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Abstract

Low-rank models are ubiquitous in a wide range of practical applications, and

low-rank matrix sensing and recovery has become a problem of great importance.

Via leveraging the low-rank structure in data representations, it is possible to faith-

fully recover the matrix of interest from incomplete observations, in both statistically

and computationally efficient manners. This dissertation investigates the fundamen-

tal problem of low-rank matrix recovery in different random measurement models,

possibly with corruptions.

We first consider recovering low-rank positive semidefinite (PSD) matrices from

random rank-one measurements, which spans numerous applications including co-

variance sketching, phase retrieval, quantum state tomography, and learning shallow

polynomial neural networks, among others. Our approach is to directly estimate

the low-rank factor by minimizing a nonconvex least-squares loss function via vanilla

gradient descent, following a tailored spectral initialization. When the true rank is

small, this algorithm is guaranteed to converge to the ground truth (up to global

ambiguity) with near-optimal sample and computational complexities with respect

to the problem size. To the best of our knowledge, this is the first guarantee that

achieves near-optimality in both metrics, without the need of sample splitting.

When the rank-one measurements are possibly corrupted by arbitrary outliers,

we propose a convex optimization algorithm that seeks the PSD matrix with the
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minimum `1-norm of the observation residual. The advantage of our algorithm is that

it is free of parameters, therefore eliminating the need of tuning and allowing easy

implementations. We establish that with high probability, a low-rank PSD matrix

can be exactly recovered as soon as the number of measurements is large enough,

even when a fraction of the measurements are corrupted by outliers with arbitrary

magnitudes. Moreover, the recovery is also stable against bounded noise. With the

additional information of an upper bound of the rank of the PSD matrix, we then

propose another nonconvex algorithm based on subgradient descent that exhibits

excellent empirical performance in terms of computational efficiency and accuracy.

Moreover, we work on the recovery of generic low-rank matrices from random

full-rank linear measurements in the presence of outliers, where we employ a median

truncation strategy in gradient descent to improve the robustness of recovery proce-

dure against outliers. We demonstrate that, when initialized in a basin of attraction

close to the ground truth, the proposed algorithm converges to the ground truth at

a linear rate for the Gaussian measurement model with a near-optimal number of

measurements, even when a constant fraction of the measurements are arbitrarily

corrupted. In addition, we propose a new truncated spectral method that ensures a

valid initialization in the basin of attraction at slightly higher requirements.

iii



Dedicated to my parents Gaiming Li and Sumei Chang,

and my brother Changfeng Li

iv



Acknowledgments

First and foremost, I would like to express my deepest and sincerest gratitude to

my advisor, Prof. Yuejie Chi, for her unreserved help, support and encouragement

during my entire Ph.D. program. Her passion and dedication to work and research

has always been inspirational to me. I feel extremely fortunate to work with her. She

has always provided excellent environments for research and maintained the highest

level of availability for discussion. Without her guidance and persistent help this

dissertation would not have been possible.

I would like to thank Prof. Yingbin Liang and Prof. Wei Zhang, who have served

on my dissertation committee, for taking the time and providing insightful feedback.

I would like to thank the people I have collaborated during my Ph.D. study,

including Prof. Yuxin Chen, Prof. Yingbin Liang, Prof. Louis L. Scharf, Prof. Ali

Pezeshki, Prof. Yue M. Lu, Cong Ma, Huishuai Zhang, Yue Sun, Yingsheng He, and

others, for their time and input for the research work. Special thanks go to Prof. Louis

L. Scharf and Prof. Ali Pezeshki for hosting my visit at Colorado State University.

I would also like to thank Dr. Shirin Jalali at Nokia Bell Labs for her mentorship

during my internship.

I would like to thank all of the faculty and staff at The Ohio State University that

have guided my courses of learning and provided help in different aspects. I would

also like to thank my fellow labmates at The Ohio State University and Carnegie

v



Mellon University, including Jiaqing Huang, Yiran Jiang, Liming Wang, Haoyu Fu,

Azer Shikhaliev, Vince Monardo, and Myung Cho, who have been a generous source

of support and encouragement.

I would like to thank my friends at and outside The Ohio State University for

their friendship. Their company makes my life in Columbus much more colorful.

Last but not least, I would like to thank my family, my parents and my brother for

their unconditional love and care over the years. To them I dedicate this dissertation.

vi



Vita

2010 . . . . . . . . . . . . . . . . . . . . . . . . B.Eng., Communication Engineering,
Nanjing University of Posts and Telecommunications,
Nanjing, China

2013 . . . . . . . . . . . . . . . . . . . . . . . . M.Eng., Information and Communication Engineering,
Tsinghua University,
Beijing, China

2016 . . . . . . . . . . . . . . . . . . . . . . . . M.S., Electrical and Computer Engineering,
The Ohio State University

2013-present . . . . . . . . . . . . . . . . Graduate Research Associate,
Electrical and Computer Engineering,
The Ohio State University

Publications

Research Publications

Journals

Y. Li, Y. Sun and Y. Chi, “Low-Rank Positive Semidefinite Matrix Recovery from
Corrupted Rank-One Measurements”, IEEE Transactions on Signal Processing, vol.
65, no. 2, pp. 397-408, 2017.

Y. Li and Y. Chi, “Stable Separation and Super-Resolution of Mixture Models”,
Applied and Computational Harmonic Analysis, in press, 2017. [Online]. Available:
https://doi.org/10.1016/j.acha.2017.03.003

Y. Li and Y. Chi, “Off-the-Grid Line Spectrum Denoising and Estimation with Mul-
tiple Measurement Vectors”, IEEE Transactions on Signal Processing, vol. 64, no. 5,
pp. 1257-1269, 2016.

vii

https://doi.org/10.1016/j.acha.2017.03.003


Conference Proceedings

Y. Li, Y. Chi, H. Zhang and Y. Liang, “Non-Convex Low-rank Matrix Recovery
from Corrupted Random Linear Measurements”, 12th International Conference on
Sampling Theory and Applications, Tallinn, Estonia, 2017.

Y. Li, A. Pezeshki, L. L. Scharf, and Y. Chi, “Performance Bounds for Modal Analysis
using Sparse Linear Arrays”, SPIE Compressive Sensing VI: From Diverse Modalities
to Big Data Analytics, Anaheim, California, USA, 2017.

Y. Sun, Y. Li, and Y. Chi, “Outlier-Robust Recovery of Low-Rank Positive Semidef-
inite Matrices from Magnitude Measurements”, The 41th IEEE International Con-
ference on Acoustics, Speech and Signal Processing, Shanghai, China, 2016.

Y. Li, Y. He, Y. Chi and Y. M. Lu, “Blind Calibration of Multi-Channel Samplers us-
ing Sparse Recovery”, IEEE 6th International Workshop on Computational Advances
in Multi-Sensor Adaptive Processing, Cancún, Mexico, 2015.

Y. Li and Y. Chi, “Super-Resolution of Mutually Interfering Signals”, IEEE Interna-
tional Symposium on Information Theory, Hong Kong, China, 2015.

Y. Li and Y. Chi, “Parameter Estimation for Mixture Models via Convex Optimiza-
tion”, 11th International Conference on Sampling Theory and Applications, Washing-
ton, D.C., USA, 2015.

Y. Li and Y. Chi, “Compressive Parameter Estimation With Multiple Measurement
Vectors via Structured Low-Rank Covariance Estimation”, IEEE Workshop on Sta-
tistical Signal Processing , Gold Coast, VIC, Australia, 2014.

Fields of Study

Major Field: Electrical and Computer Engineering

viii



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statements . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. Nonconvex Matrix Recovery from Rank-One Measurements . . . . . . . . 8

2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Vanilla Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Performance Guarantees . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Surprising Effectiveness of Gradient Descent . . . . . . . . . . . . . 17
2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Outline of Theoretical Analysis . . . . . . . . . . . . . . . . . . . . 21

2.6.1 Local Geometry and Error Contraction . . . . . . . . . . . . 22
2.6.2 Introducing Leave-One-Out Sequences . . . . . . . . . . . . 24
2.6.3 Establishing Incoherence via Induction . . . . . . . . . . . . 25
2.6.4 Spectral Initialization . . . . . . . . . . . . . . . . . . . . . 27

ix



2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3. Robust Matrix Recovery from Corrupted Rank-One Measurements . . . 28

3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Robust Recovery via Convex Relaxation . . . . . . . . . . . . . . . 29

3.2.1 Robust-PhaseLift . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Performance Guarantees . . . . . . . . . . . . . . . . . . . . 30

3.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Theoretical Analysis of Robust-PhaseLift . . . . . . . . . . . . . . . 33

3.4.1 Approximate Dual Certificate . . . . . . . . . . . . . . . . . 34
3.4.2 Restricted Isometry of A . . . . . . . . . . . . . . . . . . . . 35
3.4.3 Construction of Dual Certificate . . . . . . . . . . . . . . . 36
3.4.4 Proving Performance Guarantees of Robust-PhaseLift . . . 38

3.5 A Nonconvex Subgradient Descent Algorithm . . . . . . . . . . . . 38
3.6 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6.1 Performance of Convex Relaxation . . . . . . . . . . . . . . 41
3.6.2 Convex Relaxation with Additional Toeplitz Structure . . . 43
3.6.3 Performance of Nonconvex Subgradient Descent . . . . . . . 44
3.6.4 Comparisons with Additional Bounded Noise . . . . . . . . 46

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4. Robust Matrix Recovery from Corrupted Linear Measurements . . . . . . 49

4.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Median-Truncated Gradient Descent . . . . . . . . . . . . . . . . . 51
4.3 Performance Guarantees . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.1 Phase Transitions . . . . . . . . . . . . . . . . . . . . . . . 60
4.5.2 Stability to Additional Bounded Noise . . . . . . . . . . . . 61

4.6 Proof of Linear Convergence . . . . . . . . . . . . . . . . . . . . . . 63
4.6.1 Concentration Property of Sample Median . . . . . . . . . . 64
4.6.2 Regularity Condition . . . . . . . . . . . . . . . . . . . . . . 65
4.6.3 Properties of Truncated Gradient . . . . . . . . . . . . . . . 68
4.6.4 Certifying Regularity Condition with Sparse Outliers . . . . 71

4.7 Proof of Robust Initialization . . . . . . . . . . . . . . . . . . . . . 74
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

x



Appendices 81

A. Supportive Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

B. Technical Proofs in Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . 89

B.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
B.2 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
B.3 Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
B.4 Proof of Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
B.5 Proof of Lemma 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

B.5.1 Proof of (2.33a) . . . . . . . . . . . . . . . . . . . . . . . . 98
B.5.2 Proof of (2.33b) . . . . . . . . . . . . . . . . . . . . . . . . 99
B.5.3 Proof of (2.33c) . . . . . . . . . . . . . . . . . . . . . . . . . 102
B.5.4 Finishing the Proof . . . . . . . . . . . . . . . . . . . . . . . 102

B.6 Proof of Lemma 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
B.6.1 Bound with Fixed Matrices and Scalar . . . . . . . . . . . . 104
B.6.2 Covering Arguments . . . . . . . . . . . . . . . . . . . . . . 107
B.6.3 Finishing the Proof . . . . . . . . . . . . . . . . . . . . . . . 111

C. Technical Proofs in Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . 112

C.1 Proof of Lemma 6: Approximate Dual Certificate . . . . . . . . . . 112
C.2 Proof of Lemma 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
C.3 Proof of Lemma 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

D. Technical Proofs in Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . 121

D.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . 121
D.2 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . 123
D.3 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . 127
D.4 Proof of Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . . 127
D.5 Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . 128
D.6 Proof of Proposition 6 . . . . . . . . . . . . . . . . . . . . . . . . . 129
D.7 Proof of Lemma 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xi



List of Tables

Table Page

2.1 Comparisons with existing results in terms of sample complexity and
computational complexity to reach ε-accuracy. . . . . . . . . . . . . . 16

xii



List of Figures

Figure Page

2.1 Normalized recovery error for low-rank PSD matrix recovery from rank-
one measurements with respect to the iteration count in different prob-
lem sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Illustrations of different objective functions. . . . . . . . . . . . . . . 39

3.2 Phase transitions of low-rank PSD matrix recovery with respect to the
number of measurements and the rank of noise-free measurements. . . 41

3.3 Phase transitions of low-rank PSD matrix recovery with respect to (a)
the number of measurements and the rank with 5% outliers; (b) the
percentage of outliers and the rank. . . . . . . . . . . . . . . . . . . . 42

3.4 Phase transitions of low-rank Toeplitz PSD matrix recovery with re-
spect to the number of measurements and the rank with and without
outliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Phase transitions of low-rank PSD matrix recovery with respect to the
number of measurements and the rank for the proposed Algorithm 3
using noise-free measurements. . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Phase transitions of low-rank PSD matrix recovery with respect to the
percentage of outliers and the rank. . . . . . . . . . . . . . . . . . . . 46

3.7 Comparisons of mean squared errors using different algorithms with
respect to the number of measurements. . . . . . . . . . . . . . . . . 47

4.1 Phase transitions of low-rank matrix recovery with respect to (a) the
number of measurements and the rank with 5% outliers; (b) the per-
centage of outliers and the rank. . . . . . . . . . . . . . . . . . . . . . 60

xiii



4.2 Comparisons of average normalized estimate errors between median-
TGD and vanilla-GD with respect to the number of measurements. . 62

4.3 Comparisons of convergence rates between median-TGD and vanilla-
GD in different outlier-corruption scenarios. . . . . . . . . . . . . . . 62

xiv



Chapter 1: Introduction

1.1 Backgrounds

In applied science and engineering, there are a variety of problems that require

learning, extracting and estimating a matrix from the acquired data. One motivating

example is the famous Netflix problem in the field of recommender systems [1], where

one would like to estimate the whole movie rating matrix, in order to infer the prefer-

ence of each user and provide personalized recommendations, based on a few known

ratings users have submitted. Usually, the matrices of interest can be extremely large,

especially in high-dimensional problems, and the potential size will continue growing

owing to the availability of vast amounts of data created by modern sensing modalities

at an unprecedented rate due to declining cost of data acquisition. As a consequence,

it is very difficult and even infeasible to obtain the full observations of the matrix of

interest, and modern data applications often have to work with only under-sampled

measurements or partial observations (i.e. incomplete observations), the number of

which is much smaller than the ambient dimension of the data matrix of interest. Ex-

amples struggling with incomplete observations are numerous. In the recommender

systems as aforementioned Netflix problem, each user typically rates only very few

items, so the entire rating matrix is highly incomplete and needs inference. In sensor
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localization, to avoid the prohibitive expense for measuring all the pairwise distances,

one may consider to measure only a few connections of sensors close enough with

each other and extrapolate the huge sensor map based on the available partial matrix

of pairwise distances. Therefore, it is of great practical importance to estimate the

full matrix of interest from incomplete observations, which, however, in general is not

always possible.

Fortunately, it is promising to exploit the intrinsic low-dimensional geometric

structure embedded in most real-world high-dimensional data to cope with the curse of

dimensionality, and make the matrix estimation problem solvable. In a wide range of

settings, the matrix one wishes to estimate can be assumed to have a low-dimensional

geometric structure in the sense that it is low-rank or approximately low-rank, which

may result from physical reasons or engineering designs. For instance, in the recom-

mender systems, the entire rating matrix can be approximated by a low-rank matrix

because it is commonly believed that the preference of each user is only determined

by a few key factors. Low-rank models are also ubiquitous in machine learning such

as feature learning [2], collaborative prediction [3] and natural language process-

ing [4]. This low-rank structure, which can be considered as a powerful regularization

scheme, opens the door to faithfully estimate the matrix of interest from incomplete

observations, in both statistically and computationally efficient manners, even in the

sample-starved or resource-starved environments. In fact, a considerable amount of

work has been done on low-rank matrix estimation in recent years, where it is shown

that low-rank matrices can be estimated accurately and efficiently from much fewer

observations than their ambient dimensions in a diverse set of applications [5–10].

Extensive overviews on low-rank matrix estimation can be found in [11,12].
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1.2 Problem Statements

Mathematically, low-rank matrix estimation refers to estimating a rank-r matrix

M ∈ Rn1×n2 from a group of measurements of the form

y = A(M ) + η +w ∈ Rm (1.1)

in different setups, where r � min{n1, n2}. The linear transformation A : Rn1×n2 →

Rm represents an a priori known mapping from matrices to vectors, of which the ith

entry is defined as Ai(M) = 〈Ai,M〉 with the ith sensing matrix given as Ai ∈

Rn1×n2 , for i = 1, · · · ,m. The vector η ∈ Rm and the vector w ∈ Rm represent the

sparse outlier vector and the dense noise vector, respectively, which are the potential

corruptions and contaminations suffered by the measurements. It is natural to ask if

it is possible to estimate the low-rank matrix M from an information-theoretically

optimal number of measurements y in a computationally efficient manner.

In the literature, low-rank matrix estimation usually can be divided into two

categories according to the type of sensing matrices Ai’s:

• Low-rank matrix recovery: Each sensing matrix Ai is a dense matrix, typi-

cally randomly generated following certain distributions, and hence, each mea-

surement Ai(M ) is a linear combination of the entries in M .

