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Policy optimization

maximizep value(policy(f))

® directly optimize the policy, which is the quantity of interest;
® allow flexible differentiable parameterizations of the policy;

® work with both continuous and discrete problems.
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Theoretical challenges: non-concavity

Little understanding on the global convergence of policy gradient methods
until very recently, e.g. (Fazel et al., 2018; Bhandari and Russo, 2019; Agarwal et al., 2019; Mei
et al. 2020), and many more.

Our goal:
® introduce the algorithmic framework of popular policy gradient methods

® understand finite-time convergence rates of popular heuristics



Introduction to policy gradient methods



Policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximize, V7 (p) :=Esu, [V ()]
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Policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximize, V7 (p) :=Esu, [V ()]

Parameterization:
T = Ty J

maximizeg V™ (p) :=Esn, [V (5)]

Policy gradient method
Fort=0,1,---
O]
ot — () + VeV (p)

where 1 is the learning rate.

How to calculate the gradient?



Policy gradient derivation

® Assume Ty is differentiable when it is non-zero with gradient Vgy.
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Policy gradient derivation

® Assume Ty is differentiable when it is non-zero with gradient Vgy.

The policy gradient can be decomposed as
VoV (p)
= VoEsonp [V (50)]

Vo (Z 7T0(CL0|80)QW9(807ao))]

ap€EA

=Esonp

=Esynp [Z Voo (aols0)Q™ (s0,a0) + _ mo(aols0)VeQ™ (s0, ao)

apg€A ap€EA

We discuss the two terms separately.



Policy gradient derivation - first term

Note that
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Policy gradient derivation - first term

Note that

Vomg(als)

Vomg(als) = me(als) Tolals)

= mo(als) Vologme(als) .
—_————

score function

The first term in the policy gradient is expressed as

ESO ~p

> Voﬂe(dolSo)Q”"(So,ao)]

apEA

=Esnp [Z mg(aolso)Ve logwe(aoso)Q”(so,ao)]

ap€eA
= ESONp,aON'n'e(-\so) [va log 7o (a0‘80>Qﬂ9 <307 aO)]



Policy gradient derivation - second term

The second term in the policy gradient is expressed as

Eapnp | Y To(aols0)VeQ™ (50, ao)

apg€A
= Eqypaommo(-1s0) [ VOQ™ (50, a0)]
= Egympraogmmo(-1so) [V (7(50,a0) + Vs, p(f50,a0)V ™ (51)) ]
= VB sy mpraommo(-[s0)ss1~P(-]s0sa0) VoV ™ (51)],

which is similar to what we want to bound, but a discounted one-step
look-ahead.



Policy gradient derivation - recursion

Letting 7 denote the trajectory following policy 7y, by recursion,

VGVﬂ—Q (p) = Esowp,aowwe(~|so) [VO lOg o <a0|SO)Qﬂ'9 (307 aO)]
+VBoompaonmo(-1s0),31~P(-|s0,a0) VOV (51)]
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Letting 7 denote the trajectory following policy 7y, by recursion,
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Policy gradient derivation - recursion

Letting 7 denote the trajectory following policy 7y, by recursion,

VoV (p) = Egympagmme(-|so) [Vo1l0og mo(aols0)Q™ (50, ao)]
+ ’}/ESONI)ﬂrUNWe('|So)781NP('|So»ao) [v(’vﬂs (81)]
= E(Soyao)NT [V9 log o (ao |50)Qﬂ-‘9 (So, ao)]

+ ’YE(so,ao,shal)NT [VG log 7r9(a1|81)Q7r6 (517 al)] +...

= E(Si»ai)iZONT lz ,ytVQ log 7o (a;|s:)Q™ (s4, ai)‘|
i=0
1 Uy
=1 7E3~r1297a~r9(~|s) {Q ?(s,a)V log ﬁg(a|s)} ,

where d:,”’ is the state visitation distribution:

Ay ()= (1= VP (s =sls0),  dj = Espldi,(s)].
t=0



The policy gradient theorem

Theorem 1 (Policy gradient theorem [Sutton et al., 1999])

The policy gradient can be evaluated via

1

T B anmat1s) | @7 (5,0)V log mo(als)

VoV™ (p) =
where
° dge is the state visitation distribution,

® Vlogmg(als) is the score function.

