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Episodic MDP and regret

Model-based RL with UCB exploration (UCB-VI)

Model-free RL with UCB exploration (UCB-Q)



Finite-horizon nonstationary MDPs

action
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reward
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H: horizon length
S: state space with size S e A: action space with size A
rr(sn,ap) € [0,1]: immediate reward in step h

= {ﬂh}lez policy (or action selection rule)
Py, (-|s,a): transition probabilities in step h



Finite-horizon nonstationary MDPs
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Bellman’s optimality equation
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next state
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Let Q5 (s, a) = max, QF (s,a) and V;*(s) = max, V7 (s) .
© Begin with the terminal step h = H + 1:
Vb*{+1 =0, Q;{-&-l =0.
@ Backtrack h=H,H —1,...,1:
Qi(s,a) = ralsn,an) +Egp,(ls,a)Viga(s)
———

immediate reward next step’s value
Vii(s) = max Q7 (s,a), mh(s) = argér;lax Qi (s,a).
a



Online RL: interacting with real environments

Sequentially execute MDP for K episodes, each consisting of H steps
— sample size: T'= KH

L execute 7'

episode 1 |::> {st,a} ri}E

N [ execute 72

an 2 2 o\H
episode 2 |::> {8h> @k T th=1

\ﬂ; execute €

episode K > {siaf i HL,

exploration (exploring unknowns) vs. exploitation (exploiting learned info) J




Regret: gap between learned policy & optimal policy

adversary learner

initial state execute |n|t|aI state execute
st : P S => | policy 7

episode 1 episode K

Performance metric: given initial states {sY}_,, define

chosen by nature/adversary

Regret(T ZK: (V1 %) (s’f))

k=1



Regret lower bounds

Theorem 1 ([Domingues et al., 2021])

For any algorithm, there exists an episodic MDP M. whose transitions
depend on the stage h, such that for T > H?SA,

1
E|[Regret(T)] > ——=V H2SAT.
(Regret(T)] > 2oV

e Ignoring other factors, the regret is at least

e The bound also reflects the impact of horizon length H and size of the
state-action space S A. Note that the value function is on the order of
H, so the “normalized” regret scales as

E[Regret(T)]

7 > VSAT = VSAHK.



Construction of hard MDP

o Recall that the regret lower bound for an n-arm bandit (with normalized
reward) is Q(v/nT).

e |t amounts to find a hard MDP that operates like a HS A-arm bandit
(with reward ~ H).

llustration of the hard MDP when S = 4. Taking H = ©(H).

action = ay
waiting

° state

action # ay,

gate state

1y good action at a
specific step

R N
rh(sp.a) =0 < 2 2 ‘ rn(sg.a) = 1{h > H +2}
bad state: good state: collecting
no reward reward after certain step
1

— Figure credit: [Domingues et al., 2021]



Can we design algorithms that achieve near-optimal regret?



Model-based RL with UCB exploration
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Online RL with model-based approach

execute 7T1
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oracle
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execute 72

e Use all the previous data to estimate transitions (empirical frequencies)

e Apply planning (e.g., value iteration) on the estimated model to learn an
updated policy for the next episode

How to balance exploration and exploitation in this framework? J
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UCB-VI: ideas

Motivated by the bandit UCB algorithm, [Azar et al., 2017] introduced upper
confidence bound (UCB) into value iteration (VI).

e Original VI: Backtrack h=H,H —1,...,1:

Qn(s,a) < rn(sn,an) + PrsaVhy1,
—_—— ———
immediate reward next step’s value

Vi(s)  max Qu(s, a),
acA

where ]ES/NP}L(,‘S@)VhH(s’) =Py 5.0Vht+1 and ﬁh@a is the empirical

estimate of P, 5 4.

e Exploitation, but no exploration.
e Adding the UCB to Q},(s,a) similar to the bandit UCB algorithm.
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UCB-VI: uncertainty quantification

Uncertainty in the next-step value ﬁh,s,thH! recall that by Hoeffding's
inequality and union bound, with probability at least 1 — 6,

H2,

P Prsa)Vita| 5y 22
H( h,s,a h,s,a) h+1 o N}L(S,a)v

where N}, (s,a) is number of visits in (s,a) at step h.
Optimistic VI: run VI using rewards {r(sp, an) + bn(sp,an)}

Qn(s,a) < min {H —h+1, rp(sp,an) + ﬁh,s,th-i-l + bh(3h7ah)}a
—_——— —— —_———

immediate reward  next step’s value bonus

Vi(s) + Igleaj{ Qn(s,a),

where the bonus is by, (sp, an) < ,/N}hz?a).
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UCB-VI: algorithm

For each episode k:

@ Backtrack h = H, H — 1,...,1: run optimistic value iteration

Qn(s,a) < min {H —h+1, rn(sh,an) + ﬁh7s,th+1 + bh(sh;ah)}7
—_——— —_——  —

immediate reward  next step’s value bonus
Vi(s) < max Qn (s, a),
acA

@ Forward h =1,..., H: take action according to the greedy policy

mh(8) + argmax Qp(s,a)
acA

and collect {sp, ap, rh}thl.
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Optimism in the face of uncertainty

Lemma 2 (Optimism)
With probability at least 1 — 6, it follows

Qh(s,a) > Qh(s,a),  Vii(s) = Vi (s)

for all (k,h,s,a).