• Low-rank matrix completion: Each sensing matrix Ai is a sparse matrix

with a single entry equaling 1, which can be interpreted as Ai = ei1e
>
i2
, where

ei represents the ith standard basis vector. Hence, each measurement Ai(M )

corresponds to one entry in M . Then, matrix completion aims at filling in the

missing entries of the partially observed matrix.
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There is a plethora of progress in low-rank matrix estimation by searching for the

ground truthM directly in the high dimension compatible with measurement models,

with the low-rank structure motivated via nuclear norm minimization [5,9,10,13–21],

which can be regarded as the convex relaxation counterpart of `1-minimization in

compressed sensing [22, 23]. This convex relaxation strategy guarantees accurate

matrix estimation with (near-)optimal sample complexity under mild assumptions,

nevertheless, the involved nuclear norm minimization, often cast as the semidefinite

programming, is in general computationally expensive with large-scale data. In prac-

tice, a widely used alternative, pioneered by Burer and Monteiro [24], is to estimate

the low-rank factors X ∈ Rn1×r and Y ∈ Rn2×r as a result of low-rank matrix factor-

ization as M = XY > ∈ Rn1×n2 , if the rank r or its upper bound is approximately

known. Since the low-rank factors have a much lower-dimensional representation,

this approach admits more computationally and memory efficient algorithms. Even

though the bilinear constraint induced by matrix factorization typically leads to a

nonconvex loss function that may be difficult to optimize globally, a growing series of

recent work is shedding new light on the power of nonconvex optimization approaches

for low-rank matrix estimation [25–30].

1.3 Contributions

This dissertation is dedicated to provide algorithms, supported with theoretical

performance guarantees, for scalable and robust low-rank matrix recovery in different

sensing models. Roughly speaking, we focus on the recovery of low-rank matrices from

measurements obtained with randomly generated sensing matrices. Furthermore, the

measurements, perhaps, are corrupted by outliers and additive noise. Via leveraging

4



the low-rank structure in data representations, we are capable of reducing the sample

complexity as well as computational complexity required in matrix recovery while

providing desirable, robust and stable performance, which is not only verified through

extensive numerical experiments, but also, more importantly, analytically guaranteed

by theories. In particular, our purpose is to design algorithms for low-rank matrix

recovery with three principal properties as follows:

• Provability: The performance of proposed algorithms could be rigorously ana-

lyzed, and the desirable recovery results could be theoretically guaranteed under

mild conditions.

• Robustness: The proposed algorithms could achieve robust recovery of low-

rank matrix even when the measurements are further corrupted by outliers,

possibly adversarial. This bears great importance since in real-world applica-

tions, outliers are somewhat inevitable which may be caused by sensor failures,

malicious attacks, or reading errors [31–33], so it becomes critical to address

robust recovery of matrix of interest in the presence of outliers.

• Scalability: The proposed algorithms could handle a growing amount of data

in a computational efficient manner whose complexity scales nearly linearly with

the problem dimension.

Specifically, we first consider the low-rank matrix recovery in the rank-one sensing

model, of which each sensing matrix is generated as Ai = aia
>
i , where ai is a random

vector with entries independently drawn from standard Gaussian distribution, for

i = 1, · · · ,m. In Chapter 2, we provide a refined analysis on low-rank positive

semidefinite (PSD) matrix recovery from clean rank-one measurements via gradient

5



descent, and our theoretical results significantly improve upon existing results both

statistically and computationally. To the best of our knowledge, this work is the first

nonconvex algorithm (without resampling) that achieves both near-optimal statistical

and computational guarantees with respect to the problem size.

For the rank-one sensing model, when the available measurements are further

corrupted by arbitrary outliers and additive bounded noise, in Chapter 3 we present

an algorithm based on convex optimization and establish the theoretical guarantees

to demonstrate the robust and stable performance of the proposed algorithm against

outliers and noise. The proposed convex program is free of tuning parameters and,

consequently, easy to implement. Moreover, to further reduce the computational

burden when facing large-scale problems, we also design a nonconvex algorithm based

on subgradient descent for the same corruption scenario, which exhibits excellent

empirical performance in terms of computational efficiency and accuracy.

We finally study low-rank matrix recovery in the full-rank linear sensing model,

where each sensing matrix Ai is a random matrix composed of independent and iden-

tically distributed (i.i.d.) standard Gaussian entries, for i = 1, · · · ,m. Furthermore,

the measurements may suffer from adversarial outliers with arbitrary amplitudes. In

Chapter 4, benefiting from an adaptive, iteration-varying truncation strategy in gradi-

ent descent to mitigate the effects of outliers, we develop a fast and robust nonconvex

algorithm consisting of spectral initialization and gradient descent update for robust

generic low-rank matrix recovery, which subsumes the low-rank PSD matrix recovery

as a special case. In particular, the proposed algorithm does not assume a priori

information regarding the outliers in terms of their fraction, distribution nor values.

The effectiveness of the developed algorithm is provably guaranteed by theoretical
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analysis, and numerical examples are provided to validate the favorable performance

of the proposed algorithm as well.

1.4 Notations

We collect the notations that are frequently used throughout this dissertation here.

We use boldface lowercase (resp. uppercase) letters to represent vectors (resp. ma-

trices). In particular, we use In to represent an n dimensional identity matrix. We

denote by x> and ‖x‖p the transpose and the `p-norm of a vector x, respectively, and

X>, ‖X‖, ‖X‖F and ‖X‖1 the transpose, the spectral norm, the Frobenius norm

and the nuclear norm of a matrix X, respectively. We denote the kth singular value

of X by σk(X), and the kth eigenvalue by λk(X). Moreover, the inner product be-

tween two matrices X and Y is defined as 〈X,Y 〉 = Tr
(
Y >X

)
, where Tr (·) is the

trace. We also use vec(X) to denote vectorization of a matrix X in a column-major

order. The (k, t)th entry of a matrix X is denoted by Xk,t. For a vector x, med(x)

denotes the median of the entries in x, and |x| denotes the vector that contains its

entry-wise absolute values. E [·] denotes the expectation operation with respect to an

appropriate probability distribution. The indicator function of an event E is denoted

by IE , which equals 1 if E is true and 0 otherwise. The notation a � b means the

scalar a is much smaller than b, and the notation f(n) . g(n) or f(n) = O(g(n))

means that there is a universal constant c > 0 such that |f(n)| ≤ c|g(n)|. We use :=

for making definitions. In addition, we use c and C with different superscripts and

subscripts to represent positive numerical constants, whose values may change from

line to line.
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Chapter 2: Nonconvex Matrix Recovery from Rank-One

Measurements

This chapter is concerned with recovering a low-rank PSD matrix from random

rank-one measurements. The results of this chapter are summarized in the paper

submission [34].

2.1 Problem Formulation

To begin with, we present the formal problem setup. Specifically, we consider

estimating a low-rank PSD matrix M \ from a few rank-one measurements. Suppose

that the matrix of interest can be factorized as

M \ = X\X\> ∈ Rn×n, (2.1)

where X\ ∈ Rn×r denotes the low-rank factor with r � n. We collect m measure-

ments {yi}mi=1 about M \ taking the form

yi = a>i M
\ai =

∥∥a>i X\
∥∥2
2
, i = 1, · · · ,m, (2.2)

where {ai}mi=1 represent the measurement vectors known a priori, of which ai ∈ Rn is

the ith sensing vector composed of i.i.d. standard Gaussian entries, i.e. ai ∼ N (0, In),

for i = 1, · · · ,m. One can think of {aia>i }mi=1 as a set of linear sensing matrices (so
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that yi = 〈aia>i ,M \〉), which are all rank-one1. The underlying ground truth X\

is assumed to have full column rank but not necessarily having orthogonal columns.

Define the condition number of M \ = X\X\> as

κ =
σ2
1

(
X\
)

σ2
r

(
X\
) . (2.3)

Throughout this chapter, we assume the condition number is bounded by some con-

stant independent of n and r, i.e. κ = O(1). Our goal is to recover X\, up to

(unrecoverable) orthonormal transformation, from the measurements y = {yi}mi=1 in

a statistically and computationally efficient manner.

This problem spans a variety of important practical applications ranging from

the covariance sketching scheme considered in [10] to array signal processing [35] and

network traffic monitoring [36], from quantum state tomography [37] to compressive

power spectrum estimation [38], and from non-coherent direction-of-arrival estimation

based on magnitude measurements [39] to synthetic aperture radar imaging [40], with

a few examples listed below.

• Covariance sketching: Consider a zero-mean data stream {xt}t∈T , whose

covariance matrix M \ := E[xtx
>
t ] is (approximately) low-rank. To estimate

the covariance matrix, one can collect m aggregated quadratic sketches of the

form

yi =
1

|T |
∑
t∈T

(a>i xt)
2, (2.4)

which converges to E[(a>i xt)
2] = a>i M

\ai as the number of data instances

grows. This quadratic covariance sketching scheme can be performed under

1Given that yi is a quadratic function with respect to both X\ and ai, the measurement scheme
is also referred to as quadratic sampling.
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minimal storage requirement and low sketching cost. See [10] for detailed de-

scriptions.

• Phase retrieval and mixed linear regression: This problem subsumes as

a special case the phase retrieval problem [25, 41, 42], which aims to estimate

an unknown signal x\ ∈ Rn from intensity measurements (which can often be

modeled or approximated by quadratic measurements of the form yi = (a>i x
\)2).

This problem has found numerous applications in X-ray crystallography, optical

imaging, astronomy, etc. Another related problem in machine learning is mixed

linear regression with two components, where the data one collects are generated

from one of two unknown regressors; see [43] for precise formulation.

• Quantum state tomography: Estimating the density operator of a quantum

system can be formulated as a low-rank PSD matrix recovery problem using

rank-one measurements, when the density operator is almost pure [17]. A prob-

lem of similar mathematical formulation occurs in phase space tomography [44],

where the goal is to reconstruct the correlation function of a wave field.

• Learning shallow polynomial neural networks: Taking {ai, yi}mi=1 as train-

ing data, our problem is equivalent to learning a one-hidden-layer fully-connected

neural network with a quadratic activation function [45–47], where the output

of the network is expressed as y =
∑r

i=1 σ(a>x\i) with X\ = [x\1,x
\
2, · · · ,x\r] ∈

Rn×r and the activation function σ(z) = z2.

10



2.2 Vanilla Gradient Descent

Due to the quadratic nature of the measurements, the natural least-squares em-

pirical risk formulation is highly nonconvex and in general challenging to solve. To

be more specific, consider minimizing the squared loss:

f (X) :=
1

4m

m∑
i=1

(
yi −

∥∥a>i X∥∥22)2 , (2.5)

which aims to optimize a degree-4 polynomial in X and is NP hard in general. The

problem, however, may become tractable under certain random designs, and may

even be solvable using simple methods like gradient descent.

The algorithm studied herein is a combination of vanilla gradient descent and

a judiciously designed spectral initialization. We attempt to optimize this function

iteratively via gradient descent

X t+1 = X t − µt∇f (X t) , t = 0, 1, · · · , (2.6)

where X t denotes the estimate in the tth iteration, µt is the step size/learning rate,

and the gradient ∇f(X) is given by

∇f (X) =
1

m

m∑
i=1

(∥∥a>i X∥∥22 − yi)aia>i X. (2.7)

For initialization, similar to [48],2 we apply the spectral method, which sets the

columns of X0 as the top-r eigenvectors — properly scaled — of a matrix Y as

defined in (2.8). The rationale is this: the mean of Y is given by

E [Y ] =
1

2

∥∥X\
∥∥2
F
In +X\X\>, (2.11)

2Compared with [48], when setting the eigenvalues in (2.9), we use the sample mean λ rather
than λr+1 (Y ) to estimate 1

2‖X
\‖2F.
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Algorithm 1: Gradient Descent with Spectral Initialization
Input: Measurements y = {yi}mi=1, and sensing vectors {ai}mi=1.
Parameters: Step size µt, rank r, and number of iterations T .
Initialization: Set X0 = Z0Λ

1/2
0 , where the columns of Z0 ∈ Rn×r contain

the normalized eigenvectors corresponding to the r largest eigenvalues of the
matrix

Y =
1

2m

m∑
i=1

yiaia
>
i , (2.8)

and Λ0 is an r × r diagonal matrix, with the entries on the diagonal given as

[Λ0]i = λi
(
Y
)
− λ, i = 1, · · · , r, (2.9)

where λ = 1
2m

∑m
i=1 yi and λi (Y ) is the ith largest eigenvalue of Y .

Gradient loop: For t = 0 : 1 : T − 1, do

X t+1 = X t − µt ·
1

m

m∑
i=1

(∥∥a>i X t

∥∥2
2
− yi

)
aia

>
i X t. (2.10)

Output: XT .

and hence the principal components of Y form a reasonable estimate of X\, pro-

vided that there are sufficiently many samples. The full algorithm is described in

Algorithm 1.

Before continuing, we demonstrate the effective and efficient performance of pro-

posed algorithm with a numerical example. For each n, we generate an n × n PSD

matrix M \ with rank r = 5 and all nonzero eigenvalues are equal to one, and set

m = 6nr. Using a constant step size µt = 0.1, the normalized recovery errors∥∥X tX
>
t −M \

∥∥
F
/
∥∥M \

∥∥
F
are shown in Figure 2.1 with respect to the iteration count,

for n = 100, 200, 500 and 1000, respectively. These numerical results indicate that

vanilla gradient descent (starting from an initial guess obtained by spectral method)

exhibits remarkable linear convergence with a constant step size µt = 0.1, although
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Figure 2.1: Normalized recovery error for low-rank PSD matrix recovery from rank-
one measurements with respect to the iteration count in different problem sizes, when
r = 5, m = 6nr and µt = 0.1.

the dimension of ground truth is varied from n = 100 to n = 1000. For all the cases,

the normalized recovery error can be reduced to 10−8 within around 250 iterations.

The convergence rate experiences only little changes even though the problem size

varies. In comparisons, a conservative step size setting inversely proportional to n4 is

suggested in [48], which results in an overly pessimistic convergence rate, especially

for large matrix recovery problems.

2.3 Performance Guarantees

Before proceeding to our main results, we pause here to introduce the metric

used to assess the estimation error of the running iterates. Since
(
X\P

) (
X\P

)>
=
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X\X\> for any orthonormal matrix P ∈ Rr×r, X\ is recoverable up to orthonormal

transforms. Hence, we define the error of the tth iterate X t as

dist
(
X t,X

\
)

=
∥∥X tQt −X\

∥∥
F
, (2.12)

where Qt is given by

Qt := argminP∈Or×r

∥∥X tP −X\
∥∥
F

(2.13)

with Or×r denoting the set of all r × r orthonormal matrices. Accordingly, we have

the following theoretical performance guarantees of Algorithm 1.

Theorem 1. Suppose that m ≥ cnr4κ3 log n with some large enough constant c > 0,

and that the step size obeys 0 < µt := µ = c4
(rκ+logn)2σ2

r(X
\)
. Then with probability at

least 1−O(mn−7), the iterates satisfy

dist
(
X t,X

\
)
≤ c1

(
1− 0.5µσ2

r(X
\)
)t σ2

r

(
X\
)∥∥X\

∥∥
F

, (2.14)

for all t ≥ 0. In addition,

max
1≤l≤m

∥∥a>l (X tQt −X\
)∥∥

2
≤ c2

(
1− 0.5µσ2

r(X
\)
)t√

log n ·
σ2
r

(
X\
)∥∥X\

∥∥
F

, (2.15)

holds for all 0 ≤ t ≤ c3n
5. Here, c1, · · · , c4 are some universal positive constants.

Remark 1. The precise expression of required sample complexity in Theorem 1 can

be written as m ≥ c
‖X\‖6F
σ6
r(X

\)
nr log (κn) with some large enough constant c > 0. By

adjusting constants, with probability at least 1− O(mn−7), (2.15) holds for 0 ≤ t ≤

O(nc5) in any power c5 ≥ 1.

Theorem 1 has the following implications.
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• Near-optimal sample complexity when r is fixed: Theorem 1 suggests

that spectrally-initialized vanilla gradient descent succeeds as soon as m =

O(nr4 log n). When r = O(1), this leads to near-optimal sample complexity

up to logarithmic factor. In fact, once the spectral initialization is finished, a

sample complexity at m = O(nr3 log n) can guarantee the linear convergence to

the global optima. To the best of our knowledge, this outperforms all perfor-

mance guarantees in the literature obtained for any nonconvex method without

requiring resampling.

• Near-optimal computational complexity: In order to achieve ε-accuracy,

i.e. dist
(
X t,X

\
)
≤ ε‖X‖F, it suffices to run gradient descent for

T = O
(
r2poly log(n) log(1/ε)

)
(2.16)

iterations. This results in a total computational complexity of

C = O(mnr · T ) = O
(
mnr3poly log(n) log(1/ε)

)
. (2.17)

When r is fixed independent of m and n, the computational complexity scales

linearly with mn (up to logarithmic factors), which is proportional to the time

taken to read all data.

• Implicit regularization: Theorem 1 demonstrates that both the spectral ini-

tialization and the gradient descent updates provably control the entry-wise

error max1≤l≤m
∥∥a>l (X tQt −X\

)∥∥
2
, and the iterates remain incoherent with

respect to all the sensing vectors. In fact, the entry-wise error decreases lin-

early as well, which is not characterized in [49].
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These findings significantly improve upon existing results that require either re-

sampling (which is not sample-efficient and is not the algorithm one actually runs in

practice [47,50,51]), or high iteration complexity (which results in high computation

cost [48]), of which the statistical and computational guarantees to reach ε-accuracy

are summarized in Table 2.1. We note our guarantee is the only one that achieves

simultaneous near-optimal sample complexity and computational complexity.

Algorithms with resampling Sample complexity Computational complexity
AltMin-LRROM [50] O(nr4 log2 n log (1

ε
)) O(mnr log (1

ε
))

gFM [51] O(nr3 log (1
ε
)) O(mnr log (1

ε
))

EP-ROM [47] O(nr2 log4 n log (1
ε
)) O(mn2 log (1

ε
))

AP-ROM [47] O(nr3 log4 n log (1
ε
)) O(mnr log n log (1

ε
))

Algorithms without resampling Sample complexity Computational complexity
Convex [10] O(nr) O(mn2 1√

ε
)

GD [48] O(nr6 log2 n) O(mn5r3 log4 n log (1
ε
))

GD (Algorithm 1, Ours) O(nr4 log n) O(mnrmax{log2 n, r2} log (1
ε
))

Table 2.1: Comparisons with existing results in terms of sample complexity and
computational complexity to reach ε-accuracy. The top half of the table is concerned
with algorithms that require resampling, while the bottom half of the table covers
algorithms without resampling.

