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Announcement

e HW2 is posted, and will be due next Thursday (before spring break).
Easier than HW1.

e Next week, we will discuss policy optimization (small order adjustment
from the syllabus).

e Start thinking about midterm paper presentation NOW, which is
scheduled for the week after the spring break.



Midterm paper presentation

An in-class presentation on a selected paper (either self-choice upon
approval of the instructor or selected from a given pool).

e a tentative list is posted on the course website; still adding more papers

12 minutes presentation 4+ 3 minutes questions.

e Due to class size, we'll run this over 3 lectures. Presentation order will be
generated randomly.
e Participation is required - as your active participation in QA will count!

“Critical” review:

e what you like/ don't like the paper
e what are the main take-aways

highlight one result from the paper, by providing proof ideas or offering
numerical simulations.

e teaching your classmates something new!



Outline

Online RL with exploration

e-greedy exploration

Monte Carlo, Sarsa and Q-learning with GLIE



Recap: Q-learning following a behavior policy
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To achieve ||Q1 — Q*||s < €, the sample size T needs to be at least above
the order [Li et al., 2022]
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where

® [imin iS the minimum state-action occupancy probability

Hmin ‘= min /~L7rb(s>a)
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stationary distribution

o tmix is the mixing time, which captures the time to reach the steady state



Limitation

Lmin Need to be positive ==, visits the entire state-action space

e 7, must be randomized
e Can we find such 7, for all MDPs?

® limin Can be exponentially small = need a lot of samples!

2/3 1/3

Can exploration helps to mitigate this issue?




Online RL with exploration



Online RL
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Exploration under an adaptive policy:

e trial-and-error
e sequential and online

e using samples
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“Recalculating ... recalculating ..."



Model-free policy iteration?

Policy iteration

Can we run policy iteration using
samples?

e We can perform the step of policy
evaluation via Monte Carlo or
TD-learning.

e However, when 7 is( deterministic,
t
can only evaluate Q™ >(s,a) for
a = 7 (s) following policy 7(*).

Q" e Need to perform exploration!



e-greedy exploration



e-greedy exploration

o With probability 1 — € choose the greedy action

o With probability € choose an action at random

[ ¢/|A]+1—¢€ if a* =argmax,ea Q(s,a)
m(als) = { e/ Al otherwise

Theorem 1

For any e-greedy policy 7, the e-greedy policy @' with respect to QT is an
improvement, i.e. V™ (s) > V7(s), Vs € S.

e assumes exact policy evaluation



Proof of greedy policy improvement

Proof: Let m = |A|.

acA
= > Q7 (s.a)+(1—¢) max Q" (s, a)
a€A

> C S Qs+ (10 Y T M gy g

= m(als)Q™ (s,a) = V7 (s).

acA

Therefore, by the policy improvement lemma, V™ (s) > V7(s).
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Generalized policy iteration

Policy iteration Greedy policy iteration

2(0)

Does greedy policy iteration converge to the optimal Q-function/policy,
particularly when using samples?
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Monte Carlo, Sarsa and Q-learning with GLIE
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Greedy in the Limit with Infinite Exploration (GLIE)

Definition 2 (GLIE)

¢ Infinite exploration. All state-action pairs are explored infinitely many
times,

lim Ng(s,a) = o0
k— o0

e Greedy in the limit. The policy converges on a greedy policy,

lim 7 (als) = I(a = argmax Q(s,a’))
k— o0 a'c€A

o c-greedy is GLIE with ¢, = 1/k.

e Boltzmann exploration is GLIE: 74 (a|s) oc e+ ()@k(5:9) for appropriate
choice of Bk (s) [Singh et al., 2000].
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GLIE Monte-Carlo control

Monte-Carlo control requires episodic environment (since it works only with
complete sequences).

@ Sample a new episode using T;
@ Update the Q-estimate using Monte-Carlo;
© Update policy w using Q, e.g., e-greedy.

Theorem 3
GLIE Monte-Carlo control converges to the optimal Q-function,

Q(s,a) = Q*(s,a).
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Using bootstrapping for policy evaluation

TD has several advantages over Monte-Carlo (MC):
e Lower variance
e Online

e Incomplete sequences

Natural idea: use TD instead of MC for policy evaluation
e apply TD to Q(s,a)
e use e-greedy policy improvement

e update every time step (we don't need to wait for TD to converge)
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Sarsa for on-policy Q-update

On-policy Q-update:

Q(s,0) «— Q(s,0) +a(r(s,0) +1Q(s',a') ~Q(s.0))

target

e The name comes from updating using a 5-tuple: (s, a,r,s’,a’).

e The method is an on-policy method because it tries to learn about
policy 7 from experience sampled from 7.

e Can combine TD(A) in Sarsa for the target part.
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Sarsa for on-policy control

@ Initial phase: initialization Q(s,a) arbitrarily. Set Q(s,-) =0if sis a
terminal state. Initial state s and initial policy 7 (e.g., uniform).