Provides an effective scheme for policy gradient evaluation (e.g.,
REINFORCE):

® rolling out trajectory following

® evaluating the value function Q™

10



Examples of policy parameterization

Discrete action space: softmax parameterization with function
approximation

mo(als) o exp(e(s, a)TQ)

® ¢(s,a) is the feature vector of each state-action pair;

® the score function Vlogmg(als) = ¢(s,a) — Equry(.1s)[0(5, )]
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Examples of policy parameterization

Discrete action space: softmax parameterization with function
approximation

mo(als) o exp(e(s, a)TQ)

® ¢(s,a) is the feature vector of each state-action pair;

® the score function Vlogmg(als) = ¢(s,a) — Equry(.1s)[0(5, )]

Continuous action space: Gaussian policy
a~N(u(s),0%), u(s)=d(s)"0

® ¢(s) is the feature of each state;

2 is the variance (kept constant for simplicity);

) = (an(e)ot)
o2 :

® o

® the score function V log mg(als
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Baseline

The policy gradient can have high variance with limited samples.

Variance reduction: introducing a baseline

1

VoV™ (p) = TESNdZe,a~We(~|S) [(Qﬂe (s,a) —b(s)) Vg 7r9(a|s)} ,

-7

to help minimize the variance:
Eonro()s [V log 7y (als } Zﬂ_e als Veﬂ'(e(f))
= Z Vomo(als)
=Vy Zwe(a|s) =0
a

12



Baseline

Variance reduction: introducing a baseline

1 s
VoV (p) = mEsw;@,awe(-m [(Q ?(s,a) —b(s)) Vlogﬂe(ab)}

to help minimize the variance.
® In practice, choose b(s) = V™ (s), leading to

1

VoV (p) = E]Emd? Ja~mo(-]5) [A” (s,a)Vlog 79(0\5)}
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Baseline

Variance reduction: introducing a baseline

1 s
VoV (p) = mEsw;@,awe(-m [(Q ?(s,a) —b(s)) Vlogﬂe(ab)}

to help minimize the variance.

® In practice, choose b(s) = V™ (s), leading to

1
VoV7™(p) = 1=

[A” (s,a)Vlog Wg(a\s)}

swd:" ,ar~mg(+]s)

e A™(s,a) = Q7(s,a) — V™ (s) is the advantage function.
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Baseline

Variance reduction: introducing a baseline

1 s
VoV (p) = mEsw;@,awe(-m [(Q ?(s,a) —b(s)) Vlogﬂe(ab)}
to help minimize the variance.

® In practice, choose b(s) = V™ (s), leading to

1
VoV7™(p) = 1=

[A” (s,a)Vlog 779(0,‘8)}

s~d? arma(-]s)

e A™(s,a) = Q7(s,a) — V™ (s) is the advantage function.

® Instead of estimating Q™ (s, a), directly estimate A™(s,a).

13



Global convergence of
softmax policy gradient methods
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Softmax policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that

maximize, V™ (p) :=Esu, [V ()]
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Softmax policy gradient methods

Given an initial state distribution s ~ p, find policy 7 such that
maximize, V™ (p) :=Esu, [V ()]

softmax parameterization:
mo(als) o exp(8(s, a))

maximizeg V™ (p) :=Eqsn, [V (s)]

Policy gradient method
Fort=0,1,--
()
ottt — () +nVeV™o (p)

where 1 is the learning rate.
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Global convergence of the PG method

Exact gradient evaluation: suppose we can perfectly evaluate the gradient
)
VoV7o (p)7

does softmax policy gradient converge?

16



Global convergence of the PG method

Exact gradient evaluation: suppose we can perfectly evaluate the gradient

(t)

VoVTo (p),

does softmax policy gradient converge?

Theorem 2 ([Agarwal et al., 2021])

Assume p is strictly positive, i.e., p(s) > 0 for all states s. For
n < (1 —~)3/8, then we have that for all states s,

VO(s) = V™ (s) = V*(s),  t— oo
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Global convergence of the PG method

Exact gradient evaluation: suppose we can perfectly evaluate the gradient

(t)

VoVTo (p),

does softmax policy gradient converge?

Theorem 2 ([Agarwal et al., 2021])

Assume p is strictly positive, i.e., p(s) > 0 for all states s. For
n < (1 —~)3/8, then we have that for all states s,

VO(s) = V™ (s) = V*(s),  t— oo

® Softmax policy gradient finds the global optimal policy despite
nonconcavity!
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How fast does softmax PG converge?

® [Agarwal et al., 2021] showed that softmax PG converges asymptotically
to the global optimal policy.
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How fast does softmax PG converge?

L°adm3...

® [Agarwal et al., 2021] showed that softmax PG converges asymptotically
to the global optimal policy.

® [Mei et al., 2020] showed that softmax PG converges to global opt in

O(1) iterations

17



How fast does softmax PG converge?