Optimism in the face of uncertainty:
acting according to Q% (s, a), which is an
upper bound of the true Q7 (s,a).
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Regret bound of UCB-VI with Hoeffding bonus

Theorem 3 ([Azar et al., 2017])

Let § € (0,1). With probability at least 1 — 0, the regret of UCB-VI with
Hoeffding bonus satisfies

Regret(T) < VH3SAT. + H3S? Al3,
where 1 = log(HS AT /).

e The regret bound scales as
VH3SAT  assoonas T > H3SA .

burn-in cost

which is sub-optimal by a factor of v/H.

e By the optimism principle, the regret is bounded by
K K
Regret(T) = Y (Vi'(s}) = 17" (s1)) <
k=1 k=1
Tighter UCB leads to smaller regret.

(Vb = v (b)) -

16



Near regret-optimal bound

By using tighter variance-aware concentration, [Azar et al., 2017] developed
the first method that is asymptotically regret-optimal

Regret(T")
A
VH2SAT
s UCB-VI
H*S*A
0 >

S3AYH®  sample size : T'
huge burn-in cost!

Issues: (1) large burn-in cost; (2) large memory complexity

model-based: S2AH
17



Model-free RL is often more memory-efficient

o, model P,
& - " 2,
o (i.e. P € RISIMIXIS) X ‘14

o \
wodel-based X -
samples value function samples value function
vty
wodel-free
store transition kernel estimates maintain Q-estimates
— O(S?AH) memory — O(SAH) memory
Definition 4 ([Jin et al., 2018])
An RL algorithm is model-free if its space complexity is 0o(S?AH) }
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Model-free RL with UCB exploration
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Q-learning with UCB exploration

UCB-Q [Jin et al., 2018] modifies classical Q-learning with exploration bonus:
at the transition (sp, an, Sp+1)

Qn(snsan) < (1 —a)Qn(sn,an) + ot (r(sn, an) + Vit1(sn+1))

classical Q-learning

+ Qg bh, (Sh 5 ah)
—_———

bonus
e Using Hoeffding-type bonus to ensure the optimism property:

H3,

b = —
h(Sv a) N}L(S, CL)

Large variability in stochastic update rules.

o Rescaled linear learning rates:

H+1
oy =
t H+t7

t = Np(s,a)
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UCB-Q: algorithm with Hoeffding bonus

For each episode k:
Q@ Forh=1,... H:
@ Take action according to the greedy policy 71, (s) = argmax, . 4 Qn(s, a)
and observe sp+1;
@ Update the count t = Ny (sp,an) < Nin(sh,an) + 1;
© Compute the bonus by (sh,an);
@ Update the visited entry of Q-function:

Qn(sn,an) < (1 — ot)Qn(sn,an) + at (r(sn,an) + Vat1(Sh+1))

classical Q-learning
+ oubn(sn, an)
———
bonus

@ Update value function:

Vi(sn) < min{H — h + 1, max Qn(sn,a)}.
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Regret bound of UCB-Q with Hoeffding bonus

Theorem 5 ([Jin et al., 2018])

Let 6 € (0,1). With probability at least 1 — ¢, the regret of UCB-Q with
Hoeffding bonus satisfies

Regret(T) < VHASAT.,
where « = log(HS AT /).
e The regret bound
VHASAT

is sub-optimal by a factor of H. No burn-in cost!

e Can be improved to vV H3SAT by using variance-aware concentration
bounds (i.e., Bernstein inequality) to construct the UCB.

Can we design regret-optimal model-free algorithms?
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Q-learning with UCB and variance reduction

[Zhang et al., 2020] incorporates variance reduction into UCB-Q:

Qn(sn,an) < (1 — k) Qn(Sh, an) + Mk ba(sn, an)
—_——

UCB bonus
06 (Te@nt) = T @) + T @) ) (s1,00)
——
advantage reference

o Reference @, ,, batch estimate T help reduce variability

UCB-Q-Advantage is asymptotically regret-optimal ]

Issue: high burn-in cost O(S%A*H?8)
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Further developments on regret-optimal algorithms

memory
complexity
4
UCB-M-Q
Algorithm Regret S2AH | Y
UCB-VI H2SAT + H*S?A

[Azar et al., 2017]

UCB-Q-Advantage
[Zhang et al., 2020]

VHZSAT + H852 A3 T4

UCB-M-Q
[Ménard et al., 2021]

VH2SAT + H'SA

Q-EarlySettled-Advantage
[Li et al., 2021]

VH2SAT + HSSA
0

SAH |-

Q- |.yg

UCB-Q-Advantage
. burn-in cost

SApoly(H)

S*AH®

S"A;st

Model-free algorithms (Q-EarlySettled-Advantage) can simultaneously achieve

(1) regret optimality; (2) low burn-in cost; (3) memory efficiency
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From regret to sample complexity

Question: given fixed initial state sy, how many samples does it take to find

a policy 7 such that
Vi (s0) — Vi"(s0) < €7

Note that the regret

1 Re t(T)—lf:(V*( ) — Vi (
% gre K 1 (S0 1 50))

k=1
1 &
=Vi'(s0) = 32 > Vi (s0),  where @ ~ Unif({m }/_ ).
k=1
=:V[" (s0)

Setting +Regret(T) < ¢ leads to V{*(so) — Vi (s0) < e.
Example: regret of Vv H2SAT leads to a sample size of T = KH 2> H4SA.
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