Foundations of Reinforcement Learning

Multi-agent RL: sample complexity

Yuejie Chi

Department of Electrical and Computer Engineering

Carnegie Mellon University

Spring 2023

Outline

Background: finite-horizon two-player zero-sum Markov games

Statistical perspective: sample complexity

Multi-agent reinforcement learning (MARL)

To collaborate or to compete, that is the question.

MARL = Game theory + RL

Challenges in MARL: nonstationarity

From a single-agent perspective: the environment is **time-varying** and **nonstationary!**

Challenges in MARL: curse of multiple agents

The explosion of choices:
The joint action space grows **exponentially** with the agents!

Two-player zero-sum Markov games

Statistical perspective: this lecture

Optimization perspective: next lecture

Background: finite-horizon two-player zero-sum Markov games

Two-player zero-sum Markov games (finite-horizon)

- \mathcal{S} : shared state space $\mathcal{A} = [A]$: action space of max-player
- H: horizon

- $\mathcal{B} = [B]$: action space of min-player
- immediate reward: max-player $r_h(s, a, b) \in [0, 1]$ min-player $-r_h(s, a, b)$
- $\mu = \{\mu_h\}$: policy of max-player; $\nu = \{\nu_h\}$: policy of min-player
- $P_h(\cdot \mid s, a, b)$: unknown transition probabilities

Value function

Value function of policy pair (μ, ν) :

$$V_h^{\mu,\nu}(s) := \mathbb{E}\left[\sum_{t=h}^{H} r_t(s_t, a_t, b_t) \,\middle|\, s_h = s\right]$$

$$Q_h^{\mu,\nu}(s, a, b) := \mathbb{E}\left[\sum_{t=h}^{H} r_t(s_t, a_t, b_t) \,\middle|\, s_t = s, a_t = a, b_t = b\right]$$

• $\{(a_t, b_t, s_{t+1})\}$: generated when max-player and min-player execute policies μ and ν independently (i.e. no coordination)

Optimal policy?

- Each agent seeks **optimal policy** maximizing her own value
- But two agents have conflicting goals ...

Compromise: Nash equilibrium (NE)

John von Neumann

John Nash

An NE policy pair $(\mu^{\star}, \nu^{\star})$ obeys

$$\max_{\mu} V^{\mu,\nu^\star} = V^{\mu^\star,\nu^\star} = \min_{\nu} V^{\mu^\star,\nu}$$

- no unilateral deviation is beneficial
- no coordination between two agents (they act independently)

Nash value iteration (finite-horizon)

Nash value iteration: for $h = H, \dots, 1$

$$Q_h(s, a, b) \longleftarrow r_h(s, a, b) + \underset{s' \sim P_h(\cdot \mid s, a, b)}{\mathbb{E}} \left[\underbrace{\max_{\mu(s)} \min_{\nu(s)} \mu(s')^{\top} Q_{h+1}(s') \nu(s')}_{\text{matrix game}} \right],$$

where $Q_h(s) = [Q_h(s,\cdot,\cdot)] \in \mathbb{R}^{A \times B}$.

- The matrix game can be solved efficiently (see next lecture).
- Requires knowledge of the transition kernel $P_h(\cdot|s,a,b)$.

How do we learn the NE without access to the model?

Aside: infinite-horizon discounted setting

Value function of policy pair (μ, ν) :

$$V^{\mu,\nu}(s) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t(s_t, a_t, b_t) \,\middle|\, s_0 = s\right]$$

$$Q^{\mu,\nu}(s, a, b) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, b_t) \,\middle|\, s_0 = s, a_0 = a, b_0 = b\right]$$

where $\gamma \in [0,1)$ is the discount factor.

Nash value iteration:

$$Q(s, a, b) \longleftarrow r_h(s, a, b) + \gamma \mathop{\mathbb{E}}_{s' \sim P(\cdot \mid s, a, b)} \left[\underbrace{\max_{\mu(s)} \min_{\nu(s)} \mu(s')^{\top} Q(s') \nu(s')}_{\text{matrix game}} \right],$$

where
$$Q(s) = [Q(s, \cdot, \cdot)] \in \mathbb{R}^{A \times B}$$
.

A generative model / simulator

One can query generative model w/ state-action-step tuple (s,a,b,h), and obtain $s' \stackrel{\text{ind.}}{\sim} P_h(s' \,|\, s,a,b)$

Question: how many samples are sufficient to learn an

$$\underbrace{\varepsilon\text{-Nash policy pair}}_{\max_{\mu}V^{\mu,\,\hat{\nu}}-\varepsilon\leq V^{\hat{\mu},\,\hat{\nu}}\leq \min_{\nu}V^{\hat{\mu},\,\nu}+\varepsilon}?$$

Model-based approach (non-adaptive sampling)

— [Zhang et al., 2020]

- 1. for each (s, a, b, h), call generative models N times
- 2. build empirical model \widehat{P} , and run "plug-in" methods

sample complexity: $\frac{H^4SAB}{\varepsilon^2}$ — curse of multiagents!

Breaking the curse of multi-agents?

