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Global convergence of entropy-regularized NPG

A mirror descent perspective and alternative analysis

Beyond entropy regularization



Softmax policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that
maximize, V™ (p) :=Esu, [V ()]

softmax parameterization:
mo(als) o exp(6(s, a))

maximizeg V™ (p) :=Eqsn, [V (s)]

Policy gradient method
Fort=0,1,--
O]
ot — () + VeV (p)

where 1 is the learning rate.




How fast does softmax PG converge?

\ [&; Loading...
il

o [Agarwal et al., 2021] showed that softmax PG converges asymptotically
to the global optimal policy.

()

e [Li et al., 2023] showed that softmax PG may take \S|26
to converge!

iterations

Can we accelerate the convergence using algorithmic tricks? J|




Natural policy gradient

Natural Gradient

Natural policy gradient (NPG) method [Kakade, 2001]

Fort=0,1,---

(t)
90Ut =9 4 (F)Ivev™e (p)

where 7 is the learning rate and ]-'5 is the Fisher information matrix:

]—'g =E |:(V0 log7r9(a|s)) (Vg lOgﬂ'e(a|S))Tj| .




Global convergence of NPG

Theorem 1 ([Agarwal et al., 2021])

Set () as a uniform policy. For all t > 0, we have

log |A| . 1 ) 1
U (1—7)?

VO () > V*(p) ( L

Implication: set n > (1 — v)%log|.A|, we find an e-optimal policy within at
most

———— iterations.
(1= )%

Global convergence at a sublinear rate independent of |S], | AJ!
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Global convergence of entropy-regularized NPG



Entropy regularization

To T1 T2 T3 T4
S0 ‘l S1 ‘I S92 ‘l S3 ‘I S4 ‘l
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ag ay az as Gy
2 2 2 2 2
m([s0)  w(ls1)  w(|s2)  w(lss)  w(|sa)

5z5+1 ~ P(|st, ar)

To encourage exploration, promote the stochasticity of the policy using the
“soft” value function (Williams and Peng, 1991):

o0

Z (re + 7H( (|St))|5025

=0

Vs e S V(

where H is the Shannon entropy, and 7 > 0 is the reg. parameter.

maximizeg V(p) := Eqsn, [V(5)] J




Entropy-regularized NPG

Natural Gradient

Entropy-regularized NPG
Fort=0,1,---

(t)
0D = 9O 4 n(F) VeV, (p)

where 7 is the learning rate and .7:,? is the Fisher information matrix:

.Fg =FE {(Vg logTrg(a|s)) (Vg lOgﬂ'g(CL|S))T:| .




Entropy-regularized natural gradient helps!

Toy example: a bandit with 3 arms of rewards 1, 0.9 and 0.1.

Policy Gradient Natural Policy Gradient

UOT}RZIIRNLSOI 9SBIIIUL

log m(a1) log 7(a1)



Unreasonable effectiveness in practice

‘We also found that adding the entropy of the policy 7 to the
objective function improved exploration by discouraging
premature convergence to suboptimal deterministic poli-
cies. This technique was originally proposed by (Williams
& Peng, 1991), who found that it was particularly help-
ful on tasks requiring hierarchical behavior. The gradi-

TRPO = NPG + line search A3C (Mnih et al., 2016)
(Schulman et al., 2015) SAC (Haarnoja et al., 2018)

Can we justify the efficacy of entropy-regularized NPG?
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Entropy-regularized NPG in the tabular setting

Entropy-regularized NPG

Fort =0,1,- -, the policy is updated via
() o w0 (1s) T exp(QF (s, ) /1) T
~—— —_——

current policy soft greedy

where Q(Tt) = Q’Tr(t) is the soft Q-function of 7(¥), and 0 < n < 1_77

e invariant with the choice of p

o Reduces to soft policy iteration (SP1) when 5 = =2,

T
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Linear convergence with exact gradient

. ® .
Exact oracle: perfect evaluation of Q7 ' given w(*);

Theorem 2 ([Cen et al., 2022])

For any learning rate 0 < n < (1 — ~)/7, the entropy-regularized NPG
updates satisfy

e Linear convergence of soft value functions:

IV = VI Dl <3C1 (1= n7)"
e Linear convergence of soft Q-functions:

1Q7 = Q¥ PVl <7CL (1= 117)",

for all t > 0, where Q% is the optimal soft Q-function, and

C1=Q7 — Q(O)HOO +27 (1 a 1777) || log 7% logW(O)Hoo
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Implications

To reach |Qr — (t+1)H < ¢, the iteration complexity is at most

o General learning rates (0 <7 < +=2):
1 (Cl’}/)
— log [ XL
nr €

¢ Soft policy iteration (1 = 1%):

* 0
L (nczT— “w)
g
1—7

Global linear convergence of entropy-regularized NPG
at a rate independent of |S], |Al!

