Yuejie Chi

Department of Electrical and Computer Engineering

Carnegie Mellon University

Spring 2023

Outline

Reinforcement learning

In reinforcement learning (RL), an agent learns through interaction with the

(unknown) environment.
KE; viran men t

Ra..,,a_d
In terp reter
[co]
% Lg_:'t-’

A ction

Agent

Reinforcement learning

In reinforcement learning (RL), an agent learns through interaction with the

(unknown) environment.
KE; viran men t

Ra..,,a_d
In terp reter
[co]
% Lg_:'t-’

A ction

Agent

RL has deep connection with control theory, and is also sometimes called
approximate dynamic programming. It can be viewed as a type of optimal
control theory with no pre-defined model of the environment.

Applications of RL

RL can be applied to many different areas.
e Robotics: in which direction and how fast should a robot arm move?

Mobility: where should taxis go to pick up passengers?

Transportation: when should traffic lights turn green?

Recommendations: which news stories will users click on?

Network configuration: which parameter settings lead to the best
allocation of resources?

Applications of RL

RL can be applied to many different areas.

e Robotics: in which direction and how fast should a robot arm move?

Mobility: where should taxis go to pick up passengers?

Transportation: when should traffic lights turn green?

Recommendations: which news stories will users click on?

Network configuration: which parameter settings lead to the best
allocation of resources?

Similar to multi-armed bandits, but with a notion of state or context.

Example: grasping an object

RL reinforces the agents' decisions over time by observing the reward and
state that result from taking different actions.

Markov decision processes

Infinite-horizon Markov decision process (MDP)

b

state 8¢ action a;
___________) agent)— ——
|
|

environment [« — -

e S: state space
e A: action space

Infinite-horizon Markov decision process (MDP)

b

state 8¢ action a;
___________) agent)— ——
|

i1y = 7St a |

environment [« — —J

e S: state space
e A: action space
e r(s,a) € [0,1]: immediate reward

Infinite-horizon Markov decision process (MDP)

action
state s;

[jat ~ m(:|st)
___________) agent —-—
I

;7 =1(5¢, Q¢ |

environment [« — —J

S: state space

e A: action space

r(s,a) € [0,1]: immediate reward

m(-|s): policy (or action selection rule), deterministic or random

Infinite-horizon Markov decision process (MDP)

action
state s;

> jat ~ (|st)
___________) agent —-—
I

;7 =1(5¢, Q¢ |

environment [« — —J

next state
st+1 ~ P(:[st, at)

S: state space

e A: action space

r(s,a) € [0,1]: immediate reward

m(-|s): policy (or action selection rule), deterministic or random

P(:|s,a): transition probabilities

Help the mouse!

v

Help the mouse!

S

e state space S: positions in the maze

Help the mouse!

]

e state space S: positions in the maze
e action space A: up, down, left, right

Help the mouse!

]

e state space S: positions in the maze
e action space A: up, down, left, right
e immediate reward r: cheese (41), electricity shocks (-1), cats (-10000)

Help the mouse!

]

state space S: positions in the maze
action space A: up, down, left, right

immediate reward 7: cheese (+1), electricity shocks (-1), cats (-10000)

policy 7(+|s): the way to find cheese

Value function

action

state s ap ~ w(-|s;
—(]‘) o 73 T4

reward I |:> S0 | s1 ‘I So ‘I s3 ‘l S4 |
e =1(st, a1 [[A [\
< X - -

“~~"] environment —J

<

'~ _a’ ‘_—
ao ai az a3 [«2}
siy1 ~ P(]st,ar)

S|

S|

Value of policy m: cumulative discounted reward

VseS: V7T(s):=E Zwtr(st,at) |so=s

t=0
e (ag, s1,a1, S2,az2,- -+): induced by policy 7

Value function

action
T1 T2

S4

T4

state s
ay ~ 7(-|st)
------- o) .
reward I |:> S0 ‘I 81 ‘I S2 I
re = 1(st, ar O T 0
4-- environment — ao a1 as
<

sy ~ P(lst,ar)

S|

Value of policy m: cumulative discounted reward

VseS: VT(s):=E Zwtr(st,at) |so=s

t=0
e (ag, s1,a1, S2,az2,- -+): induced by policy 7
e v € [0,1): discount factor,

e v close to O leads to “myopic” evaluation
e v close to 1 leads to “far-sighted” evaluation

<

e

a4

S|

Q-function (action-value function)

To 71 T2 73 T4 5
Vi(s) @--8-L-8-6 g LgLl .
[N O S
ag ay ag az ay as
To T1 T2 T3 T4 75
Uy I > »>
Q (3070’0) . y 8 S —Es = e =8 — b
L2 [L L L [
ag ay az as a4 as

Q-function of policy :

V(s,a) eSxA: Q7(s,a):=E Z’ytm‘so =s,a0 =a
t=0

e (ag7 S1,0a1,S2,az2, -+): induced by policy

10

Effective horizon

Since r(s,a) € [0,1],

0< V™(s),Q"(s,0) < ﬁ

Often think of ﬁ as the effective horizon of the problem.