Theorem 1 is established using a fixed step size. According to our theoretical

analysis, the incoherence condition (2.15) has a significant impact on the convergence

rate. After a few iterations, the incoherence condition can be bounded independent of

log n, which suggests a larger step size and, therefore, faster convergence. Specifically,

we have the following corollary.
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Corollary 1. Under the same setting of Theorem 1, after Ta = c6 max{κ2r2 log n, log3 n}

iterations, the step size can be relaxed as 0 < µt := µ = c7
r2κ2σ2

r(X
\)
, with some universal

constant c6, c7 > 0, then the iterates satisfy

dist
(
X t,X

\
)
≤ c1

(
1− 0.5µσ2

r(X
\)
)t σ2

r

(
X\
)∥∥X\

∥∥
F

, (2.18)

for all t ≥ Ta, with probability at least 1−O(mn−7).

Remark 2. when r = 1, Corollary 1 will degenerate to the phase retrieval case which

indicates that with sample complexity m = O(n log n), after certain iterations, a

substantially more aggressive step size is feasible that is independent on the signal

dimension n.

2.4 Surprising Effectiveness of Gradient Descent

Recently, gradient descent has been widely employed to address various nonconvex

optimization problems due to its appealing efficiency from both statistical and com-

putational perspectives. Despite the nonconvexity of natural least-squares empirical

risk minimization

minimizeX∈Rn×r f(X) :=
1

4m

m∑
i=1

(
yi −

∥∥a>i X∥∥22)2, (2.19)

[48] showed that within a local neighborhood of X\, where X satisfies

∥∥X −X\
∥∥
F
≤ 1

24

σ2
r

(
X\
)∥∥X\

∥∥
F

, (2.20)

f(X) behaves like a strongly convex function, at least along certain descending direc-

tions. However, this region itself is not enough to guarantee computational efficiency,

and consequently, the smoothness parameter derived in [48] is as large as n2 (even
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ignoring additional polynomial factors in r), leading to a step size as small as O(1/n4)

and an iteration complexity of O(n4 log(1/ε)). These are fairly pessimistic.

In order to improve computational guarantees, it might be tempting to employ

appropriately designed regularization operations — such as truncation [52] and pro-

jection [53]. These explicit regularization operations are capable of stabilizing the

search direction, and make sure the whole trajectory is in a basin of attraction with

benign curvatures surrounding the ground truth. However, such explicit regulariza-

tions complicate algorithm implementations, as they typically introduce more tuning

parameters.

Our work is inspired by [49], which uncovers the “implicit regularization” phe-

nomenon of vanilla gradient descent for nonconvex estimation problems such as phase

retrieval and low-rank matrix completion. In words, even without extra regularization

operations, vanilla gradient descent always follows a path within some region around

the global optimum with nice geometric structure, at least along certain directions.

The current chapter demonstrates that a similar phenomenon persists in low-rank

matrix recovery from rank-one measurements.

To describe this phenomenon in a precise manner, we need to specify which region

enjoys the desired geometric properties. To this end, consider a local region around

X\ where X is “incoherent”3 with all sensing vectors in the following sense:

max
1≤l≤m

∥∥a>l (X −X\
)∥∥

2
≤ 1

24

√
log n ·

σ2
r

(
X\
)

‖X\‖F
. (2.21)

We term the intersection of (2.20) and (2.21) the region of incoherence and contraction

(RIC). The nice feature of the RIC is this: within this region, the loss function f(X)

3This is called incoherent because if X is aligned (and hence coherent) with the sensing vectors,∥∥a>
l

(
X −X\

)∥∥
2
can be O(

√
n) times larger than the right-hand side of (2.21).
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enjoys a smoothness parameter that scales as O(max{r, log n}) (namely, ‖∇2f(x)‖ .

max{r, log n}, which is much smaller than O(n2) provided in [48]). As is well known,

a region enjoying a smaller smoothness parameter enables more aggressive progression

of gradient descent.

A key question remains as to how to prove that the trajectory of gradient descent

never leaves the RIC. This is, unfortunately, not guaranteed by standard optimiza-

tion theory, which only ensures contraction of the Euclidean error. Rather, we need

to exploit the statistical model of data generation, taking into consideration of the

“homogeneity” of the samples together with the finite-sum form of the loss function.

To address this issue, we resort to the leave-one-out trick [49, 54, 55] that produces

auxiliary trajectories of gradient descent that use all but one sample. This allows

us to establish the incoherence condition by leveraging the statistical independence

of the leave-one-out trajectory with respect to the corresponding sensing vector that

has been left out. Our theory refines the leave-one-out argument and further estab-

lishes linear contraction in terms of the entry-wise prediction error. In sum, our work

highlights the substantial gain of jointly considering optimization and statistics in

understanding learning algorithms.

2.5 Related Work

Instead of directly estimating X\, the problem of interest can be also solved by

estimating M \ = X\X\> in higher dimension via nuclear norm minimization, which

requires O(nr) measurements for exact recovery [10, 17, 18]. See also [13, 14, 56–58]

for the phase retrieval problem. However, nuclear norm minimization, often cast as
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the semidefinite programming, is in general computationally expensive to deal with

large-scale data.

On the other hand, nonconvex approaches have drawn intense attention in the

past decade due to their ability to achieve computational and statistical efficiency all

at once. Specifically, for the phase retrieval problem, Wirtinger flow (WF) and its

variants [25, 49, 52, 59–62] have been proposed. As a two-stage algorithm, it consists

of spectral initialization and iterative gradient updates. This strategy has found

enormous success in solving other problems such as low-rank matrix recovery and

completion [53, 63], blind deconvolution [64], and spectral compressed sensing [65].

We follow a similar route but analyze a more general problem that includes phase

retrieval as a special case.

The work [48] is most close to ours, which studied the local convexity of the

same loss function and developed performance guarantees for gradient descent using

a similar, but different spectral initialization scheme. As discussed earlier, due to

the pessimistic estimate of the smoothness parameter, they only allow a diminishing

learning rate (or step size) of O(1/n4), leading to a high iteration complexity. We

not only provide stronger computational guarantees, but also improve the sample

complexity, compared with [48].

Several other existing works have suggested different approaches for low-rank PSD

matrix recovery from rank-one measurements, including AltMin-LRROM [50], gFM

[51], and AP-ROM and EP-ROM [47]. Comparing with these existing results as shown

in Table 2.1, to the best of our knowledge, our work is the first nonconvex algorithm

(without resampling) that achieves both near-optimal statistical and computational

guarantees with respect to n. Iterative algorithms based on alternating minimization
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or noisy power iterations [47, 50, 51] require a fresh set of samples at every iteration,

which is never executed in practice, and the sample complexity grows unbounded for

exact recovery.

Many nonconvex methods have been proposed and analyzed recently to solve

the phase retrieval problem, including alternating minimization [66], the Kaczmarz

method [67–69] and approximate message passing [70]. In [71], the Kaczmarz method

is generalized to solve the problem studied in our work, but no theoretical performance

guarantees are provided.

The local geometry studied in our work is in contrast to [72], which studied the

global landscape of phase retrieval, and showed that there are no spurious local min-

ima as soon as the sample complexity is above O(n log3 n). It will be interesting to

study the landscape property of the generalized model in our work.

Our model is also related to learning shallow neural networks. [73] studied the

performance of gradient descent with resampling and an initialization provided by

the tensor method for various activation functions, however their analysis did not

cover quadratic activations. For quadratic activations, [45] adopts a greedy learning

strategy, and can only guarantee sublinear convergence rate. Moreover, [46] studied

the optimization landscape for an over-parameterized shallow neural network with

quadratic activation, where r is larger than n.

2.6 Outline of Theoretical Analysis

This section provides the proof sketch of the main results, with the details deferred

to the appendix. Our theoretical analysis is inspired by the work of [49] for phase

retrieval and follows the general recipe outlined in [49], while significant changes and
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elaborate derivations are needed. We refine the analysis to show that both the signal

reconstruction error and the entry-wise error contract linearly, where the latter is

not revealed by [49]. In below, we first characterize a RIC that enjoys both strong

convexity and smoothness along certain directions. We then demonstrate — via an

induction argument — that the iterates always stay within this nice region. Finally,

the proof is complete by validating the desired properties of spectral initialization.

2.6.1 Local Geometry and Error Contraction

We start with characterizing a local region around X\, within which the loss

function enjoys desired restricted strong convexity and smoothness properties. This

requires exploring the property of the Hessian of f(X), which is given by

∇2f(X) =
1

m

m∑
i=1

[(∥∥a>i X∥∥22 − yi) Ir + 2X>aia
>
i X

]
⊗
(
aia

>
i

)
. (2.22)

Here, we use ⊗ to denote the Kronecker product and hence ∇2f(X) ∈ Rnr×nr. Now

we are ready to state the following lemma regarding this local region, which will be

referred to as the RIC throughout this chapter. The proof is given in Appendix B.1.

Lemma 1. Suppose the sample size obeys m ≥ c
‖X\‖4F
σ4
r(X\)

nr log (nκ) for some suffi-

ciently large constant c > 0. Then with probability at least 1 − c1n−12 − me−1.5n −

mn−12, we have

vec (V )>∇2f(X)vec (V ) ≥ 1.026σ2
r(X

\) ‖V ‖2F , (2.23)

and ∥∥∇2f(X)
∥∥ ≤ 1.5σ2

r(X
\) log n+ 6

∥∥X\
∥∥2
F

(2.24)

hold simultaneously for all matrices X and V satisfying the following constraints:∥∥X −X\
∥∥
F
≤ 1

24

σ2
r

(
X\
)∥∥X\

∥∥
F

; (2.25a)
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max
1≤l≤m

∥∥∥a>l (X −X\
)∥∥∥

2
≤ 1

24

√
log n ·

σ2
r

(
X\
)

‖X\‖F
, (2.25b)

and V = T 1QT − T 2 satisfying

∥∥T 2 −X\
∥∥ ≤ 1

24

σ2
r

(
X\
)∥∥X\
∥∥ , (2.26)

where QT := argminP∈Or×r ‖T 1P − T 2‖F. Here, c1 is some absolute positive con-

stant.

The condition (2.25) on X formally characterizes the RIC, which enjoys the

claimed restricted strong convexity (see (2.23)) and smoothness (see (2.24)). With

Lemma 1 in mind, it is easy to see that ifX t lies within the RIC, the estimation error

shrinks in the presence of a properly chosen step size. This is given in the lemma

below whose proof can be found in Appendix B.2.

Lemma 2. Suppose the sample size obeys m ≥ c
‖X\‖4F
σ4
r(X\)

nr log (nκ) for some suffi-

ciently large constant c > 0. Then with probability at least 1 − c1n−12 − me−1.5n −

mn−12, if X t falls within the RIC as described in (2.25), we have

dist
(
X t+1,X

\
)
≤
(
1− 0.513µσ2

r(X
\)
)

dist
(
X t,X

\
)
,

provided that the step size obeys 0 < µt := µ ≤ 1.026σ2
r(X\)(

1.5σ2
r(X

\) logn+6‖X\‖2F
)2 . Here, c1 > 0

is some universal constant.

Assuming that the iterates {X t} stay within the RIC (see (2.25)) for the first Tc

iterations, according to Lemma 2, we have, by induction, that

dist
(
XTc+1,X

\
)
≤
(
1− 0.513µσ2

r(X
\)
)Tc+1

dist
(
X0,X

\
)
≤ 1

24
√

6
·
√

log n√
n
·
σ2
r

(
X\
)∥∥X\

∥∥
F

as soon as

Tc ≥ cmax

{
log2 n,

∥∥X\
∥∥4
F

σ4
r

(
X\
)} log n, (2.27)
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for some large enough constant c. The iterates when t ≥ Tc are easier to deal with;

in fact, it is easily seen that X t+1 stays in the RIC since

max
1≤l≤m

∥∥a>l (X t+1Qt+1 −X\
)∥∥

2
≤ max

1≤l≤m

∥∥al∥∥2 ∥∥X t+1Qt+1 −X\
∥∥

≤
√

6n · 1

24
√

6
·
√

log n√
n
·
σ2
r

(
X\
)∥∥X\

∥∥
F

(2.28)

=
1

24

√
log n ·

σ2
r

(
X\
)∥∥X\

∥∥
F

,

where (2.28) follows from Lemma 16 for all t ≥ Tc. Consequently, contraction of the

estimation error dist
(
X t,X

\
)
can be guaranteed by Lemma 1 for all t ≥ Tc with

probability at least 1− c1n−12 −me−1.5n −mn−12.

2.6.2 Introducing Leave-One-Out Sequences

It has now become clear that the key remaining step is to verify that the iterates

{X t} satisfy (2.25) for the first Tc iterations, where Tc is on the order of (2.27). Ver-

ifying (2.25b) is conceptually hard since the iterates {X t} are statistically dependent

with all the sensing vectors {ai}mi=1. One may turn to some generic bounding tech-

niques such as Cauchy-Schwarz inequality, which, however, usually would not yield

a tight enough bound. To tackle this problem, for each 1 ≤ l ≤ m, we introduce an

auxiliary leave-one-out sequence {X(l)
t }, which discards a single measurement from

consideration. Specifically, the sequence {X(l)
t } is the gradient iterates operating on

the following leave-one-out function

f (l) (X) :=
1

4m

∑
i:i 6=l

(
yi −

∥∥a>i X∥∥22)2 . (2.29)

See Algorithm 2 for a formal definition of the leave-one-out sequences. Again, we

want to emphasize that Algorithm 2 is just an auxiliary procedure useful for the

theoretical analysis, and it does not need to be implemented in practice.
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Algorithm 2: Leave-One-Out Versions
Input: Measurements {yi}i:i 6=l, and sensing vectors {ai}i:i 6=l.
Parameters: Step size µt, rank r, and number of iterations T .
Initialization: X(l)

0 = Z
(l)
0 Λ

(l)1/2
0 , where the columns of Z(l)

0 ∈ Rn×r contain
the normalized eigenvectors corresponding to the r largest eigenvalues of the
matrix

Y (l) =
1

2m

∑
i:i 6=l

yiaia
>
i , (2.30)

and Λ
(l)
0 is an r × r diagonal matrix, with the entries on the diagonal given as[

Λ
(l)
0

]
i

= λi
(
Y (l)

)
− λ(l), i = 1, · · · , r, (2.31)

where λ(l) = 1
2m

∑
i:i 6=l yi and λi

(
Y (l)

)
is the ith largest eigenvalue of Y (l).

Gradient loop: For t = 0 : 1 : T − 1, do

X
(l)
t+1 = X

(l)
t − µt ·

1

m

∑
i:i 6=l

(∥∥a>i X(l)
t

∥∥2
2
− yi

)
aia

>
i X

(l)
t . (2.32)

Output: X(l)
T .

2.6.3 Establishing Incoherence via Induction

Our proof is inductive in nature with the following induction hypotheses:

∥∥X tQt −X\
∥∥
F
≤ C1

(
1− 0.5σ2

r

(
X\
)
µ
)t σ2

r

(
X\
)∥∥X\

∥∥
F

; (2.33a)

max
1≤l≤m

∥∥∥X tQt −X
(l)
t R

(l)
t

∥∥∥
F
≤ C3

(
1− 0.5σ2

r

(
X\
)
µ
)t√ log n

n
·
σ2
r

(
X\
)∥∥X\

∥∥
F

; (2.33b)

max
1≤l≤m

∥∥a>l (X tQt −X\
)∥∥

2
≤ C2

(
1− 0.5σ2

r

(
X\
)
µ
)t√

log n ·
σ2
r

(
X\
)∥∥X\

∥∥
F

, (2.33c)

where R(l)
t = argminP∈Or×r

∥∥X tQt−X
(l)
t P

∥∥
F
, and the positive constants C1, C2 and

C3 satisfy

C1 + C3 ≤
1

24
, C2 +

√
6C3 ≤

1

24
, 5.86C1 + 5.86C3 +

√
6C3 ≤ C2. (2.34)
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Furthermore, the step size µ is chosen as

µ =
c0σ

2
r

(
X\
)(

σ2
r(X

\) log n+ ‖X\‖2F
)2 (2.35)

with appropriate universal constant c0 > 0.

Our goal is to show that if the tth iteration X t satisfies the induction hypotheses

(2.33), the (t + 1)th iteration X t+1 also satisfies (2.33). It is straightforward to see

that the hypothesis (2.33a) has already been established by Lemma 2, and we are left

with (2.33b) and (2.33c). We first establish (2.33b) in the following lemma, which

measures the proximity between X t and the leave-one-out versions X(l)
t , whose proof

is provided in Appendix B.3.

Lemma 3. Suppose the sample size obeys m ≥ c
‖X\‖4F
σ4
r(X\)

nr log (nκ) for some suf-

ficiently large constant c > 0. If the induction hypotheses (2.33) hold for the tth

iteration, with probability at least 1− c1n−12 −me−1.5n −mn−12, we have

max
1≤l≤m

∥∥∥X t+1Qt+1 −X
(l)
t+1R

(l)
t+1

∥∥∥
F
≤ C3

(
1− 0.5σ2

r

(
X\
)
µ
)t+1

√
log n

n
·
σ2
r

(
X\
)∥∥X\

∥∥
F

,

as long as the step size satisfies (2.35). Here, c1 > 0 is some absolute constant.