13



Comparisons with entropy-regularized PG

Policy Gradient
SN T

Natural Policy Gradient Log Policy Difference

rrrrrr Natural Policy Gradient
Policy Gradient

4 2 0 ) 3 2 1 0 0 1000 2000 3000 4000 5000
log w(a1) log m(a1) #iterations

[Mei et al., 2020] showed entropy-regularized PG achieves

Vip) = V() < (Vo) = V()

* -1
1 — )4 arT 2
cexp | — ( ") -2 min p(s) ( inf  min ﬂ(k)(a|s)>
(8/7 + 4 + 8log | A])|S| P s 0<k<t—1 s,a

can be exponential in | S| and —L—
1—v

Much faster convergence of entropy-regularized NPG
at a dimension-free rate!
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Comparison with

unregularized NPG

(t
-
.

x

Regularized NPG
7 =10.001

Vanilla NPG
7=0

10? —— =001
n=01

—— =1

fler - vl

—%— =001
n=01

—— =1

0 1000 2000 3000 4000 5000

#iterations

Linear rate: n% log (1)
[Cen et al., 2022]

Sublinear rate:

0 1000 2000 3000 4000 5000
#iterations

1
min {7, (1=7)7Te
[Agarwal et al., 2020]

Entropy regularization enables fast convergence! )




Entropy-regularized NPG with inexact gradients

. . ® . . At
Inexact oracle: inexact evaluation of QT given 7™ which returns Qg)

that R
109 - Q¥ <6

e.g., using sample-based estimators such as REINFORCE (williams, 1992).

Inexact entropy-regularized NPG:

1— 2o nQY (s,a)
7 (als) o (ﬂ(t)(a|s)) =7 exp (ﬁ>

Question: Robustness of entropy-regularized NPG? J
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Linear convergence with inexact gradients

Theorem 3 ([Cen et al., 2022]; improved)

For any learning rate 0 < n < (1 — ~)/7, the entropy-regularized NPG
updates achieve the same iteration complexity as the exact case, as long as

1— -
5§7.min{f, /fT}
0% 4 2

e Crude sample complexity for finding an c-optimal policy in the
original MDP using a generative model:

o(a=a)

o set 7= (1 —~)e/log|Al;
e in a generative model takes no larger than O(|S||A|(1 —~)73672%)
samples to achieve §-accurate estimate of Q(Tt) per iteration;
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A glimpse of the analysis



A key lemma: monotonic performance improvement

v (+1)

1 T
VT(“'I)(p) — VT(ﬂ (p) = IESngH) [ (E —1C 7) KL(F(t+1)(,|3) H W(t)(.|s)>

/ KL divergence

discounted state

visitation distribution + lKL (7r(t)(-|s) H F(t+1)('|3))]
n

KL divergence

Implication: monotonic improvement of V,.(s) and Q- (s, a). J
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Recall: Bellman’s optimality principle

Bellman operator

T(Q)(s,a):= 7r(s,a) +7v E [maX Q(s',a")
—— s'~P(|s,a) La’€A
immediate reward
next state's value

e one-step look-ahead

Bellman equation: Q* is unique solution to
T@Q)=Q"
~y-contraction of Bellman operator:

1T(Q1) = T(Q2) oo <7/IQ1 — Q2|

Richard Bellman
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A key operator: soft Bellman operator

Soft Bellman operator

T-(Q)(s,a) = r(s,a)

——
immediate reward
+’Y E max E Q(S/,a/) _Tlogﬂ_(a/‘s/)} 7
s'~P(c]s,a) | T(|s") a’~m(-]s”) N—_—— —_—
next state’s value entropy

