . .

= −V (st) + (1− λ)λ0(rt + γV (st+1))
+ (1− λ)λ1(rt + γrt+1 + γ2V (st+2))
+ (1− λ)λ2(rt + γrt+1 + γ2rt+2 + γ3V (st+3)) + · · ·

= Gλt − V (st)

where

Gλt = (1− λ)
∞∑
n=1

λn−1 [rt + γrt+1 + . . .+ γnV (st+n)] .
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Off-policy evaluation via importance sampling
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Off-policy evaluation

Sometimes we are interested in evaluating policy π different from behavior
policy µ.

• Learn from observing humans or
other agents

• Re-use experience generated from
old policies

• Learn about optimal policy while
following exploratory policy

• Learn about multiple policies
while following one policy

Can we adapt our ideas so far to off-policy evaluation?
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Importance sampling

Reevaluation an expectation over one distribution to another:

EX∼P [f(X)] =
∑

P (X)f(X)

=
∑

Q(X)P (X)
Q(X)f(X)

= EX∼Q
[
P (X)
Q(X)f(X)

]

• The importance weights: P (X)
Q(X)

• Allows evaluating a policy π (drawn from P ) when sampling from
another policy µ (drawn from Q).
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Importance sampling for off-policy Monte Carlo

Multiply importance sampling corrections along whole episode:

G
π/µ
t = π(at|st)

µ(at|st)
π(at+1|st+1)
µ(at+1|st+1) · · ·

π(aT |sT )
µ(aT |sT )Gt

Update value towards corrected return:

V (st)← V (st) + α
(
G
π/µ
t − V (st)

)
• High variance when π(a|s)

µ(a|s) is large

• Does not apply when π(a|s)
µ(a|s) is zero: behavior policy µ does not cover the

target policy π
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Importance sampling for off-policy TD

• Weight TD target by importance sampling [Precup et al., 2001]

V (st)←− V (st) + α
(π(at|st)
µ(at|st)

(rt + γV (st+1))− V (st)
)

• Lower variance than Monte-Carlo importance sampling
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