In addition, the incoherence property ofX(l)
t+1 with respect to the lth sensing vector

al is relatively easier to establish, due to their statistical independence. Combined

with the proximity bound from Lemma 3, this allows us to justify the incoherence

property of the original iterates X t+1, as summarized in the lemma below, whose

proof is given in Appendix B.4.

Lemma 4. Suppose the sample size obeys m ≥ c
‖X\‖4F
σ4
r(X\)

nr log (nκ) for some suf-

ficiently large constant c > 0. If the induction hypotheses (2.33) hold for the tth
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iteration, with probability exceeding 1− c1n−12 −me−1.5n − 2mn−12,

max
1≤l≤m

∥∥a>l (X t+1Qt+1 −X\
)∥∥

2
≤ C2

(
1− 0.5σ2

r

(
X\
)
µ
)t+1√

log n ·
σ2
r

(
X\
)∥∥X\

∥∥
F

holds as long as the step size satisfies (2.35). Here, c1 > 0 is some universal constant.

2.6.4 Spectral Initialization

Finally, it remains to verify that the induction hypotheses hold for the initializa-

tion, i.e. the base case when t = 0. This is supplied by the following lemma, whose

proof is given in Appendix B.5.

Lemma 5. Suppose that the sample size exceeds m ≥ c
‖X\‖6

F

σ6
r(X\)

nr log n for some suf-

ficiently large constant c > 0. Then X0 satisfies (2.33) with probability at least

1− c1n−12 −me−1.5n − 3mn−12, where c1 is some absolute positive constant.

2.7 Conclusion

In this chapter, we have shown that low-rank PSD matrices can be recovered from

a near-minimal number of random rank-one measurements, via the vanilla gradient

descent algorithm following spectral initialization. Our results significantly improve

upon existing results in several ways, both computationally and statistically. In

particular, our algorithm does not require resampling at every iteration (and hence

requires fewer samples). The gradient iteration can provably employ a much more

aggressive step size than what was suggested in prior literature (e.g. [48]), thus result-

ing in much smaller iteration complexity and hence lower computational cost. All of

this is enabled by establishing the implicit regularization feature of gradient descent

for nonconvex statistical estimation, where the iterates remain incoherent with the

sensing vectors throughout the execution of the whole algorithm.
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Chapter 3: Robust Matrix Recovery from Corrupted

Rank-One Measurements

As discussed in Chapter 2, in many emerging applications of science and engineer-

ing, we are interested in estimating a low-rank PSD matrix X0 ∈ Rn×n from a set of

nonnegative magnitude measurements:

yi = 〈Ai,X0〉 = 〈aia>i ,X0〉 = a>i X0ai, (3.1)

for i = 1, · · · ,m. The measurement yi is quadratic in the sensing vector ai ∈ Rn, but

linear in X0, where the sensing matrix Ai = aia
>
i is rank-one.

In this chapter, we focus on robust recovery of the low-rank PSD matrix when

the measurements in (3.1) are further corrupted by outliers, possibly adversarial with

arbitrary amplitudes. In practical applications, outliers are somewhat inevitable,

which may be caused by sensor failures, malicious attacks, or reading errors [31–33].

In the application of covariance sketching, described in (2.4), a sufficient aggregation

length |T | is necessary in order for each measurement to be well approximated by

(3.1). Measurements which are not aggregated from a large enough |T | may be

regarded as outliers. Therefore, it becomes critical to address robust recovery of X0

in the presence of outliers. Fortunately, it is reasonable to assume that the number

of outliers is usually much smaller than the number of total measurements, making it
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possible to leverage the sparsity of the outliers to faithfully recover the low-rank PSD

matrix of interest. The results of this chapter are summarized in the papers [74,75].

3.1 Problem Formulation

Let X0 ∈ Rn×n be a rank-r PSD matrix, then the set of m measurements, which

may be corrupted by either arbitrary outliers or bounded noise, can be represented

as

y = A(X0) + η +w ∈ Rm, (3.2)

The linear mapping A: Rn×n → Rm is defined as A (X0) := {Ai (X0)}mi=1 with

Ai (X0) := a>i X0ai, where ai ∈ Rn is the ith sensing vector composed of i.i.d. stan-

dard Gaussian entries, for i = 1, · · · ,m. The vector η ∈ Rm denotes the outlier

vector, which is assumed to be sparse whose entries can be arbitrarily large. The

fraction of nonzero entries is defined as s := ‖η‖0 /m. Moreover, the vector w ∈ Rm

denotes the additive noise, which is assumed bounded as ‖w‖1 ≤ ε. Our goal is to

robustly recover X0 from the measurements y.

3.2 Robust Recovery via Convex Relaxation

3.2.1 Robust-PhaseLift

To motivate our algorithm, consider the case when only the outlier vector η is

present in (3.2) and the rank ofX0 is known. One may seek a rank-r PSD matrix that

minimizes the cardinality of the measurement residual to motivate outlier sparsity,

given as

X̂ = argminX�0‖y −A(X)‖0, s.t. rank(X) = r. (3.3)

29



However, both the cardinality minimization and the rank constraint are NP-hard in

general, making this method computationally infeasible. A common approach is to

resort to convex relaxation, where we relax the cardinality minimization by its convex

relaxation, i.e. the `1-norm, and meanwhile, drop the rank constraint, yielding:

(Robust-PhaseLift:) X̂ = argminX�0‖y −A(X)‖1. (3.4)

We denote the above convex program as the Robust-PhaseLift algorithm, since it

coincides with the PhaseLift algorithm studied in [14, 56, 76] for phase retrieval4.

The advantage of Robust-PhaseLift in (3.4) is that it does not require any prior

knowledge of the noise bound, the rank of X0, nor the sparsity level of the outliers,

and is free of any regularization parameter. It is worth emphasizing that in (3.4)

only the PSD constraint of the solution is honored without explicitly motivating the

low-rank structure, via for example, trace minimization5.

3.2.2 Performance Guarantees

Encouragingly, we demonstrate that the algorithm (3.4) admits robust recovery

of a rank-r PSD matrix as soon as the number of measurements is large enough, even

with a fraction of arbitrary outliers in Theorem 2. To the best of our knowledge, this

is the first theoretical performance guarantee of the robustness of (3.4) with respect

to arbitrary outliers in the low-rank setting. Our main theorem is given as below.

Theorem 2. Suppose that ‖w‖1 ≤ ε and s = ‖η‖0 /m. Assume the support of η

is selected uniformly at random with the signs of its nonzero entries generated from

4Note that there are a few different versions of PhaseLift in the literature which are not outlier-
robust, therefore we rename (3.4) to Robust-PhaseLift for emphasis.

5The interested readers are invited to look up Figure 1 in [13] for an intuitive geometric inter-
pretation in the noise-free and outlier-free case.
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the Rademacher distribution as P {sgn (ηi) = −1} = P {sgn (ηi) = 1} = 1/2 for each

i ∈ supp(η). Then for a fixed rank-r PSD matrix X0 ∈ Rn×n, there exist some

absolute constants c1 > 0 and 0 < s0 < 1 such that as long as

m ≥ c1nr
2, s ≤ s0

r
,

the solution to (3.4) satisfies

∥∥∥X̂ −X0

∥∥∥
F
≤ c2

rε

m
,

with probability exceeding 1− exp(−γm/r2) for some constants c2 and γ.

Theorem 2 has the following consequences.

• Exact Recovery with Outliers: When ε = 0, Theorem 2 suggests the recov-

ery is exact using Robust-PhaseLift (3.4), i.e. X̂ = X0 even when a fraction

of measurements are arbitrarily corrupted, as long as the number of measure-

ments m is on the order of nr2. Given there are at least nr unknowns, our

measurement complexity is near-optimal up to a factor of r.

• Stable Recovery with Bounded Noise: In the presence of bounded noise,

Theorem 2 suggests that the recovery performance decreases gracefully with the

increase of ε, where the Frobenius norm of the reconstruction error is propor-

tional to the per-entry noise level of the measurements.

• Phase Retrieval: When r = 1, the problem degenerates to the case of phase

retrieval, and Theorem 2 recovers existing results in [76] for outlier-robust phase

retrieval, where the measurement complexity is on the order of n, which is

optimal up to a scaling factor.
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Let us denote X̂r = argminrank(Z)=r, Z�0‖X̂ − Z‖F as the best rank-r PSD

matrix approximation of X̂, the solution to (3.4). Then Theorem 2 suggests that the

estimate X̂ can be well approximated by a rank-r PSD matrix since

‖X̂ − X̂r‖F ≤ ‖X̂ −X0‖F ≤ c2
rε

m
,

as long as the number of measurements is sufficiently large. Furthermore, we have

‖X̂r −X0‖F ≤ ‖X̂r − X̂‖F + ‖X̂ −X0‖F ≤ 2‖X̂ −X0‖F ≤ 2c2
rε

m
,

indicating that X̂r provides an accurate estimate of X0 that is both exactly rank-r

and PSD.

3.3 Related Work

In the absence of outliers, the PhaseLift algorithm in the following form

min
X�0

Tr(X) s.t. ‖y −A(X)‖1 ≤ ε, (3.5)

has been proposed to solve the phase retrieval problem [13, 14, 77]. Later the same

algorithm has been employed to recover low-rank PSD matrices in [10], where an order

of nr measurements obtained from i.i.d. sub-Gaussian sensing vectors are shown to

guarantee exact recovery in the noise-free case and stable recovery with bounded

noise. One problem with the algorithm (3.5) is that the noise bound ε is assumed

known. Furthermore, it is not amenable to handle outliers, since ‖y−A(X0)‖1 can be

arbitrarily large with outliers and consequently the ground truthX0 quickly becomes

infeasible for (3.5).

The proposed algorithm (3.4) is studied in [14,56,76] as a variant of PhaseLift for

phase retrieval, corresponding to the case where X0 = x0x
>
0 is rank-one. It is shown
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in [14, 56] that with O(n) i.i.d. Gaussian sensing vectors, the algorithm succeeds

with high probability. Compared with (3.5), the algorithm (3.4) eliminates trace

minimization and leads to easier algorithm implementations. We note that [78] also

considers a regularization-free algorithm for PSD matrix estimation that minimizes

the `2-norm of the residual, which unfortunately, cannot handle outliers as Robust-

PhaseLift (3.4). Our work is related to the work in [76] which first considered the

robustness of the Robust-PhaseLift algorithm (3.4) in the presence of outliers for

phase retrieval, establishing that the same guarantee holds even with a constant

fraction of outliers. Our work extends the performance guarantee in [76] to the

general low-rank PSD matrix case. Moreover, we show the proposed approach can be

easily extended to recover low-rank Toeplitz PSD matrices via numerical experiments.

Broadly speaking, our problem is related to low-rank matrix recovery from an

under-determined linear system [5, 79, 80], where the linear measurements are drawn

from inner products with rank-one sensing matrices. It is due to this special structure

of the sensing matrices that we can eliminate the trace minimization, and only con-

sider the feasibility constraint for PSD matrices. Standard approaches for separating

low-rank and sparse components [81–85] via convex optimization are given as

min
X�0, η

Tr(X) + λ‖η‖1, s.t. ‖y −A(X)− η‖1 ≤ ε,

where λ is a regularization parameter that requires to be tuned properly. In contrast,

our algorithm is parameter-free.

3.4 Theoretical Analysis of Robust-PhaseLift

In this section we prove Theorem 2, and the roadmap of our proof is below. In Sec-

tion 3.4.1, we first provide the sufficient conditions for an approximate dual certificate
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that certifies the optimality of the proposed algorithm (3.4) in Lemma 6. Section 3.4.2

records a few lemmas that show A satisfies the required restricted isometry proper-

ties. Then, a dual certificate is constructed and validated for a fixed low-rank PSD

matrix X0 in Section 3.4.3. Finally, the proof is concluded in Section 3.4.4.

First we introduce some additional notations. Let S be a subset of {1, 2, · · · ,m},

then S⊥ is the complement of S with respect to {1, 2, · · · ,m}. AS is the mapping

operator A constrained on S, which transforms a matrix X into a vector AS (X)

whose entries equal a>i Xai for i ∈ S and are zero otherwise. Denote the adjoint

operator ofA byA∗(µ) =
∑m

i=1 µiaia
>
i , where µi is the ith entry of µ, 1 ≤ i ≤ m. Let

the singular value decomposition of the fixed rank-r PSD matrixX0 beX0 = UΛU>,

then the symmetric tangent space T at X0 is denoted by

T :=
{
UZ> +ZU> | Z ∈ Rn×r} . (3.6)

We denote by PT and PT⊥ the orthogonal projection onto T and its orthogonal com-

plement, respectively. And for notational simplicity, we denote HT := PT (H) and

HT⊥ := H − PT (H) for any symmetric matrix H ∈ Rn×n. Moreover, γ represents

an absolute constant, whose value may change according to context.

3.4.1 Approximate Dual Certificate

The following lemma suggests that under certain appropriate restricted isometry

preserving properties of A, a properly constructed dual certificate can guarantee

faithful recovery of the proposed algorithm (3.4), of which the proof is deferred to

Appendix C.1.

Lemma 6 (Approximate Dual Certificate for (3.4)). Denote a subset S with |S|
m

:=

d s0
13
√
2r
e, where 0 < s0 < 1 is some constant, and the support of η satisfies supp(η) ⊆
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S. Suppose that the mapping A obeys that for all symmetric matrices X,

1

m
‖A (X)‖1 ≤

(
1 +

1

10

)
‖X‖1 , (3.7)

and
1

|S|
‖AS (X)‖1 ≤

(
1 +

1

10

)
‖X‖1 , (3.8)

and for all matrices X ∈ T ,

1

|S⊥|
‖AS⊥ (X)‖1 >

1

5

(
1− 1

12

)
‖X‖F . (3.9)

Then if there exists a matrix Y = A∗(µ) that satisfies

Y T⊥ � −
1

r
IT⊥ , ‖Y T‖F ≤

1

13r
, (3.10)

and {
µi = 9

m
sgn(ηi), i ∈ supp(η)

|µi| ≤ 9
m
, i /∈ supp(η)

, (3.11)

the solution to (3.4) satisfies ∥∥∥X̂ −X0

∥∥∥
F
≤ c

rε

m
, (3.12)

where c is a constant.

3.4.2 Restricted Isometry of A

The first two conditions (3.7) and (3.8) in Lemma 6 are supplied straightforwardly

in the following lemma as long as m ≥ cnr and |S| = c1m/r ≥ c2n for some constants

c, c1 and c2.

Lemma 7. [13] Fix any δ ∈ (0, 1
2
) and assume m ≥ 20δ−2n. Then for all PSD

matrices X, one has

(1− δ) ‖X‖1 ≤
1

m
‖A (X)‖1 ≤ (1 + δ) ‖X‖1
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with probability exceeding 1 − 2e−mε
2/2, where ε2 + ε = δ

4
. The right hand side holds

for all symmetric matrices.

The third condition (3.9) in Lemma 6 can be obtained using the mixed-norm RIP-

`2/`1 provided in [10] as long as m ≥ cnr and |S| ≤ c1m for some constants c and

c1.

Lemma 8. [10] Suppose the sensing vectors ai’s are composed of i.i.d. sub-Gaussian

entries, then there exist positive universal constants c1, c2 and c3 such that, provided

that m > c3nr, for all matrices X of rank at most r, one has

(
1− δlbr

)
‖X‖F ≤

2

m
‖B (X)‖1 ≤

(
1 + δubr

)
‖X‖F ,

with probability exceeding 1 − c1e
−c2m, where δlbr and δubr are defined as the RIP-

`2/`1 constants. And the operator B represents the linear transformation that maps

X ∈ Rn×n to {Bi (X)}m/2i=1 ∈ Rm/2, where Bi (X) := 〈a2i−1a
>
2i−1 − a2ia

>
2i,X〉.

The third condition (3.9) can be easily validated from the lower bound by set-

ting δlbr appropriately, since ‖B (X)‖1 ≤
∑m/2

i=1

(∣∣〈a2i−1a
>
2i−1,X〉

∣∣+
∣∣〈a2ia

>
2i,X〉

∣∣) =

‖A (X) ‖1.

3.4.3 Construction of Dual Certificate

For notational simplicity, let α0 := E
[
Z2I{|Z|≤3}

]
≈ 0.9707, β0 := E

[
Z4I{|Z|≤3}

]
≈

2.6728 and θ0 := E
[
Z6I{|Z|≤3}

]
≈ 11.2102, where Z is a standard Gaussian random

variable.

Consider that the singular value decomposition of a PSD matrix X0 of rank

at most r can be represented as X0 =
∑r

i=1 λiuiu
>
i , then inspired by [14, 76], we

36



construct Y as

Y :=
1

m

∑
j∈S⊥

[1

r

r∑
i=1

∣∣a>j ui∣∣2 I{|a>j ui|≤3} −
(
α0 +

β0 − α0

r

)]
· aja>j +

9

m

∑
j∈S

χjaja
>
j

:= Y (0) − Y (1) + Y (2), (3.13)

where

Y (0) =
1

m

∑
j∈S⊥

[
1

r

r∑
i=1

∣∣a>j ui∣∣2 I{|a>j ui|≤3}

]
aja

>
j ; (3.14)

Y (1) =
1

m

(
α0 +

β0 − α0

r

) ∑
j∈S⊥

aja
>
j ; (3.15)

Y (2) =
9

m

∑
j∈S

χjaja
>
j . (3.16)

We set χj = sgn (ηj) if j ∈ supp(η), otherwise χj’s are i.i.d. Rademacher random

variables with P {χj = 1} = P {χj = −1} = 1/2.

The construction immediately indicates that Y satisfies (3.11). Then, we can also

show that Y satisfies (3.10) with high probability by separating the constructed Y

into two parts and considering the bounds on Y (0) − Y (1) and Y (2), respectively.