Soft Bellman equation: Q% is unique solution to
Q) = Q; ,Lg/f |
~-contraction of soft Bellman operator: \ﬁ
[7:(Q1) = Tr(Q2)|loo <[1Q1 — Q2|0

Richard Bellman
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Analysis of soft policy iteration (n = 1=2)

T

Policy iteration Soft policy iteration

Bellman operator Soft Bellman operator
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A key linear system: general learning rates

* (t)
j0: - Q01 | g, o [10 = rloseo ]
|Q5 = Tlog | 0

where £ oc 7() is an auxiliary sequence, then

nr t+1
Tt4+1 < A.I?t + v (1 - ) Y,

Let x; := [

1=~

where

[ 1o

1 1—v 1—v

is a rank-1 matrix with a non-zero eigenvalue 1 —n7

contraction rate!
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A mirror descent perspective
and alternative analysis

24



Detour: mirror descent

x(t) .
X gradient step
x(t+1) (]

e The gradient descent update rule
2D = py (a:(t) _ nGva(x(t)))

is equivalent to minimizing local quadratic approximation of f:

1

1GD

(t+1) — i < ONp- (t)>
x argmin Vi), z -z +2

e ngp > 0 is the step size and Py is the projection operator to X.

lz — 293,

25



Detour: mirror descent

Vo

(Vo)™

e The mirror descent update rule

D) = argmin <Vf(x(t)), x— m(t)> + LD<1>(x, z®)
TEX MD

is obtained by replacing ||z — 2|3 with Bregman divergence
Do(z,2) = d(z) — d(z) — <x — 2, V@(x(t))> .

e nuvp > 0 is the step size.

26



A mirror descent view of entropy-regularized NPG

Entropy-reg. NPG = mirror descent with KL divergence: (Lan, 2021; Shani
et al., 2020)

. 1
7D ([s) = argmin ( — QY (s, ), p) — 7H(p) + —KL(p[| 7 ([s))
pEA(A) IMD
(t) 1 (t) _IMDT
o< w7 (:]s) TFmoT exp(Q; (s, -)/T) THmoT
—— S ——
current policy soft greedy

forall s € S.
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A mirror descent view of entropy-regularized NPG

Entropy-reg. NPG = mirror descent with KL divergence: (Lan, 2021; Shani
et al., 2020)

. 1
7D (|s) = argmin ( — QW (s, ), p) = TH(p) + —KL(p | 7 (:|s))
pEA(A) ™MD
IMD ™

1
o ) (-s) TFovpT eXp(Q.(rt)(S, )/7) TFovp™
o 77-(1‘/)(.|S)177]7'eXp(QS_t)(s7 .)/7)777—

for all s € S, with
Ui

TIMD = 71_7_777_.
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Redux: Linear convergence with exact gradient

[Lan, 2022] provided an alternative framework for analyzing regularized
natural policy gradient (called policy mirror descent - PMD).

Theorem 4 ([Lan, 2022])

For any learning rate 0 < n < (1 — ~)/7, the entropy-regularized NPG
updates satisfy

p
x

Vi (p) — VI (p) < cg\

nr yttl
1—”,/}

max {'y, 1-—
oo

for all t > 0, where v} is the stationary distribution of 7%,

1—
and  Co=Vrw)-VOw)+—2L 5 [KL(x:|| 7r<0>(s)>] .
n

T *
E1 %4

P

*
VT

_ p(s)

o se8 vE(s)’
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Take-away message

With a fixed learning rate 0 < 1 < (1 — «y)/7, the iteration complexity for
entropy-regularized NPG to reach

Vi (p) = VO(p) < €

is no larger than the minimum of

6(i log (@)) [Cen et al., 2022]

nr

and

6(max {L - 7}1og _log (@)) [Lan, 2022]

1—-v" nr vl
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Key lemmas

Regularized performance difference lemma: for any two policies 7 and 7/,

[(QF (), D(s) = () + TH(= 1 (5) = TH((5))]

=—— E
1= s~dp

Regularized three-point identity: for any policy ,
ﬁ [<Q9(s), 7D (s) = 7(s) ) + TH(TD(s) — TH(W(S))]

l—~ t+1 t+1 t t
= mKL(WIIW( T (5)) + KL (s) [ 719 () — KL(r [| 7D (s)).