11

Why Markov transitions?

e By the Markovian property,

P(s¢41,5¢, ..

<y So) = P(SQ)P(Sl‘So)P(SﬂSl, 80)
= P(s0)P(s1]s0)P(s2]s1, 50)

= P(so) [[P(sisalsi).

=0

Low computation and memory complexity!

...P(8t+1|5t, .. .,80)
o P(st41]8t,..50)

12

Why Markov transitions?

e By the Markovian property,

P(St41,Sty---,50) = P(s0)P(s1]s0)P(s2]51,80) - - - P(St41|8t, .-, 80)
= P(s0)P(s1]s0)P(s2|51,506) - .. P(st41|5¢,..—~50)
t
= P(so) [[P(sisalsi).
i=0
Low computation and memory complexity!

e The world is Markovian when the state space is large enough. For
example, if s;41 ~ P(:|ss, st—1) depends on the previous two steps, by
working with 5; = (s¢,5:—1) (and s_1 = sp), we have

Sp41 ~ P(:[51)
is Markovian.

All models are wrong, but some are useful J

12

Why discounting?

Mathematically convenient: the limit always exists
Immediate rewards earn more interest than future rewards

Account for variability and uncertainty in the future which may not be
fully captured

Undiscounted MDP is possible, e.g. if all sequences terminate (like in a
maze or game).

Alternatives: average reward and finite-horizon episodic settings.

13

Reduction to multi-arm bandits

e No state transition: S is a singleton

14

Reduction to multi-arm bandits

e No state transition: S is a singleton
e The reward function is action-dependent (action = arm): r(a)

14

Reduction to multi-arm bandits

e No state transition: S is a singleton
e The reward function is action-dependent (action = arm): r(a)

e Short-horizon planning: discount factor v =0

14

Reduction to multi-arm bandits

No state transition: S is a singleton

The reward function is action-dependent (action = arm): r(a)
Short-horizon planning: discount factor v = 0

The value of a policy m becomes V™ := E,[r(a)].

14

Reduction to Markov reward process

09 0.3

)

0.8

e No action selection: A is a singleton

15

Reduction to Markov reward process

0.8

e No action selection: A is a singleton
e The transition kernel defines a Markov chain

15

Reduction to Markov reward process

0.8

e No action selection: A is a singleton
e The transition kernel defines a Markov chain

e The reward function is state-dependent: r(s)

15

Reduction to Markov reward process

09 0.3

)

0.2

0.8

No action selection: A is a singleton

The transition kernel defines a Markov chain

The reward function is state-dependent: r(s)

The value becomes V (s) := E[> oo, v'7(s¢) |s0 = s].

15

Finite-horizon episodic MDP

action
ah_Nlh('|5h)

reward

Th = 1(Sh, an I
+-==-{ environment ¢ — —

next state
Shy1 ~ Pu(:|sn,an)

e H: horizon length

16

Finite-horizon episodic MDP

action
ah_Nih('|5h)

reward

Th = 1(Sh, an I
“="="1 environment (¢ — -

next state
Shy1 ~ Pu(:|sn,an)

e H: horizon length

e S: state space with size S e A: action space with size A

16

Finite-horizon episodic MDP

action
ah_Nih('|5h)

reward

Th = 1(Sh, an I
“="="1 environment (¢ — -

next state
Shy1 ~ Pu(:|sn,an)

e H: horizon length
e S: state space with size S e A: action space with size A

e r1(sp,ap) € [0,1]: immediate reward in step h

16

Finite-horizon episodic MDP

action
ah_Nih('|5h)

reward

Th = 1(Sh, an I
“===~1 environment (¢ — -

next state
Shy1 ~ Pu(:|sn,an)

H: horizon length
S: state space with size S e A: action space with size A
rh(Sh,an) € [0, 1]: immediate reward in step h

= {ﬂh}lez policy (or action selection rule)