The theoretical results are summarized in following Lemma 9, which proves Y T⊥ +

1
r
IT⊥ � 0 and Lemma 10, which proves ‖Y T‖F ≤

1
13r

, of which the proofs are given

in Appendix C.2 and Appendix C.3, respectively.

Lemma 9. Provided m ≥ cnr2 and |S| = c1m/r ≥ c2nr for some constants c, c1 and

c2, with probability at least 1− e−γm/r2, we have∥∥∥∥Y T⊥ +
1.7

r
IT⊥

∥∥∥∥ ≤ 0.25

r
.

Lemma 10. Provided m ≥ cnr2 and |S| = c1m/r, for some constants c and c1, with

probability at least 1− e−γm/r2, we have

‖Y T‖F ≤
1

15r
.
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3.4.4 Proving Performance Guarantees of Robust-PhaseLift

The required restricted isometry properties of the linear mapping A are supplied

in Section 3.4.2 and a valid appropriate dual certificate is constructed in Section 3.4.3,

therefore, Theorem 2 can be straightforwardly obtained from the Lemma 6 in Sec-

tion 3.4.1.

3.5 A Nonconvex Subgradient Descent Algorithm

In this section, we propose another algorithm for robust low-rank PSD matrix

recovery from corrupted rank-one measurements assuming the rank (or its upper

bound) of the PSD matrix X0 is known a priori as r. In this case, as in Chapter 2,

we can decompose X0 as X0 = U 0U
>
0 where U 0 ∈ Rn×r is the low-rank factor.

Instead of directly recovering X0, we may aim at recovering U 0 up to orthogonal

transforms, since (U 0Q)(U 0Q)> = U 0U 0 for any orthonormal matrix Q ∈ Rr×r.

Consider relaxing of the loss function in (3.3) but keeping the rank constraint, then

we obtain the following problem:

X̂ = argminX�0‖y −A(X)‖1, s.t. rank(X) = r. (3.17)

Since any rank-r PSD matrix X can be written as X = UU> for some U ∈ Rn×r,

(3.17) can be equivalently reformulated as

Û = argminU∈Rn×rf(U), (3.18)

with

f(U) :=
1

2m

∥∥y −A(UU>)
∥∥
1

=
1

2m

m∑
i=1

∣∣∣yi − ∥∥U>ai∥∥22∣∣∣ .
Clearly, (3.18) is no longer convex. To illustrate, the first row of Figure 3.1 plots the

value of the objective function in the negative logarithmic scale, i.e. − log f(U), under
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different corruption scenarios when U ∈ R2×1. For comparison, the second row of

Figure 3.1 shows the loss function evaluated in `2-norm: g(U ) = 1
4m
‖y−A(UU>)‖22,

which is not robust to outliers.

no outliers modest outlier amplitudes large outlier amplitudes

f(U) = 1
2m
‖y −A(UU>)‖1

g(U) = 1
4m
‖y −A(UU>)‖22

Figure 3.1: Illustrations of the objective function − log f(U) and its `2-norm counter-
part − log g(U) (in negative logarithmic scales) under different corruption scenarios
when U ∈ R2×1. The number of measurements is m = 100 with i.i.d. Gaussian sens-
ing vectors, and the fraction of outliers is s = 0.2 with uniformly selected support
and amplitudes drawn from Unif[0, 10] or Unif[0, 100]. It is interesting to observe that
while large outliers completely distort g(U), the proposed objective is quite robust
with the ground truth being the only global optima of f(U).

Motivated by the recent nonconvex approaches [25,48,52] of solving quadratic sys-

tems, we propose a subgradient descent algorithm to solve (3.18) effectively, working

with a non-smooth function f(U). Note that a subgradient of f(U) with respect to
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U can be given as

∂f(U) = − 1

m

m∑
i=1

sgn
(
yi −

∥∥U>ai∥∥22)aia>i U , (3.19)

where the sign function sgn(·) is defined as

sgn(x) =


+1, x > 0
0, x = 0
−1, x < 0

. (3.20)

Our subgradient descent algorithm proceeds as below. Denote the estimate in the

tth iteration byU (t) ∈ Rn×r. First, U (0) is initialized as the best rank-r approximation

of the following matrix with respect to Frobenius norm as

U (0)
(
U (0)

)>
= argminrank(X)=r

∥∥∥∥∥X − 1

m

m∑
i=1

yiaia
>
i

∥∥∥∥∥
2

F

. (3.21)

Secondly, at the (t+ 1)th iteration, t ≥ 0, we apply subgradient descent to refine the

estimate as

U (t+1) = U (t) − µt · ∂f(U (t)), (3.22)

where the step size µt is adaptively set as

µt = 0.05×max
{

2−t/1000, 10−6
}
,

which provides more accurate estimates using fewer iterations in the numerical sim-

ulations. The procedure is summarized in Algorithm 3, where the stopping rule in

Algorithm 3 is simply put as a maximum number of iterations.

The main advantage of Algorithm 3 is its low memory and computational com-

plexity. Given that it does not construct the full PSD matrix, the memory complexity

is simply the size of U (t), which is on the order of nr. The computational complex-

ity per iteration is also low, which is on the order of mnr, that is linear in all the

parameters. We demonstrate the excellent empirical performance of Algorithm 3 in

Section 3.6.3.
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Algorithm 3: Subgradient descent for solving (3.18)
Parameters: Rank r, number of iterations Tmax, and step size µt.
Input: Measurements y, and sensing vectors {ai}mi=1.
Initialization: Initialize U (0) ∈ Rn×r via (3.21).
For t = 0 : 1 : Tmax − 1 do

update U (t+1) via (3.22),
end for
Output: Û = U (Tmax).

3.6 Numerical Examples

3.6.1 Performance of Convex Relaxation
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Figure 3.2: Phase transitions of low-rank PSD matrix recovery with respect to the
number of measurements and the rank, (a) with trace minimization; and (b) without
trace minimization of noise-free measurements, when n = 40.

We first examine the performance of Robust-PhaseLift in (3.4). Let n = 40.

We randomly generate a low-rank PSD matrix of rank-r as X0 = U 0U
>
0 , where

U 0 ∈ Rn×r is composed of i.i.d. standard Gaussian variables. The sensing vectors are
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also composed of i.i.d. standard Gaussian variables. Each Monte Carlo simulation is

called successful if the normalized estimate error satisfies ‖X̂−X0‖F/‖X0‖F ≤ 10−6,

where X̂ denotes the solution to (3.4). For each cell, the success rate is calculated

by averaging over 100 Monte Carlo simulations.

Figure 3.2 shows the success rates of algorithms with respect to the number of

measurements and the rank, with the trace minimization as in (3.5) in (a); and

without the trace minimization as proposed in Robust-PhaseLift (3.4) in (b) for noise-

free measurements. It can be seen that the performance of these two algorithms are

almost equivalent, confirming a similar numerical observation for the phase retrieval

problem [57] also holds in the low-rank setting, where trace minimization may be

eliminated for low-rank PSD matrix recovery using rank-one measurements.
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Figure 3.3: Phase transitions of low-rank PSD matrix recovery with respect to (a)
the number of measurements and the rank, with 5% of measurements corrupted by
standard Gaussian variables; (b) the percentage of outliers and the rank, when the
number of measurements is m = 600, when n = 40.
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Figure 3.3 further shows the success rates of the Robust-PhaseLift algorithm (a)

with respect to the number of measurements and the rank, when 5% of measurements

are selected uniformly at random and corrupted by standard Gaussian variables; and

(b) with respect to the percentage of outliers and the rank, for a fixed number of

measurements m = 600. This also suggests possible room for improvements of our

theoretical guarantee, as the numerical results indicate that the required measurement

complexity for successful recovery has a seemingly linear relationship with r.

3.6.2 Convex Relaxation with Additional Toeplitz Structure

We next consider robust recovery of low-rank Toeplitz PSD matrices, where we

allow complex-valued sensing vectors A(X) = {aHi Xai}mi=1 and complex-valued

Toeplitz PSD matrices X with (·)H denoting the Hermitian transpose. Estimating

low-rank Toeplitz PSD matrices is of great interests for array signal processing [86].

We modify (3.4) by incorporating the Toeplitz constraint as:

X̂ = argminX�0‖y −A(X)‖1, s.t. X is Toeplitz. (3.23)

Let n = 64, the Toeplitz PSD matrix X0 is generated as X0 = V ΣV H , where V =

[v(f1),v(f2), · · · ,v(fr)] ∈ Cn×r is a Vandermonde matrix with v(fi) = [1, ej2πfi , · · · ,

ej2π(n−1)fi ]>, fi ∼ Unif[0, 1], and Σ = diag{σ2
1, · · · , σ2

r}, with σ2
i ∼ Unif[0, 1]. Fig-

ure 3.4 shows the phase transitions of Toeplitz PSD matrix recovery with respect to

the number of measurements and the rank without outliers in (a), and when 5% of

measurements are selected uniformly at random and corrupted by standard Gaus-

sian variables in (b). It can be seen that the low-rank Toeplitz PSD matrix can be

robustly recovered from a sublinear number of measurements due to the additional

Toeplitz structure. We note that a different covariance sketching scheme is considered
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Figure 3.4: Phase transitions of low-rank Toeplitz PSD matrix recovery with respect
to the number of measurements and the rank, (a) without outliers, and (b) with 5%
of measurements corrupted by standard Gaussian variables, when n = 64.

in [87–89] for estimating low-rank Toeplitz covariance matrices. Though not directly

comparable to our measurement scheme, it may benefit from a similar parameter-free

convex optimization to handle outliers.

3.6.3 Performance of Nonconvex Subgradient Descent

We next examine the performance of the nonconvex subgradient descent algorithm

in Algorithm 3, where the number of iterations is set as Tmax = 3 × 104, which is

a large value to guarantee convergence when terminated. Denote the solution to

Algorithm 3 by Û , and each Monte Carlo simulation is deemed successful if the

normalized estimate error satisfies ‖X̂ −X0‖F/‖X0‖F ≤ 10−6, where X̂ = ÛÛ
>
is

the estimated low-rank PSD matrix. For each cell, the success rate is calculated by

averaging over 100 Monte Carlo simulations.
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Figure 3.5: Phase transitions of low-rank PSD matrix recovery with respect to the
number of measurements and the rank for the proposed Algorithm 3 using noise-free
measurements, when n = 40.

Figure 3.5 shows the success rate of Algorithm 3 with respect to the number

of measurements and the rank under the same setup of Figure 3.2 for noise-free

measurements, when n = 40. Indeed, empirically Algorithm 3 performs similarly

as the convex algorithms but with a much lower computational cost. Moreover, the

proposed Algorithm 3 allows perfect recovery even in the presence of outliers. For

comparison, we implement the extension of the WF algorithm in [25, 26, 48] in the

low-rank case, that minimizes the squared `2-norm of the residual, where the update

rule per iteration becomes

U (t+1) = U (t) + µWF
t · 1

m

m∑
i=1

(
yi − ‖(U (t))>ai‖22

)
aia

>
i U

(t),

using the same initialization (3.21). The step size is set as µWF
t = 0.1/ ‖U 0‖2F. Figure
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Figure 3.6: Phase transitions of low-rank PSD matrix recovery with respect to the
percentage of outliers and the rank using (a) the proposed Algorithm 3, and (b) the
WF algorithm, when n = 40 and m = 600.

3.6 (a) shows the success rates of Algorithm 3 with respect to the percentage of outliers

and the rank, under the same setup of Figure 3.3 (b), where the performance is even

better than the convex counterpart in (3.4). In contrast, the WF algorithm performs

poorly even with very few outliers, as shown in its success rate plot in Figure 3.6 (b),

as the loss function used for WF is not robust to outliers.

3.6.4 Comparisons with Additional Bounded Noise

Finally, we compare the two proposed algorithms (Robust-PhaseLift in (3.4) and

Algorithm 3), the WF algorithm and the PhaseLift algorithm in (3.5) when the mea-

surements are corrupted by both outliers and bounded noise. Fix n = 40 and r = 3.

The rank-r PSD matrix X0 and the sensing vectors are generated similarly as ear-

lier. 5% of measurements are selected uniformly at random and corrupted by outliers

obeying the Gaussian distribution N (0, 52). Moreover, each entry in the bounded
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noise w is i.i.d. drawn from Unif[−4/m, 4/m], thus ‖w‖1 ≤ 4. Figure 3.7 depicts the

mean squared error ‖X̂ −X0‖2F for different algorithms with respect to the number

of measurements, where X̂ is the estimated PSD matrix. For the subgradient descent

algorithm in Algorithm 3, various ranks are used as prior information, corresponding

to the correct rank r, its underestimate r − 1, and its overestimate r + 1. It can
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Figure 3.7: Comparisons of mean squared errors using different algorithms with re-
spect to the number of measurements with 5% of outliers and bounded noise, when
n = 40 and r = 3.

be seen that Algorithm 3 works well as long as the given rank provides an upper

bound of the true rank, and it performs much better than the WF algorithm which

is not outlier-robust. On the other hand, the PhaseLift algorithm (3.5) does not ad-

mit favorable performance if we set the constraint parameter as, for example, c · ε,

for a small constant c = 1, 2 or 4, since the outliers do not fall into the prescribed
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noise bound. In fact, it fails to return any feasible solution when the number and

amplitudes of outliers is too large in our simulation (not shown). In order to obtain a

favorable solution from PhaseLift, we use the oracle information to set the constraint

parameter in (3.5) as ε = ‖η +w‖1. In contrast, Robust-PhaseLift is parameter-free.

It can be seen that Robust-PhaseLift, as well as Algorithm 3 with the correct model

order, still achieve better performance than PhaseLift despite being aided by oracle

information.

3.7 Conclusion

In this chapter, we address the problem of estimating a low-rank PSD matrix

X ∈ Rn×n from rank-one measurements that are possibly corrupted by arbitrary out-

liers and bounded noise. This problem has many applications in covariance sketching,

phase space tomography, and noncoherent detection in communications. It is shown

that with an order of nr2 random Gaussian sensing vectors, a PSD matrix of rank-

r can be robustly recovered by minimizing the `1-norm of the observation residual

within the semidefinite cone with high probability, even when a fraction of the mea-

surements are adversarially corrupted. This convex formulation eliminates the need

for trace minimization and tuning of parameters without prior knowledge of the out-

liers. Moreover, a nonconvex subgradient descent algorithm is proposed with excellent

empirical performance, when additional information of the rank of the PSD matrix

is available.
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Chapter 4: Robust Matrix Recovery from Corrupted Linear

Measurements

In this chapter, we focus on low-rank matrix recovery from random linear mea-

surements in the presence of arbitrary outliers. Specifically, the sensing matrices are

generated with i.i.d. standard Gaussian entries. Moreover, we assume that a small

number of measurements are corrupted by outliers, possibly in an adversarial fashion

with arbitrary amplitudes. The goal is to develop an efficient and robust algorithm

that is able to handle a large number of adversarial outliers. The results of this

chapter are summarized in the paper [90] and the paper submission [91].

4.1 Problem Formulation

Let M ∈ Rn1×n2 be a rank-r matrix that can be written as

M = XY >, (4.1)

whereX ∈ Rn1×r and Y ∈ Rn2×r are the low-rank factors ofM . Define the condition

number and the average condition number of M as

κ =
σ1(M)

σr(M )
, and κ̄ =

‖M‖F√
rσr(M)

, (4.2)

respectively. Clearly, κ̄ ≤ κ.
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Let m be the number of measurements, and the set of sensing matrices are given

as {Ai}mi=1, where Ai ∈ Rn1×n2 is the ith sensing matrix. In particular, each entry of

Ai is generated with i.i.d. standard Gaussian entries, i.e. (Ai)k,t ∼ N (0, 1). Denote

the index set of corrupted measurements by S, and correspondingly, the index set

of clean measurements is given as the complementary set Sc. Mathematically, the

measurements y = {yi}mi=1 are given as

yi =

{
〈Ai,M〉, if i ∈ Sc

ηi, if i ∈ S , (4.3)

where η = {ηi}i∈S is the set of outliers that can take arbitrary values. Denote the

cardinality of S by |S| = s ·m, where 0 ≤ s < 1 is the fraction of outliers. To simplify

the notations, we define the linear maps Ai(M ) = {Rn1×n2 7→ R : 〈Ai,M〉}, and

A(M ) = {Rn1×n2 7→ Rm : {Ai(M )}mi=1}.

Instead of recovering M , we aim to directly recover its low-rank factors (X,Y )

from the corrupted measurements y, without a priori knowledge of statistical distri-

bution or fractions of the outliers, in a computationally efficient and provably accurate

manner. It is straightforward to see that for any orthonormal matrix P ∈ Rr×r and

scalar γ ∈ R such that γ 6= 0, we have (γXP )(γ−1Y P )> = XY >. To address the

scaling ambiguity, we assume X>X = Y >Y , and consequently, (X,Y ) can be re-

covered only up to orthonormal transformations. Hence, we measure the estimation

accuracy by taking this into consideration. Let the estimates of low-rank factors be

U ∈ Rn1×r and V ∈ Rn2×r, and define the augmented variables

W =

[
U
V

]
∈ R(n1+n2)×r, Z =

[
X
Y

]
∈ R(n1+n2)×r. (4.4)

Then the distance between W and Z is measured as

dist (W ,Z) = min
P∈Or×r

‖W −ZP ‖F . (4.5)
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Define

Q(W ,Z) = argminP∈Or×r ‖W −ZP ‖F , (4.6)

and then dist (W ,Z) = ‖W −ZQ‖F, where the subscript of Q is dropped for nota-

tional simplicity.

