Foundations of Reinforcement Learning

Markov decision processes: dynamic programming

Yuejie Chi

Department of Electrical and Computer Engineering

Carnegie Mellon University

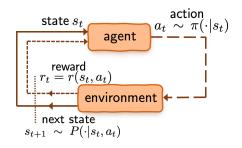
Spring 2023

Outline

Policy improvement

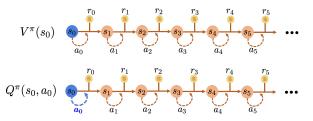
Finding the optimal policy of MDPs

Infinite-horizon Markov decision process (MDP)



- S: state space
- A: action space
- $r(s,a) \in [0,1]$: immediate reward
- $\pi(\cdot|s)$: policy (or action selection rule), deterministic or random
- $P(\cdot|s,a)$: transition probabilities

Value function and Q-function



Value function of policy π : cumulative discounted reward

$$\forall s \in \mathcal{S}: \quad V^{\pi}(s) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \,\middle|\, s_{0} = s\right]$$

Q-function of policy π :

$$\forall (s, a) \in \mathcal{S} \times \mathcal{A} : \quad Q^{\pi}(s, a) := \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \, \middle| \, s_{0} = s, \mathbf{a_{0}} = \mathbf{a} \right]$$
$$= \mathbb{E} \left[r(s, a) \right] + \gamma \mathbb{E}_{s' \sim P(\cdot \mid s, a)} V^{\pi}(s')$$

3

Basic tasks

Policy evaluation:

• given a policy π , how good is it?

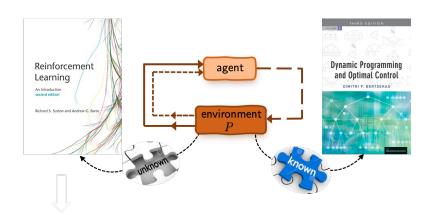
Policy improvements:

• given a policy π , can we find a better one?

Policy optimization:

can we find the best policy for the given MDP?

Planning versus learning



- Planning: solve for a desired policy given model specification
- **Learning:** learn a desired policy from samples w/o model specification *We'll focus on planning first*.

Policy improvement

Partial ordering of policies

Definition 1 (Partial ordering)

Define a partial order over policies: denote

$$\pi' \ge \pi$$
 if $\forall s \in \mathcal{S}$, $V^{\pi'}(s) \ge V^{\pi}(s)$.

• The policy π' is an *improvement* over π since it improves its value in all states.

Question

Given a policy π , how to find an improved policy?

Policy improvement via one-step look-ahead

Given the Q-function Q^{π} of some policy π .

At each state s, can we identify an action a such that

$$Q^{\pi}(s, a) \ge V^{\pi}(s)?$$

• taking action a at state s leads to a higher cumulative reward than following policy π .

8

Policy improvement theorem

Theorem 2 (Policy improvement theorem)

Choose some stationary policy π , and let π' be a deterministic policy such that

$$\forall s \in \mathcal{S}, \qquad Q^{\pi}(s, \pi'(s)) \ge V^{\pi}(s).$$

Then $V^{\pi'} \geq V^{\pi}$, i.e., π' is an improvement over π .

• Define the **greedy** policy w.r.t. some Q as

$$\pi_Q = \mathsf{Greedy}(Q), \quad \text{i.e.} \quad \pi_Q(s) = \arg\max_{a \in \mathcal{A}} Q(s,a).$$

• The greedy policy $\pi' = \mathsf{Greedy}(Q^\pi)$ w.r.t. Q^π is an improvement over π :

$$\begin{split} Q^{\pi}(s,\pi'(s)) &= \max_{a \in \mathcal{A}} Q^{\pi}(s,a) \\ &\geq \sum_{a \in \mathcal{A}} \pi(a|s) Q^{\pi}(s,a) = V^{\pi}(s) \qquad \Longrightarrow \qquad V^{\pi'} \geq V^{\pi} \end{split}$$

Proof of policy improvement theorem

For each state $s \in \mathcal{S}$,

$$V^{\pi}(s) \leq Q^{\pi}(s, \pi'(s))$$

$$= \mathbb{E}\left[r(s_0, \pi'(s_0)) + \gamma V^{\pi}(s_1) \middle| s_0 = s, a_0 = \pi'(s)\right]$$

$$\leq \mathbb{E}\left[r(s_0, \pi'(s_0)) + \gamma Q^{\pi}(s_1, \pi'(s_1)) \middle| s_0 = s, a_0 = \pi'(s)\right]$$

$$= \mathbb{E}\left[r(s_0, \pi'(s_0)) + \gamma r(s_1, \pi'(s_1)) + \gamma^2 V^{\pi}(s_2) \middle| s_0 = s, a_0 = \pi'(s)\right]$$

$$\leq \cdots$$

$$\leq \mathbb{E}\left[r(s_0, \pi'(s_0)) + \gamma r(s_1, \pi'(s_1)) + \gamma^2 r(s_2, \pi'(s_2)) + \cdots \middle| s_0 = s\right]$$

$$\leq V^{\pi'}(s)$$

One-step improvement leads to value increase.

