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Policy improvement

Finding the optimal policy of MDPs



Infinite-horizon Markov decision process (MDP)

= (Staat
“~"1 environment [« —

next state
se+1 ~ P([st,ar)

S: state space

e A: action space

r(s,a) € [0, 1]: immediate reward

m(-|s): policy (or action selection rule), deterministic or random

e P(-|s,a): transition probabilities



Value function and Q-function
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Value function of policy m: cumulative discounted reward

=E Z'ytr(st,at) | S0 = s]
t=0

VseS: V7™(s)

Q-function of policy :

V(s,a) eSxA: Q7 = lZvrtho—saoa

=E[r(s,a)] + Egopils,a)V " (s)



Basic tasks

Policy evaluation:

e given a policy m, how good is it?

Policy improvements:

e given a policy m, can we find a better one?

Policy optimization:
e can we find the best policy for the given MDP?



Planning versus learning

Reinforcement
Learning

AnIntroduction
second edition

Dynamic Programming
and Optimal Control

DIMITRI P. BERTSEKAS

Richard S. Sutton and Andrew G Barto / /77

-------

e Planning: solve for a desired policy given model specification
e Learning: learn a desired policy from samples w/o model specification
We'll focus on planning first.



Policy improvement



Partial ordering of policies

Definition 1 (Partial ordering)

Define a partial order over policies: denote

©>r if VseS, V7 (s)>V7(s).

e The policy ' is an improvement over 7 since it improves its value in all
states.

Given a policy m, how to find an improved
policy?




Policy improvement via one-step look-ahead

Given the Q-function Q™ of some policy .

At each state s, can we identify an action a such that

Q"(s,a) 2 V7(s)?

e taking action a at state s leads to a higher cumulative reward than
following policy .



Policy improvement theorem

Theorem 2 (Policy improvement theorem)

Choose some stationary policy w, and let ' be a deterministic policy such
that

Vs e S, Q" (s,7'(s)) > V7 (s).

’ . . .
Then V™ > VT, ie., ©' is an improvement over 7.

e Define the greedy policy w.r.t. some @ as

g = Greedy(Q), ie. wgo(s)=arg max Q(s,a).

e The greedy policy 7’ = Greedy(Q™) w.r.t. Q™ is an improvement over 7

Q" (s,7'(s)) = max Q" (s,a)

> Z $)Q7(s,a) =V7(s) = VT >y
acA



Proof of policy improvement theorem

For each state s € S,
V7™(s) < Q" (s,7'(s))
E [r(s0, 7 (50)) + V™ (s1)| s0 = 5,00 = 7'(s)]
E [r(so, 7 (s0)) +7Q™ (s1,7(s1))| 50 = 5,00 = 7'(s)]
[T(So’ 7'(s0)) + yr(s1, 7 (s1)) + ¥V (s2)| 50 = 5,00 = 7'(5)]

IN

< E [r(s0,7(s0)) +vr(s1,7(51)) +7°r(s2, 7 (s2)) + -+ | 50 = 3]
<V(s)

One-step improvement leads to value increase.
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Finding the optimal policy of MDPs

11



Optimal value and optimal policy

e optimal value / Q function:
V*(s) :=max V7" (s), Q*(s,a) :=max Q" (s,a)

where the search is over all policies possibly non-stationary and random.

e optimal policy 7*: the policy that maximizes the value function.
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Optimal policy: existence

Lemma 3 ([Bellman, 1952])

For infinite-horizon discounted MDPs, there always exists a stationary and
deterministic policy ©*, such that for all s € S, a € A,

*

V™ (s) = V*(s), Q™ (s,a) = Q*(s,a).

e Using stationary and deterministic policies suffices.
e See [Agarwal et al., 2019] for a proof.
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Bellman’s optimality equations

Theorem 4 (Bellman’'s optimality equations)

The optimal value/Q functions are unique and related via

V*(s) = max Q*(s,a),

ac

Q*(Sv (I) = E[T(S7 a)] + VES'NP(»|s,a)V*(S/)'

Furthermore, m* = 7o~ = Greedy(Q*) is an optimal policy (tie-breaking
arbitrarily).

e Knowing the optimal Q-function allows us to find the optimal policy.

e The optimal values are unique, but the optimal policy is not necessarily
unique.
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Proof of Bellman’s optimality equations

Proof of V*(s) = max,ec4 @*(s,a):
V*(s) = max V7" (s)
= Inf?X E(LNW(.|S)[QW(S, a)}
<maxEyr(.)s)[Q"(s,a)]

_ *
= max Q*(s,a).

On the other end, for any a € A, consider the (possibly non-stationary)
policy that first takes action a and then follows 7*. It follows that

V*(s) > Q™ (s,a) = Q*(s,a).
This implies, by the arbitrariness of a,

V*(s) > max Q*(s,a).
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Proof of Bellman’s optimality equations

Proof of Q*(s,a) = E[r(s,a)] + YEy~p(|s,a)V*(5):

Q*(s,a) =max Q™ (s,a)
=max |E[r(s,a)] + VEy < p(|s,0) V" (5")
r(s,a)] + 7 max ES/NP("S,Q)VW(SI)

(s, a)] + VEg o p(s,a)V*(s")
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Bellman’s optimality principle

Bellman operator

T(Q)(s,a) := E[r(s,a)] +~ E [maXQ(s’,a’)
———

#~P(|s.a) La'€A

immediate reward ;
next state's value

e one-step look-ahead

Bellman’s optimality equation: Q* is the unique fixed
point to

T@) =Q"