This setting generalizes the outlier-free models studied in [5, 16, 26, 63], where

convex and nonconvex approaches have been developed to accurately recover the

low-rank matrix. Unfortunately, the vanilla gradient descent algorithm, of which

the effectiveness has been demonstrated in [26, 63] for directly recovering the fac-

tors of low-rank matrices from random linear measurements, is very sensitive in the

presence of even a single outlier, as the outliers can perturb the search directions

arbitrarily. To handle outliers, existing convex optimization approaches (including

Robust-PhaseLift in Chapter 3) based on sparse and low-rank decompositions can

be applied using semidefinite programming [83,84,92]. However, their computational

cost is very expensive. Therefore, our goal in this chapter is to develop a fast and

robust nonconvex alternative that is globally convergent in a provable manner that

can handle a large number of adversarial outliers.

4.2 Median-Truncated Gradient Descent

Define a quadratic loss function with respect to the ith measurement as

fi(U ,V ) =
1

4m

(
yi −Ai(UV >)

)2
, (4.7)

where U ∈ Rn1×r and V ∈ Rn2×r. In order to get rid of the impact of outliers, an

ideal approach is to minimize an oracle loss function, expressed as

horacle(U ,V ) = foracle(U ,V ) + g(U ,V )
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=
∑
i∈Sc

fi(U ,V ) +
λ

4

∥∥U>U − V >V ∥∥2
F
, (4.8)

which aims to minimize the quadratic loss over only the clean measurements, in

addition to a regularization term

g(U ,V ) =
λ

4

∥∥U>U − V >V ∥∥2
F
, (4.9)

that aims at balancing the norm of the two factors. Nevertheless, it is impossible to

minimize horacle(U ,V ) directly, since the oracle information regarding the support of

outliers is absent. Moreover, the loss function is nonconvex, adding difficulty to its

global optimization.

We propose a median-truncation strategy to robustify the gradient descent ap-

proach in [26, 63], which includes careful modifications on both initialization and

local search. As it is widely known, the sample median is a more robust quantity

to outliers, compared with the sample mean, which cannot be perturbed arbitrarily

unless over half of the samples are outliers [93]. Therefore, it becomes an ideal metric

to illuminate samples that are likely to be outliers and therefore should be eliminated

during the gradient descent updates.

Specifically, we consider a gradient descent strategy where in each iteration, only

a subset of all samples contribute to the search direction:

U t+1 = U t −
µt
‖U 0‖2

· ∇Uht(U t,V t);

V t+1 = V t −
µt
‖V 0‖2

· ∇V ht(U t,V t),
(4.10)

where µt denotes the step size, andW 0 = [U>0 ,V
>
0 ]> is the initialization that will be

specified later. Also, denote W t = [U>t ,V
>
t ]>. In particular, the iteration-varying

loss function is given as

ht(U ,V ) =
∑
i∈Et

fi(U ,V ) + g(U ,V ) := ftr(U ,V ) + g(U ,V ), (4.11)
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where the set E t varies at each iteration and includes only samples that are likely to

be inliers. Denote the residual of the ith measurement at the tth iteration by

rti = yi −Ai(U tV
>
t ), i = 1, · · · ,m, (4.12)

and rt = [rt1, r
t
2, · · · , rtm]> = y −A(U tV

>
t ). Then the set E t is defined as

E t =
{
i
∣∣∣|rti | ≤ αh ·med{|rt|}

}
, (4.13)

where αh is some small constant. In other words, only samples whose current absolute

residuals are not too deviated from the sample median of the absolute residuals are

included in the gradient update. As the estimate (U t,V t) gets more accurate, we

expect that the set E t gets closer to the oracle set Sc, and hence the gradient search is

more accurate. Note that the set E t varies per iteration, and therefore, can adaptively

prune the outliers. The gradients of ht(U ,V ) with respect to U and V are given as

∇Uht(U ,V ) =
1

2m

∑
i∈Et

[
Ai
(
UV >

)
− yi

]
AiV + λU

(
U>U − V >V

)
;

∇V ht(U ,V ) =
1

2m

∑
i∈Et

[
Ai
(
UV >

)
− yi

]
A>i U + λV

(
V >V −U>U

)
.

(4.14)

For initialization, we adopt a truncated spectral method, which uses the top singu-

lar vectors of a sample-weighted surrogate matrix, where again only the samples whose

absolute values do not significantly digress from the sample median are included. To

avoid statistical dependence in the theoretical analysis, we split the samples by using

the sample median of m2 samples to estimate ‖M‖F, and then using the rest of the

samples to construct the truncated surrogate matrix to perform a spectral initializa-

tion. In practice, we find that this sample split is unnecessary, as demonstrated in

the numerical simulations.
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Algorithm 4: Median-Truncated Gradient Descent (median-TGD)
Parameters: Thresholds αy and αh, step size µt, average condition number
bound κ̄0, rank r, and regularization parameter λ.
Input: Measurements y = {yi}mi=1, and sensing matrices {Ai}mi=1.
Initialization:
1) Set y1 = {yi}m1

i=1 and y2 = {yi}mi=m1+1, where m1 = dm/2e and m2 = m−m1.
2) Take the rank-r SVD of the matrix

K =
1

m1

m1∑
i=1

yiAiI{|yi|≤αy ·med(|y2|)}, (4.15)

which is denoted by CLΣC>R := rank-r SVD of K, where CL ∈ Rn1×r,
CR ∈ Rn2×r and Σ ∈ Rr×r.
3) Initialize U 0 = CLΣ1/2, and V 0 = CRΣ1/2.
Gradient Loop: For t = 0 : 1 : T − 1 do

U t+1 = U t −
µt

‖U 0‖2
·

[
1

2m

m∑
i=1

(
Ai
(
U tV

>
t

)
− yi

)
AiV tIEti + λU t

(
U>t U t − V >t V t

)]
;

V t+1 = V t −
µt

‖V 0‖2
·

[
1

2m

m∑
i=1

(
Ai
(
U tV

>
t

)
− yi

)
A>i U tIEti + λV t

(
V >t V t −U>t U t

)]
,

where
E ti =

{∣∣yi −Ai(U tV
>
t )
∣∣ ≤ αh ·med

(∣∣y −A (U tV
>
t

)∣∣)} .
Output: X̂ = UT , and Ŷ = V T .

The details of the proposed algorithm, denoted as median-truncated gradient de-

scent (median-TGD), are provided in Algorithm 4, where the stopping criterion is

simply set as reaching a preset maximum number of iterations. In practice, it is also

possible to set the stopping criteria by examining the progress between iterations. In

sharp contrast to the standard gradient descent approach that exploits all samples

in every iteration [26], both the initialization and the search directions are controlled

more carefully in order to adaptively eliminate outliers, while maintaining a similar

low computational cost.

54



Computationally, because the sample median can be computed in a linear time

[94], our median-truncated gradient descent algorithm shares a similar attractive

computational cost as [26, 63]. Specifically, the per-iteration computational com-

plexity of the proposed algorithm is on the order of O (mn2 + 2n2r + 4nr2), where

n = (n1 + n2)/2, which is linear with respect to m, while is quadratic with respect

to n and r6. The proposed algorithm enjoys a lower computational complexity, com-

pared with SVD-based methods [15] and alternating minimization [27], which usually

require more than O (mn2 + n3) or O (mn2 +m2) operations during each iteration.

4.3 Performance Guarantees

Theorem 3 summarizes the performance guarantee of median-TGD in Algorithm 4

for low-rank matrix recovery using Gaussian measurements in the presence of sparse

arbitrary outliers, when initialized within a proper neighborhood around the ground

truth. As used before, we let n = (n1 + n2)/2 for convenience.

Theorem 3 (Exact recovery with sparse arbitrary outliers). Assume the measurement

model (4.3), where eachAi is generated with i.i.d. standard Gaussian entries. Suppose

that the initialization W 0 satisfies

dist (W 0,Z) ≤ 1

24
σr (Z) .

Recall that κ = σ1(M)
σr(M)

. Set αh = 6 and λ = E
[
ξ2I{|ξ|≤0.65αh}

]
/4 with ξ ∼ N (0, 1).

There exist some constants s0 > 0, c0 > 1, c1 > 1 such that with probability at least

1 − e−c1m, if s ≤ s0, and m ≥ c1nr log n, there exists a constant µ ≤ 1
740

, such that

6In practice, our algorithm can be applied to other measurement ensembles with more structures,
such as sparsity, and the computational complexity can be further reduced.
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with µt = µ, the estimates of median-TGD satisfy

dist (W t,Z) ≤
(

1− µ

10κ

)t/2
dist (W 0,Z) .

Theorem 3 suggests that if the initialization W 0 lies in the basin of attraction,

median-TGD converges to the ground truth at a linear rate as long as the number m

of measurements is on the order of nr log n, even when a constant fraction of mea-

surements are corrupted arbitrarily. In comparisons, the gradient descent algorithm

by Tu et.al. [63] achieves the same convergence rate in a similar basin of attraction,

with an order of nr measurements using outlier-free measurements. Therefore, our

algorithm achieves robustness up to a constant fraction of outliers with a slight price

of an additional logarithmic factor in the sample complexity.

Theorem 4 guarantees that the proposed truncated spectral method provides an

initialization in the basin of attraction with high probability.

Theorem 4. Assume the measurement model (4.3), and κ̄ ≤ κ̄0. Set αy = 2 log(r1/4κ̄
1/2
0

+ 20). There exist some constants s1 > 0 and c2, c3, c4 > 1 such that with probability

at least 1− n−c2 − exp(−c3m), if s ≤ s1/(
√
rκ̄), and m ≥ c4α

2
yκ̄

2nr2 log n, we have

dist (W 0,Z) ≤ 1

24
σr (Z) .

Theorem 4 suggests that the proposed initialization scheme is guaranteed to obtain

a valid initialization in the basin of attraction with an order of nr2 log n log2 r mea-

surements when a fraction of 1/
√
r measurements are arbitrarily corrupted, assuming

the average condition number κ̄ is a small constant. In comparisons, in the outlier-free

setting, Tu et.al. [63] requires an order of nr2κ2 measurements for a one-step spectral

initialization, which is closest to our scheme. Therefore, our initialization achieves
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robustness to a 1/
√
r fraction of outliers at a slight price of additional logarithmic fac-

tors in the sample complexity. It is worthwhile to note that in the absence of outliers,

Tu et.al. [63] was able to further reduce the sample complexity of initialization to an

order of nr by running multiple iterations of projected gradient descent. However, it

is not clear whether such an iterative scheme can be generalized to the setting with

outliers in our work.

In the case when the rank is a small constant, our results indicate that the pro-

posed algorithm can tolerate a constant fraction of outliers with an order of n log n

measurements, which is much smaller than the size of the matrix. Finally, we note

that the parameter bounds in all theorems, including αh, αy and µ, are not optimized

for performance, but mainly selected to establish the theoretical guarantees.

4.4 Related Work

Our work is amid the recent surge of nonconvex approaches for high-dimensional

signal estimation, e.g. an incomplete and still growing list [25,26,53,60,63,64,95–98].

A series of recent work has demonstrated that, starting from a careful initialization,

simple algorithms such as gradient descent [26,53,63,95,98,99] and alternating min-

imization [27, 100] enjoy global convergence guarantees under near-optimal sample

complexity. Some of these algorithms also converge at a linear rate, making them

extremely appealing computationally. On the other hand, the global geometry of

nonconvex low-rank matrix estimation has been investigated in [101–104], and it is

proven that no spurious local optima, except strict saddle points, exist under suitable
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coherence conditions and sufficiently large sample size. This implies global conver-

gence from random initialization, provided the algorithm of choice can escape saddle

points [105–107].

The most closely-related work is on low-rank matrix recovery using random linear

measurements [26,63] in the absence of outliers, in the context of which our algorithm

can be thought as a robust counterpart. Our particular approach is inspired by the

work [97] on robust phase retrieval, which can be thought as robust recovery of a

rank-one PSD matrix using rank-one measurement operators [10]. Our model in the

current work differs as we tackle low-rank matrix recovery using random full-rank

measurement operators, and thus non-trivial technical developments are necessary.

The concept of median has been adopted in various sub-domains of machine learn-

ing, for instance, K-median clustering [108] and resilient data aggregation for sensor

networks [109]. The median-TGD algorithm presented here further extends the ap-

plications of median to robust high-dimensional estimation problems with theoretical

guarantees. Another popular approach in robust estimation is to use the trimmed

mean [93], which has found success in robustifying sparse regression [110] and sub-

space clustering [111]. However, using the trimmed mean needs an upper bound on

the number of outliers, whereas median does not require such information. Recently,

geometric median is adopted for robust empirical risk minimization as well [112–114].

It is worth mentioning that, besides convex method [84,92], nonconvex approaches

for robust low-rank matrix completion have also been presented in [115–117], where

the goal is to separate a low-rank matrix and sparse outliers from a small num-

ber of direct or linear measurements of their sum. The approaches typically use

thresholding-based truncation for outlier removal and projected gradient descent for
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low-rank matrix recovery, which are somewhat similar to our approach in terms of dif-

ferent ways to remove outliers. However, this line of work typically requires stronger

assumptions on the outliers such as spread-ness conditions, while we allow arbitrary

outliers.

4.5 Numerical Experiments

In this section, we evaluate the performance of the proposed median-TGD algo-

rithm via conducting several numerical experiments. As mentioned earlier, for the

initialization step, in practice we find it is not necessary to split the samples into two

parts. Therefore, the matrix in (4.15) is changed instead to

K =
1

m

m∑
i=1

yiAiI{|yi|≤αy ·med(|y|)}. (4.16)

In particular, we check the trade-offs between the number of measurements, the rank

and the fraction of outliers for accurate low-rank matrix recovery, and compare against

the algorithm in [63], referred to as the vanilla gradient descent algorithm (vanilla-

GD), to demonstrate the performance improvements in the presence of outliers due

to median truncations.

Let n1 = 150, n2 = 120. We randomly generate a rank-r matrix as M = XY >,

where both X ∈ Rn1×r and Y ∈ Rn2×r are composed of i.i.d. standard Gaussian

variables. The outliers are i.i.d. randomly generated following N (0, 104 ‖M‖2F). We

set αy = 12 and αh = 6, and pick a constant step size µt = 0.4. In all experiments,

the maximum number of iterations for median-TGD algorithm is set as T = 104 to

guarantee convergence. Moreover, let (X̂, Ŷ ) be the solution to the algorithm under

examination, and the recovered low-rank matrix is given as M̂ = X̂Ŷ >. Then, the

normalized estimate error is defined as ‖M̂ −M‖F/ ‖M‖F.
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4.5.1 Phase Transitions

We first examine the phase transitions of median-TGD algorithm with respect

to the number of measurements, the rank and the percentage of outliers. Fix the

percentage of outliers as s = 5%. Given a pair of m and r, a ground truth (X,Y ) is

generated composed of i.i.d. standard Gaussian variables. Multiple Monte Carlo trials

are carried out, and each trial is deemed a success if the normalized estimate error is

less than 10−6. Figure 4.1 (a) shows the success rates of median-TGD, averaged over
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Figure 4.1: Phase transitions of low-rank matrix recovery when n1 = 150 and n2 =
120. (a) Success rate with respect to the number of measurements and the rank,
when 5% of measurements are corrupted by outliers. (b) Success rate with respect to
the percentage of outliers and the rank, when m = 2700.

10 trials, with respect to the number of measurements and the rank, where the red line

shows the theoretical limit defined as r = (1− s)m/(n1 + n2) by a heuristic count of

the degrees of freedom. It can be seen that the required number of measurements for a

successful matrix recovery scales linearly with the rank r, and the transition is sharp.

We next examine the success rates of median-TGD with respect to the percentage
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of outliers and the rank. Fix m = 2700. Under the same setup as Figure 4.1 (a),

Figure 4.1 (b) shows the success rate of median-TGD, averaged over 10 trials, with

respect to the rank and the percentage of outliers. The performance of median-TGD

degenerates smoothly with the increase of the percentage of outliers. Similarly, the

red line shows the theoretical limit as a comparison.

4.5.2 Stability to Additional Bounded Noise

We next examine the performance of median-TGD when the measurements are

contaminated by both sparse outliers and dense noise. Here, the measurements are

rewritten as

yi =

{
〈Ai,M〉+ wi, if i ∈ Sc

ηi + wi, if i ∈ S , (4.17)

where wi, for i = 1, · · · ,m, denote the additional bounded noise. Fix r = 5 and

s = 5%. The dense noise is generated with i.i.d. random entries following 0.05σ5 (M)·

U [−1, 1]. Figure 4.2 depicts the average normalized reconstruction errors with respect

to the number of measurements using both median-TGD and vanilla-GD [63], where

vanilla-GD is always given the true rank information, i.e. r = 5. The performance

of median-TGD is comparable to that of vanilla-GD using outlier-free measurements,

which cannot produce reliable estimates when the measurements are corrupted by

outliers. Therefore, median-TGD can handle outliers in a much more robust manner.

Moreover, the performance of median-GD is stable as long as an upper bound of the

true rank is used.

We then compare the convergence rates of median-TGD and vanilla-GD under

various outlier settings, by fixing m = 2400 while keeping the other settings the same

as Figure 4.2. Figure 4.3 shows the normalized estimate error with respect to the
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Figure 4.2: Comparisons of average normalized estimate errors between median-TGD
and vanilla-GD in [63] with respect to the number of measurements, with 5% of
measurements corrupted by outliers and additional bounded noise, when n1 = 150,
n2 = 120, and r = 5.