16

Finite-horizon episodic MDP

action
ah_Nih('|5h)

reward

Th = 1(Sh, an I
“===~1 environment (¢ — -

next state
Shy1 ~ Pu(:|sn,an)

H: horizon length

S: state space with size S e A: action space with size A
rh(Sh,an) € [0, 1]: immediate reward in step h

= {ﬂh}lez policy (or action selection rule)

Py, (-|s,a): transition probabilities in step h

16

Value function and Q-function

h=12--- H r ro s ro

ion
state s}, actio

ap ~ m(-|sn)
------ i{. :agent] - iI ' S1 \l 52 \l S3 ‘l SH—‘|
reward I:> (- - [[
7 = 18, an I a az as a)
4= environment |¢ — 4 ¢ 2 2
mi(|s1) ma(ls2) ms(:[s3) 7 (|sm)

<
next state
Sn1 ~ Pu([sn, an)

H
Vir(s) :=E [Z re(se ar) | sn = s]
t=h

H
Qh(s,a) :=E lz T(t, at) } Sh = 8,0 = (l]

t=h

e execute policy m to generate sample trajectory

17

Basic tasks

Policy evaluation:

e given a policy m, how good is it?

18

Basic tasks

Policy evaluation:

e given a policy m, how good is it?

Policy improvements:

e given a policy m, can we find a better one?

18

Basic tasks

Policy evaluation:

e given a policy m, how good is it?

Policy improvements:

e given a policy m, can we find a better one?

Policy optimization:
e can we find the best policy for the given MDP?

18

Planning versus learning

Reinforcement ||\
Learning

AnIntroduction §
second edition |

Dynamic Programming
and Optimal Control

DIMITRI P. BERTSEKAS

Richard S, Sutton and Andrew G. Barto / /7

e Planning: solve for a desired policy given model specification

19

Planning versus learning

Reinforcement
Learning

AnIntroduction
second edition

Richard S. Sutton and Andrew G Barto / /77

Sees

Dynamic Programming
and Optimal Control

DIMITRI P. BERTSEKAS

e Planning: solve for a desired policy given model specification

e Learning: learn a desired policy from samples w/o model specification

19

Planning versus learning

Reinforcement
Learning

AnIntroduction
second edition

Richard S. Sutton and Andrew G Barto / /77

Sees

Dynamic Programming
and Optimal Control

DIMITRI P. BERTSEKAS

e Planning: solve for a desired policy given model specification

e Learning: learn a desired policy from samples w/o model specification

We'll focus on planning first.

19

Policy evaluation

20

Policy evaluation: evaluating V via Q

VTi(s)=E Z’ytr(st,at) | s0 = 51
t=0
= Z m(ap = als =sg)E [Z’ytr(st,at) ’ S0 = 8,00 =@
acA t=0
=:Q7 (s,a)
= anw(~|s)[Qﬂ(svaﬂ
V7 (s)
Q" (s,a) o
a~m(s)

21

Policy evaluation: evaluating Q via V

Q7 (s,a) = E[r(s,a) + i’ytr(shat) ’ S0 = S,a0 = a}

t=1

=E[r(s,a)] + Egnp(|s,a) [E{thr(%at) |s1=5",50 =s,a0 = cﬂ
t=1
=E[r(s,a)] + Esnp(s,a) [E{ v'r(st, ax) | S1 = S’”

t

=E[r(s,a)] + YEs wp(s,a) lE[Zwtr(st, at) ’ S0 = s/]]

=V (s')

=E[r(s,a)] + YEs' ~P(|s,a) [VW(SI)]

Q" (s, a)

r(s; a)

s, a

V7T (s")
s’ ~ P(|s,a)

Bellman’s consistency equation

e V7™ /QT: value / action-value function under policy 7

Bellman’s consistency equation

V7(5) = Eqnn(1s) [Q7 (s, 0)]
Q"(s,0) = Eb(s,)] +9 B | V(s |
N—— s ~——

'~ P(:]s,a)
immediate reward next state’s value

The value/Q function can be decomposed into two
parts:

e immediate reward E [r(s, a)]

e discounted value of at the successor state
'VES’NP(~|s,a)V(S/)

Richard Bellman

23

Matrix-vector representation

e Plugging Q7 into V™, we have

Vﬂ-(s) = IEa~‘n‘(~|5) [T(Sa Cl)] +7

ar~(+]s),s'~P(:|s,a)