Uniqueness is immediately implied by the y-contraction on
i ify!
the next slide (verify!). Richard Bellman
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Contraction of the Bellman’s operator

Lemma 5 (y-contraction of Bellman operator)
For any Q and QQ’, it holds

IT(Q) = T(@)lloo <VNQ = Qllco-

Proof: || 7(Q)—T(Q")|

E [max Q(s’,a’)} - E [max Q/(S/ﬂ/)H

= ymax
s,a

s'~P(-|s,a) La’EA s'~P(-|s,a) La’EA

< ymax E

5,0 g/~ P(-|s,a)

<Symax B max|Q(shd) — Qs )
50 5/~ P(|s,a) /€A

< ymax |Q(s', a) = Q'(s",a)[ = 7|Q — Qoo

/ / e /
PERel ) g9 )

Here, we used the fact | max, f(a) — max, g(a)| < max, |f(a) — g(a)|.
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Value iteration

Value iteration
Fort=0,1,...

QMY =T(QY)

Q(U)

Q(l)
Q(t)

Q4
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Convergence rate of value iteration

Theorem 6 (Linear convergence of value iteration)

1R — Q"o <7'1Q — Q"I

e This is implied immediately by the y-contraction property.

Implications: to achieve |Q®) — Q*||» < €, it takes no more than
L <||Q<0> sy
— log | H—— ¢ =
1—7v €

iterations.
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From Q-function to policy

Lemma 7 ([Singh and Yee, 1994])

Let the greedy policy w.r.t. ) be mg, then

Ve—vTme < 7||Q* Q| co-

= ﬁ:Greedy(@) _ €
‘IIQ—Q*IIOOSEI L

e Mind the error amplification factor ﬁ
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Proof of Lemma 7

Fix state s € S and let a = mg(s). It follows that

V*(s) = V7e(s)
= Q" (5,7 (s)) — Q"% (s,mQ(s))
= Q" (5,7 (s))—Q(s, mq(s)) + Q(s, mq(s)) — Q" (s, 7q(s))

= =:Il
+ Q*(Sv 7‘_(»2(8)) - QT (87 7TQ(S))

We shall bound each of these terms separately.

e For term |, since Q(s,mq(s)) > Q(s,7*(s)),

Q" (s,77(s)) — Q(s,mq(s)) < Q" (s, 7" (s)) — Q(s, 7" (s))
< Q" = Qllso-
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Proof of Lemma 7

e For term I,

Q(s,mq(s)) = Q" (s, mq(s)) < |Q" = Qllco-

e For term Ill, by Bellman equations,

Q*(s,mq(s)) — QT4 (s,mq(s)) = VEsnp( s, [V (s) = V()]
<AV =Vl

To sum up,
V¥ =V < 2[Q" = Qlloc +YIV* = V™|l

2)|Q* — Qll

== [V¥ =V <
1—7

23



Policy iteration

Policy iteration

Fort=0,1,...,

—"“the dance”
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Convergence rate of policy iteration

Theorem 8 (Linear convergence of policy iteration)

For policy iteration, it follows that
Q@ QY > T(QW) > QW
Q QU — Q*|lee <AIQY — Q*[l

e Policy iteration produces a sequence of improving policies.

Implications: to achieve |Q®) — Q*|| < € for output policy (), it takes
no more than

. <||Q<0> —Q*Iloo)
2
1—7 €

iterations.
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Proof for policy iteration: policy improvements

Proof of T(Q®) > Q®:
T(Q(t))(sv CL) = T(S7 (l) + ’YES,NP(-‘S,U.) mf}X Qﬂ—(t) (8/7 a/)
a

> 1(s,0) + VBarrop( o) Q" (s, 70 ("))
— 1(5,0) + Bop( o)V ()= Q™" (s,a).

Proof of QU+1) > T(Q™): From policy improvement theorem, we already
know Q(t+1) > Q)

(t+1)

(s,0) = (5,0) + VEyrp(fsa) @ (s, 7 (s"))
> T(S, a) + ’VES’NP(-\S,a)QW(t) (Sl, 7T(t+1) (S/))
o)
= 7“(87 a) + ’VES/NP("S,(L) H};’:,LX Q (3/7 a,) = T(Q(t))(sv a)'

QTF
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Proof for policy iteration: linear convergence

Using QU+D > 7(QW),
1Q* — Q"™ < 1Q* — T(QM)|oo
= I7(Q*) = T(Q")]
<@ — QY| .

Here, the last line follows from the contraction of the Bellman's optimality
operator.

27



Bellman’s optimality eq. for finite-horizon MDPs

h=1,2--- H ] r1 Ty T3 ry
state s act\on( ‘ )
-3 ap ~ Th(-[sn
------ =3 566 L g
'

~l 4 - s
reward :> (\_/’ ‘\_/’ (\_/ [
7 = 1(5h, Gn I ay as as in
<+~ environment ¢ — 14 14 ¢ 2
mi(ls1) ma(fs2)  ms(]ss) 7 (|su)

<
next state
Sh1 ~ Ph(*[sn, an)

Let Q5 (s, a) = max, QF (s,a) and V;*(s) = max, V7 (s) .
© Begin with the terminal step h = H + 1:
Vb*{+1 =0, Q}{-&-l =0.
@ Backtrack h=H,H —1,...,1:
Qi(s,a) :=E[rn(sn, an)] + Eyp,(15,0) Vs (s)

immediate reward next step’s value
Vii(s) = max Q7 (s,a), mh(s) = argér;lax Qi (s,a).
a
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