20 40 60 80 100 120 140 160 180 200

Iteration

10
-2

10
-1

10
0

N
o

rm
a

li
z
e

d
 e

s
ti
m

a
te

 e
rr

o
r

Median-TGD with r

Median-TGD with r+1

Vanilla-GD with outliers

Vanilla-GD without outliers

20 40 60 80 100 120 140 160 180 200

Iteration

10
-2

10
-1

10
0

10
1

10
2

N
o

rm
a

li
z
e

d
 e

s
ti
m

a
te

 e
rr

o
r

Median-TGD with r

Median-TGD with r+1

Vanilla-GD with outliers

Vanilla-GD without outliers

20 40 60 80 100 120 140 160 180 200

Iteration

10
-2

10
-1

10
0

10
1

10
2

N
o

rm
a

li
z
e

d
 e

s
ti
m

a
te

 e
rr

o
r

Median-TGD with r

Median-TGD with r+1

Vanilla-GD with outliers

Vanilla-GD without outliers

(a) s = 0 (b) s = 1% (c) s = 10%

Figure 4.3: Comparisons of convergence rates between median-TGD and vanilla-GD
in different outlier-corruption scenarios, when m = 2400, n1 = 150, n2 = 120 and
r = 5.
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number of iterations of median-TGD and vanilla-GD with no outliers, 1% of outliers,

and 10% of outliers, respectively. In the outlier-free case, both algorithms have com-

parable convergence rates. However, even with a few outliers, vanilla-GD suffers from

a dramatical performance degradation, while median-TGD is robust against outliers

and can still converge to an accurate estimate. Numerical experiments demonstrate

the excellent empirical performance of the proposed algorithm for low-rank matrix

recovery from outlier-corrupted measurements, which significantly outperforms the

existing algorithms that are not resilient to outliers [26, 63].

4.6 Proof of Linear Convergence

In this section, we present the proof of Theorem 3. To obtain the performance

guarantees, we establish that the proposed median-truncated gradient satisfies a so-

called regularity condition (RC) [25], which is a sufficient condition for establishing

the linear convergence to the ground truth. Since its debut in [25], the RC has

been employed successfully in the analysis of phase retrieval [25, 60, 96, 97], blind

deconvolution [64] and low-rank matrix recovery [26, 63, 98] in the recent literature,

to name a few. However, our analysis is significantly more involved due to the fact

that the truncation procedure involving low-rank matrices has not been tackled in

the previous literature. In particular, we establish a new restricted isometry property

(RIP) of the sample median for the class of low-rank matrices, which can be thought

as an extension of the RIP for the sample mean in compressed sensing literature [5,16].

We remark that such a result can be of independent interest, and its establishment is

non-trivial due to the nonlinear character of the median operation. Specifically, the

roadmap of proof is below. Section 4.6.1 first establishes an RIP-like property for the
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median of random linear measurements of low-rank matrices. Section 4.6.2 describes

the RC, which is used to certify the linear convergence of the proposed algorithm.

Section 4.6.3 proves several properties of the truncated gradient which are then used

in Section 4.6.4 to prove the RC and finish the proof.

4.6.1 Concentration Property of Sample Median

To begin, we define below the quantile function of a population distribution and

its corresponding sample version.

Definition 1 (Generalized quantile function). Let 0 < τ < 1. For a cumulative

distribution function (CDF) F (x), the generalized quantile function is defined as

F−1 (τ) = inf {x ∈ R : F (x) ≥ τ}.

For simplicity, denote θτ (F ) = F−1 (τ) as the τ -quantile of F . Moreover, for a

sample collection y = {yi}mi=1, the sample τ -quantile θτ (y) means θτ (F̂ ), where F̂ is

the empirical distribution of the samples y. Specifically, med (y) = θ1/2 (y).

We establish a RIP-style concentration property for the sample median used in

the truncation indicator of gradient descent, which provides theoretical footings on

the success of the proposed algorithm. The concentration property of the sample p-

quantile function θp (|A (G)|) of all rank-2r matrices G is formulated in the following

proposition, of which the proof is shown in Appendix D.1.

Proposition 1. Fix ε ∈ (0, 1). If m ≥ c0 (ε−2 log ε−1)nr log n for some large enough

constant c0, then with probability at least 1 − c1 exp (−c2mε2), where c1 and c2 are

some constants, we have for all rank-2r matrices G ∈ Rn1×n2,

θ 1
2

(|A (G)|) ∈ [0.6745− ε, 0.6745 + ε] ‖G‖F ;
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θ0.49 (|A (G)|) ∈ [0.6588− ε, 0.6588 + ε] ‖G‖F ;

θ0.51 (|A (G)|) ∈ [0.6903− ε, 0.6903 + ε] ‖G‖F .

Proposition 1 suggests that as long as m is on the order of nr log n, the sample

median θ 1
2

(|A (G)|) concentrates around a scaled ‖G‖F for all rank-2r matrices G,

which resembles the matrix RIP in [5]. Based on Proposition 1, provided that m ≥

c0nr log n for some large enough constant c0, setting G = XY > −UV >, we have

θ0.49, θ 1
2
, θ0.51

(∣∣A (XY >)−A (UV >)∣∣) ∈ [0.65, 0.70]
∥∥XY > −UV >∥∥

F
(4.18)

holds with probability at least 1 − c1 exp (−c2m) for all U ∈ Rn1×r, V ∈ Rn2×r,

X ∈ Rn1×r, and Y ∈ Rn2×r. On the other end, due to Lemma 22, we have

med
(∣∣y −A (UV >)∣∣) ≥ θ 1

2
−s
(∣∣A (XY >)−A (UV >)∣∣) ;

med
(∣∣y −A (UV >)∣∣) ≤ θ 1

2
+s

(∣∣A (XY >)−A (UV >)∣∣) .
As a result, when the fraction of corruption satisfies s ≤ 0.01, the above equation

together with (4.18) yields

0.65
∥∥XY > −UV >∥∥

F
≤ med

(∣∣y −A (UV >)∣∣) ≤ 0.70
∥∥XY > −UV >∥∥

F
. (4.19)

Therefore, an important consequence is that the truncation event Ei satisfies

IEi ≥ I{|〈Ai,UV
>〉−yi|≤0.65αh‖UV >−XY >‖

F
};

IEi ≤ I{|〈Ai,UV
>〉−yi|≤0.70αh‖UV >−XY >‖

F
}.

(4.20)

4.6.2 Regularity Condition

We first introduce the so-called RC [25, 26, 63] that characterizes the benign cur-

vature of the loss function around the ground truth, and guarantees the linear con-

vergence of gradient descent to the ground truth.
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We first rewrite the loss function in terms of the augmented variables in (4.4).

Denote the matrix Bi =

[
0 1

2
Ai

1
2
A>i 0

]
, and define Bi

(
WW>) := 〈Bi,WW>〉 and

B
(
WW>) :=

{
Bi
(
WW>)}m

i=1
, then we can have the equivalent representation

Bi
(
WW>) = 〈Bi,WW>〉 = 〈Ai,UV

>〉 = Ai
(
UV >

)
. (4.21)

The regularizer can be rewritten as

g (W ) =
λ

4

∥∥W>DW
∥∥2
F
, (4.22)

where D =

[
In1 0
0 −In2

]
, and its gradient can be rewritten as

∇g(W ) = λDW
(
W>DW

)
. (4.23)

Then the truncated gradient can be rewritten as a function of W ,

∇h(W ) =
1

m

m∑
i=1

(
Bi
(
WW>)− yi)BiW IEi + λDW

(
W>DW

)
:= ∇ftr(W ) +∇g(W ), (4.24)

where

Ei =
{∣∣yi − Bi(WW>)

∣∣ ≤ αh ·med
(∣∣y − B (WW>)∣∣)} . (4.25)

Then the RC is defined in the following definition.

Definition 2 (Regularity Condition). Suppose Z ∈ R(n1+n2)×r is the ground truth.

The set of matrices that are in an ε-neighborhood of Z is defined as

C (ε) =
{
W ∈ R(n1+n2)×r : dist (W ,Z) ≤ ε

}
.

Then the function h(W ) is said to satisfy the RC, denoted by RC (α, β, ε), if for all

matrices W ∈ C (ε), the following inequality holds:

〈∇h (W ) ,W −ZQ〉 ≥ σ2
r (Z)

α
‖W −ZQ‖2F +

1

β ‖Z‖2
‖∇h (W )‖2F , (4.26)

where Q is an orthonormal matrix given in (4.6).
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The neighborhood C(ε) is known as the basin of attraction. Interestingly, if h(W )

satisfies the RC, then initializing a simple gradient descent algorithm in the basin of

attraction guarantees that the iterates converge at a linear rate to the ground truth,

as summarized in the following lemma.

Lemma 11. [25, 26, 63] Suppose that h(W ) satisfies RC (α, β, ε) and W 0 ∈ C (ε).

Consider the gradient descent update

W t+1 = W t −
µ

‖Z‖2
∇h (W t) (4.27)

with the step size 0 < µ < min {α/2, 2/β}. Then for all t ≥ 0, we have W t ∈ C (ε)

and

dist (W t,Z) ≤
(

1− 2µ

ακ

)t/2
dist (W 0,Z) .

Note that since the initialization satisfies dist (W 0,Z) ≤ 1
24
σr (Z), by the triangle

inequality we can guarantee that

23

24
‖Z‖ ≤ ‖W 0‖ ≤

25

24
‖Z‖ ,

which implies

23

24
√

2
‖Z‖ ≤ ‖U 0‖ ≤

25

24
√

2
‖Z‖ ;

23

24
√

2
‖Z‖ ≤ ‖V 0‖ ≤

25

24
√

2
‖Z‖ ,

where we use the fact ‖U 0‖ = ‖V 0‖ = ‖W 0‖ /
√

2. Therefore, instead of proving the

linear convergence of the actual update size µ

‖U0‖2
and µ

‖V 0‖2
, we prove it for the step

size µ

‖Z‖2 in (4.27), since they only differ by a constant scaling of µ. Hence, the rest

of the proof is to verify that RC holds for the truncated gradient.
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4.6.3 Properties of Truncated Gradient

We start by proving a few key properties of the truncated gradient ∇h(W ) =

∇ftr(W ) +∇g(W ). Consider the measurement model with sparse outliers in (4.3).

Define the truncation event

Ẽi =
{∣∣Bi(ZZ>)− Bi(WW>)

∣∣ ≤ αhmed
(∣∣y − B (WW>)∣∣)} ,

which is the same as Ei except that the measurements used to calculate the residual

are replaced by clean measurements. In particular, it is straight to see that (4.20)

also holds for Ẽi. Then we can write ∇ftr (W ) as

∇ftr (W ) =
1

m

m∑
i=1

(
Bi
(
WW>)− yi)BiW IEi

=
1

m

∑
i/∈S

(
Bi
(
WW>)− Bi (ZZ>))BiW IẼi

+
1

m

∑
i∈S

(
Bi
(
WW>)− yi)BiW IEi

=
1

m

m∑
i=1

(
Bi
(
WW>)− Bi (ZZ>))BiW IẼi︸ ︷︷ ︸

:=∇cftr(W )

+
1

m

∑
i∈S

[(
Bi
(
WW>)− yi) IEi − (Bi (WW>)− Bi (ZZ>)) IẼi]BiW︸ ︷︷ ︸

:=∇oftr(W )

,

where ∇cftr (W ) corresponds to the truncated gradient as if all measurements are

clean, and ∇oftr (W ) corresponds to the contribution of the outliers.

For notational simplicity, define

H =

[
H1

H2

]
= W −ZQ =

[
U −XQ
V − Y Q

]
, (4.28)

where Q is given in (4.6). We have

〈∇cftr (W ) ,H〉 =
1

m

m∑
i=1

〈Bi,WW> −ZZ>〉 · 〈Bi,HW
>〉 · IẼi . (4.29)
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Define the set D as

D =
{
i|〈Bi,WW> −ZZ>〉 · 〈Bi,HW

>〉 < 0
}
. (4.30)

We can then split (4.29) and bound it as

〈∇cftr (W ) ,H〉

≥ 1

m

∑
i/∈D

〈Bi,WW> −ZZ>〉 · 〈Bi,HW
>〉 · I{|〈Bi,WW>−ZZ>〉|≤0.65αh‖UV >−XY >‖

F
}

+
1

m

∑
i∈D

〈Bi,WW> −ZZ>〉 · 〈Bi,HW
>〉 · I{|〈Bi,WW>−ZZ>〉|≤0.70αh‖UV >−XY >‖

F
}

:= B1 +B2, (4.31)

where

B1 :=
1

2m

∑
i/∈D

〈Ai,UV
> −XY >〉 · 〈Ai,H1V

> +UH>2 〉

· I{|〈Ai,UV
>−XY >〉|≤0.65αh‖UV >−XY >‖

F
};

B2 :=
1

2m

∑
i∈D

〈Ai,UV
> −XY >〉 · 〈Ai,H1V

> +UH>2 〉

· I{|〈Ai,UV
>−XY >〉|≤0.70αh‖UV >−XY >‖

F
}.

The first term in (4.31) can be lower bounded by Proposition 2, whose proof is

given in Appendix D.2.

Proposition 2. Provided m ≥ c1nr, we have

B1 ≥
γ1
2
〈UV > −XY >,H1V

> +UH>2 〉

− 0.0006αh
∥∥UV > −XY >∥∥

F

∥∥H1V
> +UH>2

∥∥
F

(4.32)

holds for all Z,W ∈ R(n1+n2)×r with probability at least 1− exp (−c2m), where γ1 =

E
[
ξ2I{|ξ|≤0.65αh}

]
with ξ ∼ N (0, 1), and c1, c2 > 0 are numerical constants.
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The second term in (4.31) can be lower bounded by Proposition 3, whose proof is

given in Appendix D.3.

Proposition 3. Provided m ≥ c1nr, we have

B2 ≥ −0.36αh
∥∥UV > −XY >∥∥

F

∥∥H1H
>
2

∥∥
F

(4.33)

holds for all Z,W ∈ R(n1+n2)×r with probability at least 1−exp (−c2m), where c1, c2 >

0 are numerical constants.

The contribution of outliers ∇oftr (W ) can be bounded by the following proposi-

tion, whose proof is given in Appendix D.4.

Proposition 4. Provided m ≥ c1nr log n, we have

|〈∇oftr (W ) ,H〉| ≤ 0.71αh
√
s
∥∥XY > −UV >∥∥

F
‖H1V

> +UH>2 ‖F (4.34)

holds for all Z,W ∈ R(n1+n2)×r with probability at least 1−exp (−c2m), where c1, c2 >

0 are numerical constants.

On the other end, Proposition 5 establishes an upper bound for ‖∇ftr (W )‖2F,

whose proof is given in Appendix D.5.

Proposition 5. Provided m ≥ c1nr log n, we have

‖∇ftr (W )‖2F ≤ 0.25α2
h

∥∥UV > −XY >∥∥2
F
‖W ‖2 (4.35)

holds for all Z,W ∈ R(n1+n2)×r with probability at least 1−exp (−c2m), where c1, c2 >

0 are numerical constants.

Moreover, for the regularizer, we have

〈∇g(W ),H〉 = λ〈DW
(
W>DW

)
,H〉
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= λ〈U
(
U>U − V >V

)
,H1〉+ λ〈V

(
V >V −U>U

)
,H2〉

= λ〈UU>,H1U
>〉+ λ〈V V >,H2V

>〉

− λ〈UV >,H1V
> +UH>2 〉, (4.36)

and

‖∇g(W )‖2F = λ2
∥∥DW (

W>DW
)∥∥2

F

= λ2
∥∥W (

W>DW
)∥∥2

F

≤ λ2 ‖W ‖2
∥∥W>DW

∥∥2
F

= λ2 ‖W ‖2
∥∥∥(H +ZQ)>D (H +ZQ)

∥∥∥2
F

= λ2 ‖W ‖2
∥∥∥H>DH +H>DZQ+ (ZQ)>DH

∥∥∥2
F

(4.37)

≤ λ2 ‖W ‖2
(∥∥H>DH∥∥

F
+ 2

∥∥H>DZ∥∥
F

)2
, (4.38)

where (4.37) follows from X>X = Y >Y .