31



Proof sketch

Applying regularized performance difference lemma gives:

VD (p) = VI (p)

= ﬁ E, [<Q$”(s), D (s) — 7 (s )> +rH (D (5)) — m(nm(s))]
> % dg:) ) IE [<Q(z)( ), (t+1)(8) _ gt )( )> +T7-l( (t+1) ( ) _TH(W(t)(S))]
p ~dlF

With p set to stationary state distribution v} of 7%, we have

S R S -6
L—oyllgrr T 1=l 1=

32



Proof sketch

We end up with:
VI ) - VO )
> E[(QV(s). 70D (5) =70 (s)) + 7H(x D (s)) — (D (5))] -

7'r
s~d T
V*

T

Adding and subtracting terms,
VI (wr) = VO (vr)
= E_[(QV() 1) = 70(s)) + TH(ri(s)) — TH(x " (3))]

us
s~d T
VT

+ E_[(QW(s), 7 (s) = w1 (s)) + rH(x D (s)) = TH(w(9))]

*
SNVT
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Proof sketch

Applying the two key lemmas gives

VI () = VIO (07)

T T

> (1= ) =V )

+ %SEEV {(1 — KL(rE || 7D (s)) — (1 — v — nr)KL(7x || 7P (s))] .

Rearranging the terms,

1 _
Vi) =V + —1 B [KL(rr | 7 (s))]

T n s~

<A (V) — VO (2) + 1‘”% E_[KL(rt | 70(s))]

3 *
s~V L

< max {7,1— 1”_2}{1/:(1/;) VO + 1_77 E. |:KL(7T: I 7T(t)(s))] }

S~V
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Proof sketch

Finally, we have

v*<u*>fvf<t“><u:>+1% E_[KL(rr |70 (s))]

T *
S~UE

LT N ey 0y LT 1 -(0)
<max {71 = 7Ty VO + 2 B (KU R0)] |

Applying the bound

v
*
vz

(V7 (vp) = VI wr)

T
o

V2 (p) = VI (p) < ‘

finishes the proof.
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Beyond entropy regularization
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Beyond entropy regularization

Leverage regularization to promote structural properties of the learned policy.

cost-sensitive RL sparse exploration constrained and safe RL

weighted 1-norm Tsallis entropy log-barrier

37



Regularized RL in general form

action To T1 T2 3 T4

state s a; ~ W(_‘St)
______ agent = — o la lae .ol g |
= 11— 2 3 4
A A '

reward

Sr,:+1 ~ P("Snat)

The regularized value function is defined as

VseS: VIi(s):=E [Z Y (re — The, (m(-[s¢))) | s0 = s,
t=0
where h; is convex (and possibly nonsmooth) w.r.t. 7(:|s).

maximize, V[ (p) :=Es, [VT(s)] J
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Generalized Policy Mirror Descent (GPMD)

Generalized Policy Mirror Descent (GPMD) [Zhan et al., 2023]
Fort=0,1,---, update

7D (|s) = argmin (—Q+(s, ), p) + Ths(p)
PEA(A)

1
+ —— Dy, (p, 79 (:]5); 0hs (1) (]9))),
IMD

Generalized Bregman divergence w.r.t. hg

where a surrogate of Oh,(7(!)(-|s)) is updated recursively.

Compare with PMD [Lan, 2022]:

1
7D (|s) = argmin (—Q- (s, ), p) + Ths(p) + —KL(p|| 71 (-]s)),
PEA(A) MD

e GPMD achieves linear convergence for general convex and nonsmooth
hs! In contrast, PMD requires hs + H is convex.
39



Numerical examples

Q- QY

hs = Tsallis Entropy hs = Log Barrier
10! 10!
i
M=o v
TR ]
21071 510714 1
= *
\ = !
\ - [«] ‘e yemcoxoos
10-3 Euumesun SEN U I 03 & T A e e
X =001 s X =001
&
+ =01 - = + =01 ‘\.‘\\
ol o on=1 L sl e =1 .\\‘\\
PMD e PMD ~
---- GPMD T ---- GPMD
1077 1077
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
#iterations #iterations

GPMD achieves faster convergence than PMD! J
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