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Background: finite-horizon two-player zero-sum Markov games

Statistical perspective: sample complexity



Multi-agent reinforcement learning (MARL)

To collaborate or to compete, that is the question.



MARL = Game theory + RL

-1
@
o @

o0°
o ‘,\g

szr

Scissors
@ beats paper @

$

¥
s

IS
2
F

action

state s; a; ~ 7T('|St)

reward |
e =1(8t, a1 |

=1 environment |¢ — —
next state

st+1 ~ P([st,at)



Challenges in MARL: nonstationarity
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From a single-agent perspective:
the environment is time-varying and nonstationary!




Challenges in MARL: curse of multiple agents




Two-player zero-sum Markov games
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Background: finite-horizon two-player zero-sum
Markov games



Two-player zero-sum Markov games (finite-horizon)
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S: shared state space e A = [A]: action space of max-player

H: horizon e 3 = [B]: action space of min-player

immediate reward: max-player 7, (s, a,b) € [0, 1]
min-player —r,,(s, a,b)

w = {un}: policy of max-player;

Pp(-|s,a,b): unknown transition probabilities

v ={vp}: policy of min-player



Value function
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Value function of policy pair (p, v):
H

VI (s) Z st,at,bt)‘shzs
t=h
H
QY (s,a,b) := Z st,at,bt)’st:s,at:a,bt:b
t=h
o {(at,bs, st41)}: generated when max-player and min-player execute
policies 1 and v independently (i.e. no coordination)



Optimal policy?
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o Each agent seeks optimal policy maximizing her own value

e But two agents have conflicting goals . ..
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Compromise: Nash equilibrium (NE)

John von Neumann John Nash
An NE policy pair (u*, v*) obeys
max V*Y =VH Y =minVH* ¥
o v

e no unilateral deviation is beneficial

e no coordination between two agents (they act independently)
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Nash value iteration (finite-horizon)

Nash value iteration: for h = H,...,1

Qnls,a,b) ¢—ri(s,ab)+ B | maxminp(s) Qnar(s)(s) |,
s'~Pp(-|s,a,b) | n(s) v(s)

matrix game

where Qh(s) = [Qh(sa K )} € RAXB‘

e The matrix game can be solved efficiently (see next lecture).

e Requires knowledge of the transition kernel Py (+|s, a,b).

How do we learn the NE without access to the model?
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Aside: infinite-horizon discounted setting

Value function of policy pair (i, v):

oo
ZWtTt(St,at,bt) So = 31
t=0

Z’ytr(st,at,bt)

t=0

Vi (s) = E

Q""(s,a,b) :=FE

S0 = s,a9 = a,bg = b}

where v € [0, 1) is the discount factor.

Nash value iteration:

Q(s,a,b) +—ru(s,a,b) +7 max minu(s’fcz(s’)u(svl ,

E
s'~P(-|s,a,b) n(s) v(s)

matrix game

where Q(s) = [Q(s, )] € RA%E.
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Statistical perspective: sample complexity



A generative model / simulator

generative mooel

One can query generative model w/ state-action-step tuple (s, a, b, k), and
obtain s’ "% Pu(s'|s,a,b)
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generative model

Question: how many samples are sufficient to learn an

e-Nash policy pair ?

max,, V# P —e<VFA ?<min, Vi V4e



Model-based approach (non-adaptive sampling)

— [Zhang et al., 2020]

for each (a,b)

planning
oracle
empirical
A ’ model P
’_‘ _____________________ . call generative moolel
N times
for any (s, h)
1. for each (s,a,b, h), call generative models N times
2. build empirical model P, and run “plug-in" methods
- 4 -
sample complexity: w — curse of multiagents! J
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Breaking the curse of multi-agents?

— [Jin et al., 2021, Song et al., 2021, Mao and Basar, 2022]
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V-learning (online setting): MARL meets adversarial learning: for the
max-player, for h=1,... | H

1. adaptive sampling: sampling A based on up(-|s)

2. estimate V-function only with Hoeffding bonus (of size S)

3. update policy via adversarial bandit learning subroutine

6
sample complexity: w J
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Summary so far
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Can we simultaneously overcome

curse of multi-agents & barrier of long horizon?
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Improved algorithm (with a generative model)

— [Liet al., 2022]

for every (s,h)
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Nash-Q-FTRL: for the max-player, for h = H,...,1
e collect k =1,..., K samples:

1. adaptive sampling: sample A based on uf (-|s)
2. estimate single-agent Q-function Q(s,-) via Q-learning

3. update policy uy ' (+|s) via adversarial bandit learning subroutine

e output a Markov policy py, and Vj, with Bernstein bonuses
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Single-side estimate via adaptive sampling
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One-sided Q-function estimation via adaptive sampling
e e.g. (Q(s,a) as opposed to Q(s,a,b)
e draw an independent sample based on current policy iterates:
bh75,a ~ Vh("S)v 5;175,a ~ Ph(57 a, bhysﬁa)
instead of sampling over all b € B.

e update the one-sided Q-function via the Q-learning update rule

21



Adversarial learning via FTRL

for every (s,h)
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Policy update via adversarial learning routine
o Given the one-sided Q-estimate Q% (s, a), update the policy via
Follow-the-Regularized-Leader (FTRL) (with entropy
regularization):

M’ZH = arg max {<W,Qﬁ(s,a)> +
™ Nk+1

H(?T)} X exp (nk+1Q§(8, a))

This is exponential weight update.
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Main result: two-player zero-sum Markov games

Theorem 1 ([Li et al., 2022])
For any 0 < € < H, the policy pair (fi,V) returned by Nash-Q-FTRL is
e-Nash, with sample complexity at most

~(H*S(A+ B

0 (( i )).

2

e minimax lower bound: Q(W)

breaks curse of multi-agents & long-horizon barrier at oncel!

full e-range (no burn-in cost)

other features: Markov policy, decentralized, ...
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Nash-Q-FTRL breaks curses of multi-agents and long-horizon barrier

simultaneously!




Extension: multi-player general-sum Markov games

e Learning NE in general-sum games is computationally infeasible (i.e.,
PPAD-complete)

e Instead, focusing on learning the coarse correlated equilibrium (CCE).
A joint policy 7 is said to be a CCE if

Vii(s) = Vi (s), for all (s,i) € S x [m].

o A key distinction from the definition of NE lies in the fact that it allows
the policy to be correlated across the players.
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Extension: multi-player general-sum Markov games

Theorem 2 ([Li et al., 2022])

For any 0 < e < H, the joint policy @ returned by the proposed algorithm is
e-CCE, with sample complexity at most

5<H4sziAi)

2

e minimax lower bound:
~ (H4S max; Az)

Q =

e near-optimal when the number of players m is fixed
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