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Planning: when the MDP model is known
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e.g. policy iteration

Planning: find the optimal policy 7* given MDP specification



Reinforcement learning (RL)
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Learning
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Learning: learn a desired policy from samples w/o model specification



Two approaches to RL
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Model-based approach (“plug-in”)
1. build an empirical estimate P for P
2. planning based on empirical P

Model-free approach
— learning w/o constructing model explicitly



A taxonomy of RL approaches

Value Function

Value-Based

—Credit: David Silver’s slide



RL with a generative model



Motivation: study sample efficiency

Collecting data samples might be expensive or time-consuming

P ——

clinical trials autonomous driving online ads

Understand and design of sample-efficient RL algorithms!



Data source in RL

> Exploration

: A A&ﬁ

offline RL online RL generative model

The capability of exploration increases from left to right.

This lecture: generative model / simulator )




RL with a generative model / simulator

— [Kearns and Singh, 1999]

gewnerative model

Protocol: for any state-action pair (s,a), we can probe the simulator to
output the next state s’.

We focus on the transition kernel and assume the reward is known or fixed,
since the transition kernel captures the harder aspect of the problem.



RL with a generative model / simulator

— [Kearns and Singh, 1999]

generative model

For each state-action pair (s, a), collect N samples

{(s,a,80;)) h<icn

Question: How many samples are necessary and sufficient to solve the RL
y p M
problem without worrying about exploration?
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Model estimation under the generative model

generative model

For each (s, a), collect N independent samples {(s,a, s(;)) h1i<i<n

N
~ 1
Empirical estimates: estimate P(s'[s,a) by ¥ Z]l{szi) =s'}
i=1

empirical frequency
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Model-based (plug-in) estimator

— [Azar et al., 2013, Pananjady and Wainwright, 2020, Agarwal et al., 2020]

/empirical MDP \

H E B
[ | n
[ | - | =
=B Phnee [§— 7
H EH R
[ | n
.- . e.g. policy iteration
H B R
| m

Kempirical P r/

Run planning algorithms based on the empirical MDP
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Questions

l+-sample complexity: how many samples are required for

1) evaluate an e-accurate policy ?

Vs: |\//\"T (s)=V7(s) | <e

2) learn an e-optimal policy ?

Vs: VT (s) >V*(s)—¢
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Model-based policy evaluation
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Minimax lower bound

Theorem 1 (minimax lower bound; [Pananjady and Wainwright, 2020])

Fix a policy . For all € € [0, 5 7) there exists some MDP such that the
total number of samples need to be at least

(k)

to achieve ||Q — Q|0 < &, where Q is the output of any RL algorithm.

o Consider the relative accuracy e, by setting ¢ := E'e' , the lower bound
can be equivalently expressed as
~ S||A
a( 54 ),
(1 - ’Y)grel
e much smaller than the model dimension |S|?|.4| — hint at the

possibility of evaluating the policy without estimating the model reliably!
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Challenges in the sample-starved regime

| H B
[ |
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truth: P e RISIAIXISI empirical estimate: P

o Can't recover P faithfully if sample size < |S|?|Al!

e Can we trust our policy estimate when reliable model estimation is
infeasible?
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Recall: Bellman’s consistency equation

e V7™ /QT: value / action-value function under policy 7

Bellman’s consistency equation

V7(5) = Eqnn(1s) [Q7 (s, 0)]

Q(s,a)= r(sa) +v E | V() ]
N—— s'~P(-|s,a) ——
immediate reward next state’s value

The value/Q function can be decomposed into two
parts:

e immediate reward E [r(s, a)]

e discounted value of at the successor state
'VES’NP(~|s,a)V(S/)

Richard Bellman
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Policy evaluation for state-action function

Matrix-vector representation:

Q"(s,a) =7(s,a) +v E [Q"(s", )]

s'~P(-|s,a),a’~7(-|s")
)
)
QT( _ (I o ,YPTI')flr
e Here, P™ is the state-action transition matrix induced by 7, namely,

P7(s',d |s,a) = P(s'|s,a)n(d'|s).
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Sample complexity for plug-in policy evaluation

Model-based plug-in estimate:
@\w — (I _ ,_yﬁﬂ')—l

Theorem 2 ([Pananjady and Wainwright, 2020])

Fix any policy m. For(0 < e < \/7 the plug-in estimator Q’T obeys
Q™ = Q7o <&

with sample complexity at most

o=z
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A sample size barrier

A
sample
complexity

ISIA]

|SIIA|
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7
A le size barrier /21AL d in pri k
L] sample size bparrier ) appeared In prior Works

[Azar et al., 2013, Pananjady and Wainwright, 2020]
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Refined analysis

Model-based plug-in estimate:
Q" =1 —~P™)"r

Theorem 3 ([Li et al., 2020])

Fix any policy . For0 < e < ﬁ the plug-in estimator @“ obeys

10 - Q7lle <<
with sample complexity at most
5( IS]1A| )
(1 )e?

e Minimax optimal for all e [Azar et al., 2013, Pananjady and Wainwright, 2020].
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Analysis: crude idea

e We'll demonstrate a crude version based on Hoeffding's inequality.