V7 (s)]-

24

Matrix-vector representation

e Plugging Q7 into V™, we have

V7(s) = Eann(s)[r(s,a)] + E V7 (s)]-

ar~(+]s),s'~P(:|s,a)

e lLet P™ be the state-state transition matrix induced by 7, namely,

P(s'|s) =Y _ w(als)P(s']s, a).

acA

24

Matrix-vector representation

e Plugging Q7 into V™, we have

V7(s) = Eann(s)[r(s,a)] + E V7 (s)]-

ar~(+]s),s'~P(:|s,a)

e lLet P™ be the state-state transition matrix induced by 7, namely,

P(s'|s) =Y _ w(als)P(s']s, a).

acA
e We can write the above in a matrix-vector form as
Vﬂ' — ,rTr _’_,YPTFV‘IT’

where V™ = [V7(s)]ses, and r™ = []anr(-\S)[T(S’a)HseS‘

24

Matrix-vector representation

e Plugging Q7 into V™, we have

V7(s) = Eann(s)[r(s,a)] + E V7 (s)]-

ar~(+]s),s'~P(:|s,a)

e lLet P™ be the state-state transition matrix induced by 7, namely,

P(s'|s) =Y _ w(als)P(s']s, a).

acA

e We can write the above in a matrix-vector form as
VT =r"+4P"VT,
where V™ = [V™(s)]ses, and 7™ = []Ea,\,ﬂ-(.‘s)[T(S,a)H

seS”

a similar treatment applies to Q™, too.

24

Solving the Bellman’s consistency equation

V=T 4yP™VT — VT =(I—~P") "

25

Solving the Bellman’s consistency equation

V=T 4yP™VT — VT =(I—~P") "

Invertibility of I — yP™: Gershgorin's circle theorem, or for any = € RIS!,
verify

I =y P")alloo = [[#lloc = Y[P™]|oo

2 [|zlleo =llelloe ([[PT2]loc < [[PT]1][2]loc = [l2][0)
> (L=l
> 0.

Thus, I — vP7™ is full rank and invertible.

25

Solving the Bellman’s consistency equation

V=T 4yP™VT — VT =(I—~P") "

Invertibility of I — yP™: Gershgorin's circle theorem, or for any = € RIS!,
verify

I =y P")alloo = [[#lloc = Y[P™]|oo

2 [|zlleo =llelloe ([[PT2]loc < [[PT]1][2]loc = [l2][0)
> (L=l
> 0.

Thus, I — vP7™ is full rank and invertible.

Computationally expensive for problems with large state space!

25

Bellman’s policy operator

Bellman’s policy operator: denote the operator 77 : RIS| i RISI as

vV e RISI: T™(V)=r" +~yP"V.

26

Bellman’s policy operator

Bellman’s policy operator: denote the operator 77 : RIS| i RISI as

vV e RISI: T™(V)=r" +~yP"V.

Fixed-point equation:
V=T"(V)

e V7 is the unique fixed point of this fixed-point equation.

26

Contraction property of the Bellman’s operator

Lemma 1

The operator T™ is a y-contraction on RISl je. for any V and V' in RISI it
follows
IT7(V) =T (Voo <AV = V'|lce-

Proof: For any V and V",

IT7(V) = TT(V)lloo = VPV =7 P"V'||
SANPTRIV = Voo =V = V' [loo,

using ||P™||; = 1.

27

Fast computation without inversion

Value iteration for policy evaluation

Fort=0,1,2,...
V(t-‘rl) — Tﬂ(v(t))

Linear convergence:

[VED — || = [T (V) = T™(V™)
< 'VHV(t) - Vﬂ”oo
<ANVO - V||

Implication: to achieve ||[V(#+1) — V|| <, it takes no more than

1 (IIV(O) —V’Tlloo>
——log | —
1—7 €

iterations.

28

Policy evaluation for finite-horizon MDPs

h=12--- H .]) T3 TH
state s actlon(‘)
) ap ~ h([sp
= a6 -6 si—
reward |:> g N pos porg
=1 (Sh, an I azl a22 a; G’ZH
+ | environment —
< mi(ls1) ma(fs2) ms([ss) 7u(|sm)

<
next state
Sh1 ~ Pu(c[sn, an)

© Begin with the terminal step h = H + 1:
Vf717+1 =0, QTI;H-I = 0.

@ Backtrack h=H,H —1,...,1:
Qh(s,a) :==E[rn(sn,an)] + Egp,(1s,0) Vi1 (s")

immediate reward next step’s value

Vi (s) = EGNW}L(‘|S)QZ(S7CL)

29