@ Foreachroundt=1,2,...
e Choose a ~ 7(+|s) for the current state s;

e Take action a, observe r = r(s,a) and next state s’;

e Choose a’ ~ 7(-|s’) from the next state s’ and update the Q-value
Q(s,a) +— Q(s,a) + au (r(s,a) +1Q(s', a) — Q(s, a))

e s+ s, a+da.

e Update policy 7 using Q, e.g., e-greedy.

Repeat this for every episode if in an episodic environment.
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Q-learning for off-policy Q-update

max Q(s', a')
Q(s,a) ¢

r(s, a)'\/\l

Q(s,a) +— Q(s,a) + at(r(s,a) + W(Ilr}gﬁQ(s’, a’) —Q(s,a))

Off-policy Q-update:

target

e The method is an off-policy method because it tries to learn about an
improved policy from experience sampled from 7.
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Q-learning for off-policy control

@ Initial phase: initialization Q(s,a) arbitrarily. Set Q(s,-) =0if sis a
terminal state. Initial state s and initial policy 7 (e.g., uniform).

@ Foreachroundt=1,2,...
e Choose a ~ 7(-|s) for the current state s;

e Take action a, observe r = r(s,a) and next state s';

e Update the Q-value

Q(s,a) +— Q(s,a) + oy (r(s, a)+ 7 max Q(s',a") — Q(s, a))
o s+ s
e Update policy 7 using Q, e.g., e-greedy.

Repeat this for every episode if in an episodic environment.
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Convergence of Sarsa/Q-learning with GLIE

Theorem 4 ([Singh et al., 2000])

Sarsa/Q-learning converges to the optimal action-value function,
Q(s,a) = Q*(s,a), under the following conditions:

o GLIE sequence of policies 7(a|s);

e Robbins-Monro sequence of learning-rates

oo o0
g Qp = 00, E ozf < 00
t=1 t=1

e Due to GLIE, the policy will also converge to the optimal policy.
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Case study: Q-learning versus Sarsa

R=-1

Safer path

Optimal path *
The Cliff G

Figure credit: Sutton and Barto
Cliff walking:
e undiscounted, episodic task, with start and goal states, and the usual
actions causing movement up, down, right, and left.
e Reward is —1 on all transitions except “The Cliff". Stepping into this
region incurs a reward of —100 and sends the agent instantly back to
the start.
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Case study: Q-learning versus Sarsa

Both are executed with e-greedy policy, € = 0.1.

Sarsa
254
Sum of -504
rewards Q-learning
during
episode __ |
-100 T T T T 1
0 100 200 300 400 500
Episodes

e Q-learning learns the optimal policy but results in its occasionally falling
off the cliff because of the “e-greedy” action selection.
e Sarsa takes the action selection into account and learns the longer but
safer path through the upper part of the grid.
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Double Q-learning with GLIE

Q Initial phase: initialization @1, Q)2 arbitrarily. Initial state s and initial
policy 7 (e.g., uniform).

@ Foreachroundt=1,2,...
e Choose a ~ 7(-|s) for the current state s;

e Take action a, observe r = r(s,a) and next state s’;
e Update the Q-value using one of the following randomly

Q1(57 (1,) A Q1(57 (I) + o <T(S7 a’) + 7@2(57 argmale(sl, (1)) - Ql (57 (l)) )

acA

or
Q2(S, a) + QQ(S, a) + oy <r(s, a) + le(s, argmax QQ(S,, a)) — QQ(S7 a)) .
acA
o s+ s
e Update policy 7 using (Q* + Q2)/2, e.g., e-greedy.
Repeat this for every episode if in an episodic environment.
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Mitigating overestimation via double Q-learning
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e Q-learning initially learns to take the left action much more often than
the right action,and always takes it significantly more often than the 5%
minimum probability enforced by e-greedy action selection with ¢ = 0.1.

e Double Q-learning is essentially unaffected by the overestimation bias.
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