L°adm3...

® [Agarwal et al., 2021] showed that softmax PG converges asymptotically
to the global optimal policy.

® [Mei et al., 2020] showed that softmax PG converges to global opt in

(IS, A ) O(2) iterations

y 1= 77' e
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How fast does softmax PG converge?

Loadmg...

® [Agarwal et al., 2021] showed that softmax PG converges asymptotically
to the global optimal policy.

® [Mei et al., 2020] showed that softmax PG converges to global opt in

(IS, A ) O(2) iterations

y 1= 77' e

Is the rate of PG good, bad or ugly? J
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A negative message

Theorem 3 ([Li et al., 2023])
There exists an MDP s.t. it takes softmax PG at least

1 ety | .
—|S|> 7 iterations
n

to achieve |V — V*| o, < 0.15.

18



A negative message

Theorem 3 ([Li et al., 2023])
There exists an MDP s.t. it takes softmax PG at least

1 ety | .
—|S|> 7 iterations
n

to achieve |V — V*| o, < 0.15.

® Softmax PG can take (super)-exponential time to converge
(in problems w/ large state space & long effective horizon)!

® Also hold for average sub-opt gap 51 >_.cs (VO (s) = V*(s)].

18



MDP construction for our lower bound
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MDP construction for our lower bound
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MDP construction for our lower bound
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What is happening in our constructed MDP?

1

*

(a1 | 1)

v
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What is happening in our constructed MDP?

v
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What is happening in our constructed MDP?

1
b 4
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Convergence time for state s grows geometrically as s increases
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What is happening in our constructed MDP?

1
4
() 1 / -

AR LI
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Convergence time for state s grows geometrically as s increases
. . 1.5
convergence-time(s) > (convergence-time(s — 2))
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“Seriously, lady, at this hour you'd make a
lot better time taking the subway.”



Natural policy gradient methods
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Natural policy gradient

Natural Gradient

Natural policy gradient (NPG) method [Kakade, 2001]

Fort=0,1,---

(t)
9(t+1) — a(t) + n(]_‘ﬁ)Tvov‘rrgt (p)

where 7 is the learning rate and ]-'5 is the Fisher information matrix:

.7-',? =E |:(V0 logwe(a|3)) (Vg lOgﬂ'e(a|S))Tj| .
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Natural policy gradient (NPG) method [Kakade, 2001]
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Connection with TRPO/PPO

TRPO/PPO (Schulman et al., 2015; 2017) are popular heuristics in training RL
algorithms, with KL regularization

1
KLy o) ~ 50 — 06) T FJ (6 — 6
via constrained or proximal terms:
60D = argmax V' (p) + (6 — 60) VeV (p) — KL (ml|m)
7

~ 00 4 p(FO) Vv (p),

leading to exactly NPG!
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Connection with TRPO/PPO

TRPO/PPO (Schulman et al., 2015; 2017) are popular heuristics in training RL
algorithms, with KL regularization

KL lms) = 56— 00)T I8 — 0©)
via constrained or proximal terms:
0 = argmax V74 (p) + (0. 0) "oV (p) — KL(r, )
~ 00 4 (F2) VeV (p),
leading to exactly NPG!

NPG ~ TRPO/PPO! J

24



NPG in the tabular setting

Natural policy gradient (NPG) method (Tabular setting)
Fort =0,1,---, NPG updates the policy via

(g . (g .
D (s o 710 (]s) exp <77Q (s, )) oc 70 ([ exp (TIA (s, ))
——— 1—7 1—7

current policy — —
soft greedy

where Q) := Q“(t) and A® = A™" s the Q/advantage function of 7, and
n > 0 is the learning rate.

® the derivation is left as an exercise; see [Agarwal et al., 2019].
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——— 1—7 1—7

current policy — —
soft greedy

where Q) := Q“(t) and A® = A™" s the Q/advantage function of 7, and
n > 0 is the learning rate.

® the derivation is left as an exercise; see [Agarwal et al., 2019].

® invariant with the choice of p

25



NPG in the tabular setting

Natural policy gradient (NPG) method (Tabular setting)
Fort =0,1,---, NPG updates the policy via

(g . (g .
D (s o 710 (]s) exp <77Q (s, )) oc 70 ([ exp (TIA (s, ))
——— 1—7 1—7

current policy — —
soft greedy

where Q) := Q“(t) and A® = A™" s the Q/advantage function of 7, and
n > 0 is the learning rate.