Q =(—P) ', QT =(—yP)r
Useful expansion:
Q"-Q"=(I- vﬁ”)‘lr — (I =yP™)"tr
= (I =P (I =P") = (1 =7P7)) Q"
— (I —yP")~ 1(P — PTQ"
-
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Analysis: Hoeffding’s inequality

By Hoeffding's inequality and union bound, with probability at least 1 — 4,

210g(2/S||A|/6)

HUS_P)W oo = N(1—7)2

Then, using (I —713”)_1 =20 71(1377)1

(=P~ (P - PV

"(P-P)VT™

o o0

oo

2log(2|S]A[/3)

<7 P P)V™
H V| =7 N(1— )

S1—4

23



Analysis: variance control + a peeling argument

e Better concentration with variance control: Bernstein's inequality

e Going beyond the 1lst-order error expansion

~

er _Qﬂ :,Y(I_,Ypﬂ)_l(ﬁﬂ' _Pﬂ)@ﬂ

Instead: higher-order expansion — tighter control

~

QTF o QTK‘ — ’Y(I o ,Ypﬂ)*l(ﬁﬂ' o Pﬂ')Qﬂ'+
~ 2
+92 (=P (P = P)) Q"
+ 73((1 —yP) (P - P”))BQ”
+ ...
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Model-based policy learning
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Minimax lower bound

Theorem 4 (minimax lower bound; [Azar et al., 2013])

For all € € [0, there exists some MDP such that the total number of

samples need to ze at least
& (_ISIIAl
(I —7)%?

to achieve H@ — Q"o < &, where @ is the output of any RL algorithm.

e holds for both value-based and policy-based algorithms.

e much smaller than the model dimension |S|?|.4| — hint at the
possibility of solving RL without estimating the model reliably!
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Sample complexity for learning Q*

Theorem 5 ([Azar et al., 2013])

For any 0 < e < 1, the optimal Q-function @ of the empirical MDP achieves

10— Qo <<

with sample complexity at most 9] ((1|ﬂy‘;§|52 )

e matches with the minimax lower bound whenever ¢ € (0, 1].

e Question: Does it imply a near minimax-optimal policy 7?
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From Q-function to policy

Lemma 6 ([Singh and Yee, 1994])
Let the greedy policy w.r.t. @ be 7, then

Ut _2 ior_pH
-

= ﬁ:Greedy(@) . _ €
‘ncz—cz*nmsel v v

This error amplification has consequences in sample complexities.
e To reach e-optimality, the greedy policy of a minimax-optimal

Q-function estimator needs
~ |S||Al
O ——————
((1 —7)%e?

samples invoking the above naive argument. Need refined arguments!



Theory of model-based policy learning

Theorem 7 ([Agarwal et al., 2020])
Forany 0 <e < \/7 the optimal policy 7 of the empirical MDP achieves

V™ = V¥l <€

with sample complexity at most
5 (_ISIIA
(=)=

IEQ) [Azar et al., 2013] when

e Matches with the lower bound (NZ((FHA

1
€€ (O, ﬁ]
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A sample complexity barrier

sample
. A
complexity

\:%'
S]1A| °
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— 3 0
e

------ - &
--------------------------- 0(\
(|18_||:‘)| A/garwal M}
4 \°
7 \«“

|S|IA]
(1—7)?

sample size barrier 30

All prior theory requires sample size >




Is it possible to close the gap?



Model-based plug-in estimator + perturbation

— [Li et al., 2020]

[ empirical MDP \ / \
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H N || H N B planning ﬂ;
|| | N | :> || | oracle
| [ | | ]
um [ | .... = e.g. policy iteration
H BN
| | B B
empirical P T empirical P Tp

Planning based on the empirical MDP with slightly perturbed rewards
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Refined theory of model-based policy learning

Theorem 8 ([Li et aI., 2020])

For any 0 < ¢ < 1=, the optimal policy 7}, of the perturbed empirical MDP
achieves

V™ =Vl < €

with sample complexity at most

o(55)

° 7r : obtained by empirical VI or Pl within O( ) iterations

e Minimax lower bound: Q((l‘sgé‘ ) [Azar et al., 2013]
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sample

complexity
Q)
~
&%' //
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Model-based RL is nearly minimax optimall!
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Notation and Bellman equation

V™ true value function under policy ™
e Bellman equation: V™ = (I —yP;)"'r

V™ estimate of value function under policy m
e Bellman equation: V7 = 4 fvﬁﬁ)flr

7 optimal policy w.r.t. true value function
7*: optimal policy w.r.t. empirical value function

* .
V*:=V7™ : optimal values under true models

V*:= V™ : optimal values under empirical models
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Proof ideas

Elementary decomposition:

VeV = (V) (VT e (VT -V
< (VT =V 404+ (VT —VT)

e Step 1: control V7™ — V™ for a fixed
(Bernstein inequality + high-order decomposition)

e Step 2: extend it to control veo—vyr (7* depends on samples)
(decouple statistical dependency via leave-one-out
analysis and reward perturbation)
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