Finding the optimal policy of MDPs

Optimal value and optimal policy

optimal value / Q function:

$$V^\star(s) := \max_\pi V^\pi(s), \qquad Q^\star(s,a) := \max_\pi Q^\pi(s,a)$$

where the search is over all policies possibly non-stationary and random.

• optimal policy π^* : the policy that maximizes the value function.

Optimal policy: existence

Lemma 3 ([Bellman, 1952])

For infinite-horizon discounted MDPs, there always exists a stationary and deterministic policy π^* , such that for all $s \in \mathcal{S}$, $a \in \mathcal{A}$,

$$V^{\pi^*}(s) = V^*(s), \qquad Q^{\pi^*}(s, a) = Q^*(s, a).$$

- Using stationary and deterministic policies suffices.
- See [Agarwal et al., 2019] for a proof.

Bellman's optimality equations

Theorem 4 (Bellman's optimality equations)

The optimal value/Q functions are unique and related via

$$\begin{split} V^{\star}(s) &= \max_{a \in \mathcal{A}} Q^{\star}(s, a), \\ Q^{\star}(s, a) &= \mathbb{E}[r(s, a)] + \gamma \mathbb{E}_{s' \sim P(\cdot \mid s, a)} V^{\star}(s'). \end{split}$$

Furthermore, $\pi^* = \pi_{Q^*} = \text{Greedy}(Q^*)$ is an optimal policy (tie-breaking arbitrarily).

- Knowing the optimal Q-function allows us to find the optimal policy.
- The optimal values are unique, but the optimal policy is not necessarily unique.

Proof of Bellman's optimality equations

Proof of $V^{\star}(s) = \max_{a \in \mathcal{A}} Q^{\star}(s, a)$:

$$V^{\star}(s) = \max_{\pi} V^{\pi}(s)$$

$$= \max_{\pi} \mathbb{E}_{a \sim \pi(\cdot|s)}[Q^{\pi}(s, a)]$$

$$\leq \max_{\pi} \mathbb{E}_{a \sim \pi(\cdot|s)}[Q^{\star}(s, a)]$$

$$= \max_{a \in \mathcal{A}} Q^{\star}(s, a).$$

On the other end, for any $a \in \mathcal{A}$, consider the (possibly non-stationary) policy that first takes action a and then follows π^* . It follows that

$$V^{\star}(s) \ge Q^{\pi^{\star}}(s, a) = Q^{\star}(s, a).$$

This implies, by the arbitrariness of a,

$$V^{\star}(s) \ge \max_{a \in \mathcal{A}} Q^{\star}(s, a).$$

Proof of Bellman's optimality equations

Proof of
$$Q^{\star}(s,a) = \mathbb{E}[r(s,a)] + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} V^{\star}(s')$$
:
$$Q^{\star}(s,a) = \max_{\pi} Q^{\pi}(s,a)$$

$$= \max_{\pi} \left[\mathbb{E}[r(s,a)] + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} V^{\pi}(s') \right]$$

$$= \mathbb{E}[r(s,a)] + \gamma \max_{\pi} \mathbb{E}_{s' \sim P(\cdot|s,a)} V^{\pi}(s')$$

$$= \mathbb{E}[r(s,a)] + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} V^{\star}(s')$$

Bellman's optimality principle

Bellman operator

$$\mathcal{T}(Q)(s,a) := \underbrace{\mathbb{E}[r(s,a)]}_{\text{immediate reward}} + \gamma \underbrace{\mathbb{E}}_{s' \sim P(\cdot \mid s,a)} \left[\underbrace{\max_{a' \in \mathcal{A}} Q(s',a')}_{\text{next state's value}} \right]$$

one-step look-ahead

Bellman's optimality equation: Q^{\star} is the *unique* fixed point to

$$\mathcal{T}(Q^\star) = Q^\star$$

Uniqueness is immediately implied by the γ -contraction on the next slide (verify!).