® the derivation is left as an exercise; see [Agarwal et al., 2019].
® invariant with the choice of p

® Reduces to policy iteration (Pl) when 1 = oco.

25



Global convergence of NPG

Theorem 4 ([Agarwal et al., 2021])

Set (9 as a uniform policy. For all t > 0, we have

n (1—7)?

26



Global convergence of NPG

Theorem 4 ([Agarwal et al., 2021])

Set (9 as a uniform policy. For all t > 0, we have

(1) w( ) (1ol Al 1 \1
VO 2 v - (AL )

Implication: set n > (1 — v)%log|.A|, we find an e-optimal policy within at
most

5 iterations.

_z
(1 —7)%

26



Global convergence of NPG

Theorem 4 ([Agarwal et al., 2021])

Set (9 as a uniform policy. For all t > 0, we have

logld] 1 >1
" (1=72)t

VO (o) > V*(p) (

Implication: set n > (1 — v)%log|.A|, we find an e-optimal policy within at
most

5 iterations.

_z
(1 —7)%

Global convergence at a sublinear rate independent of |S|, |.A]|! J

26



Key ingredients of the proof

Lemma 5 (Performance difference lemma)

For all policies w, @' and distributions p over S,

™ i 1 '
Vo) =V () = T g Earmnio) 47 (s".a)].

® measures the performance difference for any pairs of policies

27



Key ingredients of the proof

Lemma 5 (Performance difference lemma)

For all policies w, @' and distributions p over S,

™ i 1 '
Vo) =V () = T g Earmnio) 47 (s".a)].

® measures the performance difference for any pairs of policies

Lemma 6 (Policy improvement of NPG)

Ve ()~ () > 1=

Esplog Z(s) > 0

where Z,(s) = Y., ' (als) exp (nA®¥)(s,a)/(1 — 7).

® monotonic performance improvement of NPG

27



Step 1: bounding the optimality gap

Denote d* := d}, and 7, := 7(+|s). By the performance difference lemma,
V*(p) = V9(p)

1
— * )
= 1_7Eswd* Ea 7 (als) A (s, a)

1 (t+1) VA
_ M*Zw (als) log%
n

7 (als)
- e <Kt<wzllw£t>> — KLt [7D) + 3" 7 (als) log Zt(s>>
77 a
1

— B (KL ) — KL () + 0 21(5)).

28



Step 2: telescoping

By the improvement lemma V1D (p) > V¥ (p),

V*(p) = VI=D(p z_: ( vy ))
e
Tl & Hani: (KL(”M”@) — KL(r}[|{"*V) +log Zt(s))
1 ! 1 T-1
= ﬁESNd* KL(W:HWéO)) + ﬁ Z Esa+ log Zi(s),

29



Step 2: telescoping

By the improvement lemma V1D (p) > V¥ (p),

V*(p) — VT-1(, z_: ( ROI ))
t=0

1 T-1

77T t=0

Euar (KL [0) — KL 7)) + log Z(s))

T-1
1 1
< e KL(w |7 (") + T > Eoar log Zy(s),

where the second term is bounded by the policy improvement lemma

1 T-1 1 T-1
- E Esar log Zy(s) < —— (V(tﬂ)(d*) - V(”(d*))
n 1—7~
t=0 t=0
1
< - T (q*) — VO (g*
< = (V@) —vO)

29



Step 3: finishing up

Putting the above together,

V*(p) = VI (p)
<1lg a KL(m5 || 7)) + _ (V(T)(d*) - v (d*))
T e (=T

log | A| 1
<
=T A=

where we used KL(7*[|7{") < log|.A| and V < -

30



Proof of Lemma 6

Proof of log Z;(s) > 0:
log Zi(s) = log Y =) (als) exp (nA®(s,0)/(1 = 7))

a

> Zﬁ(t) (as) log exp ( A(f)(s,a)/(l — 7)) (Jensen’s inequality)

Zﬂ't) als) AW (s, a)
2%2”“) al)(@Q" (s,a) = V™" (s))

=0

31



Proof of Lemma 6

Bounding V(41 (p) —

V(t+1)( ) V(t( )

>

V®(p): by the performance difference lemma,

E_. D ZW(HI s)AW (s, a)

7D (a|s) Z,(s)

1_

1
- = (t+1) B Sl bt A )
= ESNdSA»I) Ea ™ (als) log O (als)

n
1 (t+1) ( g [[ () 1
= EESNd;t-H) KL(’/T (S)H’]T (S)) + 5E5ng+1) log Zt(S)
1_
(=) Eqplog Z;(s),

where we use dgH) > (1 —)p and log Z(s) > 0.
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