— [Jin et al., 2021, Song et al., 2021, Mao and Başar, 2022]

V-learning (online setting): MARL meets adversarial learning: for the max-player, for $h=1,\ldots,H$

- 1. adaptive sampling: sampling \mathcal{A} based on $\mu_h(\cdot|s)$
- 2. estimate V-function only with *Hoeffding bonus* (of size S)
- 3. update policy via adversarial bandit learning subroutine

sample complexity: $\frac{H^6S(A+B)}{\varepsilon^2}$

Summary so far

Can we simultaneously overcome curse of multi-agents & barrier of long horizon?

Improved algorithm (with a generative model)

— [Li et al., 2022]

Nash-Q-FTRL: for the max-player, for $h = H, \dots, 1$

- collect $k = 1, \dots, K$ samples:
 - 1. adaptive sampling: sample A based on $\mu_h^k(\cdot|s)$
 - 2. estimate single-agent Q-function $Q_h(s,\cdot)$ via Q-learning
 - 3. update policy $\mu_h^{k+1}(\cdot|s)$ via adversarial bandit learning subroutine
- ullet output a Markov policy μ_h and V_h with Bernstein bonuses

Single-side estimate via adaptive sampling

One-sided Q-function estimation via adaptive sampling

- ullet e.g. Q(s,a) as opposed to Q(s,a,b)
- draw an independent sample based on current policy iterates:

$$b_{h,s,a} \sim \nu_h(\cdot|s), \qquad s'_{h,s,a} \sim P_h(s,a,b_{h,s,a})$$

instead of sampling over all $b \in \mathcal{B}$.

update the one-sided Q-function via the Q-learning update rule

Adversarial learning via FTRL

Policy update via adversarial learning routine

• Given the one-sided Q-estimate $Q_h^k(s,a)$, update the policy via Follow-the-Regularized-Leader (FTRL) (with entropy regularization):

$$\mu_h^{k+1} = \arg\max_{\pi} \left\{ \left\langle \pi, Q_h^k(s, a) \right\rangle + \frac{1}{\eta_{k+1}} \mathcal{H}(\pi) \right\} \propto \exp\left(\eta_{k+1} Q_h^k(s, a) \right)$$

This is exponential weight update.

Main result: two-player zero-sum Markov games

Theorem 1 ([Li et al., 2022])

For any $0 < \varepsilon \leq \underline{H}$, the policy pair $(\widehat{\mu}, \widehat{\nu})$ returned by Nash-Q-FTRL is ε -Nash, with sample complexity at most

$$\widetilde{O}\bigg(\frac{H^4S(A+B)}{\varepsilon^2}\bigg).$$

- minimax lower bound: $\widetilde{\Omega}ig(rac{H^4S(A+B)}{arepsilon^2}ig)$
- breaks curse of multi-agents & long-horizon barrier at once!
- full ε -range (no burn-in cost)
- other features: Markov policy, decentralized, ...

Nash-Q-FTRL breaks curses of multi-agents and long-horizon barrier simultaneously!

Extension: multi-player general-sum Markov games

- Learning NE in general-sum games is computationally infeasible (i.e., PPAD-complete)
- Instead, focusing on learning the coarse correlated equilibrium (CCE). A joint policy π is said to be a CCE if

$$V_{i,1}^{\pi}(s) \ge V_{i,1}^{\star,\pi_{-i}}(s), \qquad \text{for all } (s,i) \in \mathcal{S} \times [m].$$

 A key distinction from the definition of NE lies in the fact that it allows the policy to be correlated across the players.

Extension: multi-player general-sum Markov games

Theorem 2 ([Li et al., 2022])

For any $0 < \varepsilon \le H$, the joint policy $\widehat{\pi}$ returned by the proposed algorithm is ε -CCE, with sample complexity at most

$$\widetilde{O}\left(\frac{H^4S\sum_i A_i}{\varepsilon^2}\right)$$

minimax lower bound:

$$\widetilde{\Omega}\left(\frac{H^4 S \max_i A_i}{\varepsilon^2}\right)$$

ullet near-optimal when the number of players m is fixed

References I

Jin, C., Liu, Q., Wang, Y., and Yu, T. (2021).

V-learning—a simple, efficient, decentralized algorithm for multiagent RL. arXiv preprint arXiv:2110.14555.

Li, G., Chi, Y., Wei, Y., and Chen, Y. (2022).

Minimax-optimal multi-agent RL in Markov games with a generative model. In Advances in Neural Information Processing Systems.

Mao, W. and Başar, T. (2022).

Provably efficient reinforcement learning in decentralized general-sum Markov games. Dynamic Games and Applications, pages 1–22.

Song, Z., Mei, S., and Bai, Y. (2021).

When can we learn general-sum Markov games with a large number of players sample-efficiently? arXiv preprint arXiv:2110.04184.

Zhang, K., Kakade, S., Basar, T., and Yang, L. (2020).

Model-based multi-agent RL in zero-sum Markov games with near-optimal sample complexity. *Advances in Neural Information Processing Systems*, 33:1166–1178.