Richard Bellman

Contraction of the Bellman's operator

Lemma 5 (γ -contraction of Bellman operator)

For any Q and Q', it holds

$$\|\mathcal{T}(Q) - \mathcal{T}(Q')\|_{\infty} \le \gamma \|Q - Q'\|_{\infty}.$$

$$\begin{aligned} & \text{Proof:} \quad \|\mathcal{T}(Q) - \mathcal{T}(Q')\|_{\infty} \\ & = \gamma \max_{s,a} \left| \underset{s' \sim P(\cdot|s,a)}{\mathbb{E}} \left[\max_{a' \in \mathcal{A}} Q(s',a') \right] - \underset{s' \sim P(\cdot|s,a)}{\mathbb{E}} \left[\max_{a' \in \mathcal{A}} Q'(s',a') \right] \right| \\ & \leq \gamma \max_{s,a} \left| \underset{s' \sim P(\cdot|s,a)}{\mathbb{E}} \left| \max_{a' \in \mathcal{A}} Q(s',a') - \max_{a' \in \mathcal{A}} Q'(s',a') \right| \\ & \leq \gamma \max_{s,a} \left| \underset{s' \sim P(\cdot|s,a)}{\mathbb{E}} \max_{a' \in \mathcal{A}} |Q(s',a') - Q'(s',a')| \right| \\ & \leq \gamma \max_{s',a'} |Q(s',a') - Q'(s',a')| = \gamma \|Q - Q'\|_{\infty}. \end{aligned}$$

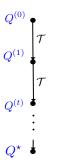
Here, we used the fact $|\max_a f(a) - \max_a g(a)| \le \max_a |f(a) - g(a)|$.

Value iteration

Value iteration

For
$$t = 0, 1, \ldots$$
,

$$Q^{(t+1)} = \mathcal{T}(Q^{(t)})$$



Convergence rate of value iteration

Theorem 6 (Linear convergence of value iteration)

$$||Q^{(t)} - Q^*||_{\infty} \le \gamma^t ||Q^{(0)} - Q^*||_{\infty}$$

• This is implied immediately by the γ -contraction property.

Implications: to achieve $\|Q^{(t)}-Q^{\star}\|_{\infty}\leq\epsilon$, it takes no more than

$$\frac{1}{1-\gamma}\log\left(\frac{\|Q^{(0)}-Q^{\star}\|_{\infty}}{\epsilon}\right)$$

iterations.

From Q-function to policy

Lemma 7 ([Singh and Yee, 1994])

Let the greedy policy w.r.t. Q be π_Q , then

$$V^* - V^{\pi_Q} \le \frac{2}{1 - \gamma} \|Q^* - Q\|_{\infty}.$$

$$\widehat{\|\widehat{Q} - Q^\star\|_\infty} \leq \epsilon \qquad \widehat{\pi} = \mathsf{Greedy}(\widehat{Q}) \qquad V^\star - V^{\widehat{\pi}} \leq \frac{\epsilon}{1 - \gamma}$$

• Mind the error amplification factor $\frac{1}{1-\gamma}$

Proof of Lemma 7

Fix state $s \in \mathcal{S}$ and let $a = \pi_Q(s)$. It follows that

$$\begin{split} V^{\star}(s) - V^{\pi_Q}(s) &= Q^{\star}(s, \pi^{\star}(s)) - Q^{\pi_Q}(s, \pi_Q(s)) \\ &= \underbrace{Q^{\star}(s, \pi^{\star}(s)) - Q(s, \pi_Q(s))}_{=:\mathsf{I}} + \underbrace{Q^{\star}(s, \pi_Q(s)) - Q^{\pi_Q}(s, \pi_Q(s))}_{=:\mathsf{III}} \\ &+ \underbrace{Q^{\star}(s, \pi_Q(s)) - Q^{\pi_Q}(s, \pi_Q(s))}_{=:\mathsf{III}} \end{split}$$

We shall bound each of these terms separately.

• For term I, since $Q(s, \pi_Q(s)) \ge Q(s, \pi^*(s))$,

$$\begin{split} Q^{\star}(s, \pi^{\star}(s)) - Q(s, \pi_{Q}(s)) &\leq Q^{\star}(s, \pi^{\star}(s)) - Q(s, \pi^{\star}(s)) \\ &\leq \|Q^{\star} - Q\|_{\infty}. \end{split}$$

Proof of Lemma 7

• For term II,

$$Q(s, \pi_Q(s)) - Q^*(s, \pi_Q(s)) \le ||Q^* - Q||_{\infty}.$$

For term III, by Bellman equations,

$$Q^{\star}(s, \pi_{Q}(s)) - Q^{\pi_{Q}}(s, \pi_{Q}(s)) = \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} [V^{\star}(s') - V^{\pi_{Q}}(s')]$$

$$\leq \gamma \|V^{\star} - V^{\pi_{Q}}\|_{\infty}$$

To sum up,

$$||V^{\star} - V^{\pi_Q}||_{\infty} \le 2||Q^{\star} - Q||_{\infty} + \gamma ||V^{\star} - V^{\pi_Q}||_{\infty}$$

$$\implies ||V^* - V^{\pi_Q}||_{\infty} \le \frac{2||Q^* - Q||_{\infty}}{1 - \gamma}$$

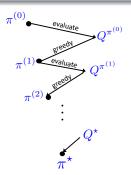
Policy iteration

Policy iteration

For
$$t = 0, 1, ...,$$

$$\pi^{(t)} = \mathsf{Greedy}(Q^{(t-1)})$$

$$Q^{(t)} = Q^{\pi^{(t)}}$$



—"the dance"

Convergence rate of policy iteration

Theorem 8 (Linear convergence of policy iteration)

For policy iteration, it follows that

- $Q^{(t+1)} \ge \mathcal{T}(Q^{(t)}) \ge Q^{(t)}$
- $||Q^{(t+1)} Q^*||_{\infty} \le \gamma ||Q^{(t)} Q^*||_{\infty}$
 - Policy iteration produces a sequence of improving policies.

Implications: to achieve $\|Q^{(t)} - Q^{\star}\|_{\infty} \le \epsilon$ for output policy $\pi^{(t)}$, it takes no more than

$$\frac{1}{1-\gamma}\log\left(\frac{\|Q^{(0)}-Q^{\star}\|_{\infty}}{\epsilon}\right)$$

iterations.

Proof for policy iteration: policy improvements

Proof of $\mathcal{T}(Q^{(t)}) \geq Q^{(t)}$:

$$\mathcal{T}(Q^{(t)})(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} \max_{a'} Q^{\pi^{(t)}}(s', a')$$

$$\geq r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} Q^{\pi^{(t)}}(s', \pi^{(t)}(s'))$$

$$= r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} V^{\pi^{(t)}}(s') = Q^{\pi^{(t)}}(s, a).$$

Proof of $Q^{(t+1)} \ge \mathcal{T}(Q^{(t)})$: From policy improvement theorem, we already know $Q^{(t+1)} \ge Q^{(t)}$.

$$\begin{split} Q^{\pi^{(t+1)}}(s,a) &= r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} Q^{\pi^{(t+1)}}(s',\pi^{(t+1)}(s')) \\ &\geq r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} Q^{\pi^{(t)}}(s',\pi^{(t+1)}(s')) \\ &= r(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \max_{a'} Q^{\pi^{(t)}}(s',a') = \mathcal{T}(Q^{(t)})(s,a). \end{split}$$

Proof for policy iteration: linear convergence

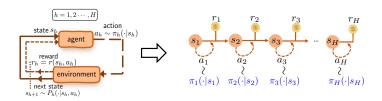
Using
$$Q^{(t+1)} \ge \mathcal{T}(Q^{(t)})$$
,
$$\|Q^{\star} - Q^{(t+1)}\|_{\infty} \le \|Q^{\star} - \mathcal{T}(Q^{(t)})\|_{\infty}$$

$$= \|\mathcal{T}(Q^{\star}) - \mathcal{T}(Q^{(t)})\|_{\infty}$$

$$< \gamma \|Q^{\star} - Q^{(t)}\|_{\infty}.$$

Here, the last line follows from the contraction of the Bellman's optimality operator.

Bellman's optimality eq. for finite-horizon MDPs



Let
$$Q_h^\star(s,a) = \max_\pi Q_h^\pi(s,a)$$
 and $V_h^\star(s) = \max_\pi V_h^\pi(s)$.

1 Begin with the terminal step h = H + 1:

$$V_{H+1}^{\star} = 0, \quad Q_{H+1}^{\star} = 0.$$

2 Backtrack h = H, H - 1, ..., 1:

$$\begin{split} Q_h^{\star}(s,a) &:= \underbrace{\mathbb{E}\left[r_h(s_h,a_h)\right]}_{\text{immediate reward}} + \underbrace{\mathbb{E}_{s' \sim P_h(\cdot \mid s,a)} V_{h+1}^{\star}(s')}_{\text{next step's value}} \\ V_h^{\star}(s) &:= \max_{a \in \mathcal{A}} Q_h^{\star}(s,a), \qquad \pi_h^{\star}(s) = \operatorname*{argmax}_{a \in \mathcal{A}} Q_h^{\star}(s,a). \end{split}$$

References I

Agarwal, A., Jiang, N., Kakade, S. M., and Sun, W. (2019). Reinforcement learning: Theory and algorithms.

Bellman, R. (1952).

On the theory of dynamic programming.

Proceedings of the National Academy of Sciences of the United States of America, 38(8):716.

Singh, S. P. and Yee, R. C. (1994).

An upper bound on the loss from approximate optimal-value functions. Machine Learning, 16:227-233.