4.6.4 Certifying Regularity Condition with Sparse Outliers

We are now ready to establish the RC in the neighborhood where ‖H‖F ≤

1
24
σr (Z). Recall that based on Propositions 2, 3 and 4, and (4.36), we have

〈∇h (W ) ,W −ZQ〉

≥ 〈∇ftr(W ),H〉+ 〈∇g(W ),H〉

≥ 〈∇f ctr(W ),H〉 − |〈∇f otr(W ),H〉|+ 〈∇g(W ),H〉

≥ γ1
2
〈UV > −XY >,H1V

> +UH>2 〉 − 0.0006αh
∥∥UV > −XY >∥∥

F

∥∥H1V
> +UH>2

∥∥
F

− 0.36αh
∥∥UV > −XY >∥∥

F

∥∥H1H
>
2

∥∥
F
− 0.71αh

√
s
∥∥UV > −XY >∥∥

F
‖H1V

> +UH>2 ‖F

+ 〈∇g(W ),H〉. (4.39)
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Set αh = 6, and we have γ1 ≈ 0.998348. Set λ = γ1/4, then we can write

γ1
2
〈UV > −XY >,H1V

> +UH>2 〉+ 〈∇g(W ),H〉

= 2λ〈UV > −XY >,H1V
> +UH>2 〉+ λ〈UU>,H1U

>〉+ λ〈V V >,H2V
>〉

− λ〈UV >,H1V
> +UH>2 〉

= λ〈WW> −ZZ>,HW>〉 − λ〈XY >,H1V
> +UH>2 〉

+ λ〈XX>,H1U
>〉+ λ〈Y Y >,H2V

>〉, (4.40)

where the last three terms can be re-arranged as

〈XX>,H1U
>〉+ 〈Y Y >,H2V

>〉 − 〈XY >,H1V
> +UH>2 〉

= 〈(XQ)>U , (XQ)>H1〉+ 〈(Y Q)>V , (Y Q)>H2〉

− 〈(Y Q)>V , (XQ)>H1〉 − 〈(Y Q)>H2, (XQ)>U〉

= 〈(Y Q)>V , (Y Q)>H2 − (XQ)>H1〉+ 〈(XQ)>H1 − (Y Q)>H2, (XQ)>U〉

= 〈(Y Q)>V − (XQ)>U , (Y Q)>(V − Y Q)− (XQ)>(U −XQ)〉

= ‖(Y Q)>V − (XQ)>U‖2F = ‖H>DZ‖2F, (4.41)

where (4.41) follows from X>X = Y >Y . Moreover, using the facts that H>ZQ

and H>W are symmetric matrices and W>ZQ � 0 [48], we have the first term in

(4.40) bounded as

〈WW> −ZZ>,HW>〉

= ‖HQ>Z>‖2F + ‖H>Z‖2F + ‖HH>‖2F + 3〈HH>,HQ>Z>〉

≥ ‖HQ>Z>‖2F + ‖H>Z‖2F + ‖HH>‖2F − 3‖HH>‖F‖HQ>Z>‖F (4.42)

≥ ‖HQ>Z>‖2F + ‖H>Z‖2F + ‖HH>‖2F −
1

8
‖HQ>Z>‖2F (4.43)

≥ 7

8
‖HQ>Z>‖2F + ‖H>Z‖2F + ‖HH>‖2F, (4.44)
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where (4.42) follows from Cauchy-Schwarz inequality, (4.43) follows from
∥∥HH>∥∥

F
≤

‖H‖2F ≤
1
24
σr (ZQ) ‖H‖F ≤

1
24

∥∥HQ>Z>∥∥
F
, where we used ‖H‖F ≤

1
24
σr (Z) =

1
24
σr (ZQ). In addition, we have

‖H1V
> +UH>2 ‖F ≤

√
2‖HW>‖F

≤
√

2‖HH‖F +
√

2‖HQ>Z>‖F

≤ 25

24

√
2‖HQ>Z>‖F, (4.45)

and

∥∥UV > −XY >∥∥
F
≤ 1√

2

∥∥WW> −ZZ>
∥∥
F

=
1√
2

∥∥∥HH> +ZQH> +H (ZQ)>
∥∥∥
F

≤ 1√
2

∥∥HH>∥∥
F

+
√

2
∥∥HQ>Z>∥∥

F

≤ 49

48

√
2
∥∥HQ>Z>∥∥

F
, (4.46)

and ∥∥H1H
>
2

∥∥
F
≤ 1√

2

∥∥HH>∥∥
F
. (4.47)

Plugging (4.44), (4.45), (4.46) and (4.47) into (4.39), we have

〈∇h (W ) ,W −ZQ〉

≥
[

7

8
λ− (0.0006 + 0.71

√
s)αh

25 · 49

242
− 0.36αh

49

2 · 242

]
‖HQ>Z>‖2F

+ λ‖H>Z‖2F + λ
∥∥H>DZ∥∥2

F
+ λ‖HH>‖2F

≥
(
0.1188− 9.06

√
s
)
‖HQ>Z>‖2F + λ‖H>Z‖2F + λ

∥∥H>DZ∥∥2
F

+ λ‖HH>‖2F, (4.48)

where (4.48) follows from the setting αh = 6 and λ = γ1/4.
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On the other end, since

∥∥H>DH∥∥2
F

=
∥∥H>1H1 −H>2H2

∥∥2
F
≤ 2

(∥∥H1H
>
1

∥∥2
F

+
∥∥H2H

>
2

∥∥2
F

)
≤ 2

∥∥HH>∥∥2
F
,

from Proposition 5 and (4.38) we have

‖∇h (W )‖2F

≤ 2 ‖∇ftr (W )‖2F + 2 ‖∇g (W )‖2F

≤ 0.5α2
h

∥∥UV > −XY >∥∥2
F
‖W ‖2 + 2λ2 ‖W ‖2

(∥∥H>DH∥∥
F

+ 2
∥∥H>DZ∥∥

F

)2
≤
(

0.5α2
h

∥∥UV > −XY >∥∥2
F

+ 4λ2
∥∥H>DH∥∥2

F
+ 16λ2

∥∥H>DZ∥∥2
F

)
‖W ‖2

≤

(
0.5α2

h2

(
49

48

)2 ∥∥HQ>Z>∥∥2
F

+ 8λ2
∥∥HH>∥∥2

F
+ 16λ2

∥∥H>DZ∥∥2
F

)(
25

24

)2

‖Z‖2

≤
(

40.8
∥∥HQ>Z>∥∥2

F
+ 1.1

∥∥H>DZ∥∥2
F

)
‖Z‖2 .

Therefore, if we let α = 20 and β = 1000, we have the right hand side of RC as

σ2
r (Z)

α
‖H‖2F +

1

β ‖Z‖2
‖∇h (W )‖2F

≤ σ2
r (Z)

20
‖H‖2F + 0.0408

∥∥HQ>Z>∥∥2
F

+ 0.0011
∥∥H>DZ∥∥2

F

≤ 0.0908
∥∥HQ>Z>∥∥2

F
+ 0.0011

∥∥H>DZ∥∥2
F
.

Consequently, matching it with the (4.48), we conclude that when s is a sufficiently

small constant, RC holds with parameters (20, 100, σr(Z)/24). Note that the param-

eters α, β, s have not been optimized in the proof.

4.7 Proof of Robust Initialization

As in the description of Algorithm 4, we split the samples into two portions

{y1,y2} in the initialization stage for the convenience of theoretical analysis. We

use the measurements y2 = {yi}mi=m1+1 to estimate ‖M‖F via the sample median of
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y2. Then, we employ the rest of measurements y1 = {yi}m1
i=1 to generate initialization

via the truncated spectral method. Besides, denote the outlier fraction of y1 and y2 by

s1 = |S1| /m1 and s2 = |S2| /m2, respectively, where S1 and S2 are the corresponding

outlier supports of y1 and y2. Hence, max{s1, s2} ≤ 2s.

Due to Lemma 22, provided s2 is small, we have

θ 1
2
−s2

(
{|Ai(M)|}mi=m1+1

)
≤ med (|y2|) ≤ θ 1

2
+s2

(
{|Ai(M )|}mi=m1+1

)
. (4.49)

Following Proposition 1, if s2 ≤ 2s < 0.01, we have that provided m ≥ c1nr log n for

some large constant c1,

0.65 ‖M‖F ≤ med (|y2|) ≤ 0.70 ‖M‖F (4.50)

holds with probability at least 1− exp (−c2m) for some constant c2.

Therefore, (4.50) guarantees that the threshold used in the truncation is on the

order of ‖M‖F. To emphasize the independence between the measurements used for

norm estimation via the sample median and the rest of the measurements used in

the truncated spectral method, we define CM := med (|y2|), which satisfies (4.50).

Rewrite (4.15) as

K = (1− s1)K1 + s1K2

where

K1 =
1

|Sc1|
∑
i∈Sc1

Ai(M)AiI{|Ai(M)|≤αyCM}, K2 =
1

|S1|
∑
i∈S1

yiAiI{|yi|≤αyCM}, (4.51)

where Sc1 is the the complementary set of S1. Note that

E[K1] =
1

|Sc1|
∑
i∈Sc1

E
[
(Ai(M))AiI{|Ai(M)|≤αyCM}

]
= γ2M ,
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where γ2 := E
[
ξ2I{|ξ|≤αyCM/‖M‖F}

]
≤ 1 with ξ ∼ N (0, 1), and

E[K2] =
1

|S1|
∑
i∈S1

yiE[Ai]I{|yi|≤αyCM} = 0.

We have the following proposition on the concentration of K, of which the proof is

given in Appendix D.6.

Proposition 6. With probability at least 1− n−c1, we have

‖K − (1− s1) γ2M‖ ≤ Cαy

√
n log n

m
‖M‖F, (4.52)

provided that m ≥ c2 log n, where c1, c2, C > 1 are numerical constants.

Let ε := Cαy

√
n logn
m

for short-hand notations. Denote ñ = min{n1, n2}. Let

σ1(K) ≥ σ2(K) ≥ · · ·σñ(K) be the singular values of K in a nonincreasing order,

and σ1(M) ≥ σ2(M) ≥ · · ·σñ(M) be the singular values of M in a nonincreasing

order. Since M has rank r, we know σr+1(M ) = · · · = σñ(M ) = 0. By the Weyl’s

inequality and (4.52), we have

|σi(K)− (1− s1) γ2σi(M )| ≤ ε ‖M‖F , i = 1, · · · , ñ, (4.53)

which implies

σi(K) ≤ ε ‖M‖F , i ≥ (r + 1). (4.54)

By definition, U 0 = CLΣ1/2, V 0 = CRΣ1/2 andW 0 =

[
U 0

V 0

]
, where CLΣC>R :=

rank-r SVD of K, with CL ∈ Rn1×r, CR ∈ Rn2×r and Σ ∈ Rr×r. Recall Z =

[
X
Y

]
,

then according to Lemma 23, we have

∥∥W 0W
>
0 −ZZ>

∥∥
F
≤ 2

∥∥U 0V
>
0 −M

∥∥
F

= 2
∥∥CLΣC>R − (1− s1)γ2M

∥∥
F

+ 2 ‖((1− s1)γ2 − 1)M‖F
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≤ 2
√

2r
(∥∥CLΣC>R −K

∥∥+ ‖K − (1− s1)γ2M‖
)

+ 2 |(1− s1)γ2 − 1| · ‖M‖F

≤ 2
√

2r (σr+1(K) + ε‖M‖F) + 2 |(1− s1)γ2 − 1| · ‖M‖F

≤
(

4
√

2rε+ 2s1γ2 + 2(1− γ2)
)
‖M‖F.

By Lemma 12, we have

dist (W 0,Z) ≤
∥∥W 0W

>
0 −ZZ>

∥∥
F√

2
(√

2− 1
)
σr (Z)

≤
(
4
√

2rε+ 2s1γ2 + 2(1− γ2)
)
‖M‖F√

2
(√

2− 1
)
σr (Z)

=

(
2
√

2rε+ s1γ2 + (1− γ2)
)
‖M‖F√√

2− 1
√
σr (M)

,

where we use the fact that for all i, σi(X) = σi(Y ) = σi(Z)/
√

2 =
√
σi (M ).

Therefore, we have dist (W 0,Z) ≤ 1
24
σr (Z) if

max{
√
rε, s1, 1− γ2} ≤ c

σr(M )

‖M‖F
=

c√
rκ̄
.

To be more specific, we need s1 < 2s ≤ c1/(
√
rκ̄), m > c2α

2
ynr

2κ̄2 log n, and

1− γ2 = Eξ∼N (0,1)

[
ξ2I{|ξ|>αyCM/‖M‖F}

]
≤ 1

35
√
rκ̄
.

The last condition can be satisfied by setting αy = 2 log (r1/4κ̄
1/2
0 + 20), as long as κ̄0

is an upper bound of κ̄ such that κ̄ ≤ κ̄0.

4.8 Conclusion

In this chapter, we present a median-truncated gradient descent algorithm to im-

prove the robustness of low-rank matrix recovery from random linear measurements in
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the presence of outliers. The effectiveness of the proposed algorithm is provably guar-

anteed by theoretical analysis, and validated through various numerical experiments

as well.
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Chapter 5: Future Work

The current work in this dissertation yields several intriguing open problems and

potential directions for future research work.

First, in the work of low-rank PSD matrix recovery from clean rank-one measure-

ments, as described in Chapter 2, when taking low-rank factorization in (2.1), we

assume knowing the true rank r, and consequently, the obtained low-rank factor has

full column rank. However, in practice, it is more common to know only an upper

bound of the rank of the underlying ground truth, and in such a case, the current

theoretical analysis may no longer be valid. Instead, based on the notations in Chap-

ter 2, we consider employing gradient descent to solve an nonconvex optimization

problem over a regularized loss function, formulated as

min
X

1

4m

m∑
i=1

(
yi −

∥∥a>i X∥∥22)2 + τ ‖X‖2F . (5.1)

It is interesting to justify the performance of the designed algorithm when the rank

is over-estimated by taking advantage of the powerful leave-one-out strategy.

Next, even though we have proposed a nonconvex algorithm based on subgradient

descent for robust low-rank PSD matrix recovery when the rank-one measurements

are corrupted by arbitrary outliers, as described in Chapter 3, the theoretical analysis

still lacks and we hope to close this gap in the future. Moreover, owing to the efficiency
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of median truncation to mitigate the impact of outliers, which has be demonstrated

in the full-rank linear sensing model in Chapter 4, we anticipate that such a modified

gradient descent can work well with the rank-one sensing model as well to improve

the recovery robustness.

Finally, another potential research direction is to solve the low-rank matrix recov-

ery problems via stochastic gradient descent (SGD). SGD only needs to calculate the

gradient of a single sample or a batch of few samples during each iteration, hence,

it requires much less computational cost and storage space, compared with standard

gradient descent using all of the samples, and has the potential to be adopted on online

streaming data [118]. So it is of practical importance to consider SGD for low-rank

matrix recovery and characterize the corresponding performance guarantees.
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Appendix A: Supportive Lemmas

In this section, we document several useful technical lemmas that are used through-

out the proofs.

Lemma 12. [63, Lemma 5.4] For any matrices X, U ∈ Rn×r, we have

∥∥XX> −UU>∥∥
F
≥
√

2(
√

2− 1)σr (X) dist(X,U),

where dist(X,U) := minP∈Or×r ‖XP −U‖F.

Lemma 13 (Covering number for low-rank matrices). [16, Lemma 3.1] Let Sr =

{X ∈ Rn1×n2 , rank(X) ≤ r, ‖X‖F = 1}. Then there exists an ε-net S̄r ⊂ Sr with

respect to the Frobenius norm whose cardinality obeys

∣∣S̄r∣∣ ≤ (9/ε)(n1+n2+1)r.

Lemma 14. [25, 119] Suppose x1, · · · , xm are i.i.d. real-valued random variables

obeying xi ≤ b for some deterministic number b > 0, E [xi] = 0, and E [x2i ] = d2.

Setting σ2 = m ·max{b2, d2}, we have

P

(
m∑
i=1

xi ≥ t

)
≤ min

{
exp

(
− t2

2σ2

)
, 25

(
1− Φ

(
t

σ

))}
,

where Φ(·) is the cumulative distribution function of a standard Gaussian variable.
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Lemma 15. [120, Theorem 5.39] Suppose the ai’s are i.i.d. random vectors following

ai ∼ N (0, In), i = 1, · · · ,m. Then for every t ≥ 0 and 0 < δ ≤ 1,∥∥∥∥∥In − 1

m

m∑
i=1

aia
>
i

∥∥∥∥∥ ≤ δ

holds with probability at least 1 − 2e−ct
2, where δ = C

√
n
m

+ t√
m
. On this event, for

all W ∈ Rn×r, there exists∣∣∣∣∣ 1

m

m∑
i=1

∥∥a>i W∥∥2
2
− ‖W ‖2F

∣∣∣∣∣ ≤ δ ‖W ‖2F .

Lemma 16. [25] Suppose the ai’s are i.i.d. random vectors following ai ∼ N (0, In),

i = 1, · · · ,m. Then with probability at least 1−me−1.5n, we have

max
1≤i≤m

‖ai‖2 ≤
√

6n.

Lemma 17. Fix W ∈ Rn×r. Suppose the ai’s are i.i.d. random vectors following

ai ∼ N (0, In), i = 1, · · · ,m. Then with probability at least 1−mrn−13, we have

max
1≤i≤m

∥∥a>i W∥∥
2
≤ 5.86

√
log n ‖W ‖F .

Proof. DefineW = [w1,w2, · · · ,wr], then we can write
∥∥a>i W∥∥2

2
=
∑r

k=1

(
a>i wk

)2.
Recognize that

(
a>i

wk

‖wk‖2

)2
follows the χ2 distribution with 1 degree of freedom. It

then follows from [121, Lemma 1] that

P

((
a>i

wk

‖wk‖2

)2

≥ 1 + 2
√
t+ 2t

)
≤ exp (−t),

for any t > 0. Taking t = 13 log n yields

P
((
a>i wk

)2 ≤ 34.3 ‖wk‖22 log n
)
≥ 1− n−13.

Finally, taking the union bound, we obtain

max
1≤i≤m

∥∥a>i W∥∥2
2
≤

r∑
k=1

34.3 ‖wk‖22 log n = 34.3 ‖W ‖2F log n

with probability at least 1−mrn−13.
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Lemma 18. Suppose a ∼ N (0, In). Then for any fixed matrices X, H ∈ Rn×r, we

have

E
[∥∥a>H∥∥2

2

∥∥a>X∥∥2
2

]
=
∥∥H∥∥2

F

∥∥X∥∥2
F

+ 2
∥∥H>X∥∥2

F
;

E
[(
a>HX>a

)2]
=
(
Tr
(
H>X

))2
+ Tr

(
H>XH>X

)
+
∥∥HX>∥∥2

F
.

Moreover, for any order k ≥ 1, we have E
[
‖a>H‖2k2

]
≤ ck ‖H‖2kF , where ck > 0 is a

numerical constant that depends only on k.

Proof. LetX = [x1,x2, · · · ,xr] andH = [h1,h2, · · · ,hr]. Based on the simple facts

E
[
(x>a)2aa>

]
= ‖x‖22 In + 2xx>,

E
[
(a>xi)(a

>xj)aa
>] = xix

>
j + xjx

>
i + x>i xjIn,

for any fixed vectors x, xi and xj ∈ Rn, we can derive

E
[∥∥a>H∥∥2

2

∥∥a>X∥∥2
2

]
=

r∑
i=1

r∑
j=1

E
[(
a>hi

)2 (
a>xj

)2]
=

r∑
i=1

r∑
j=1

[
‖hi‖22 ‖xj‖

2
2 + 2

(
h>i xj

)2]
= ‖H‖2F ‖X‖

2
F + 2

∥∥H>X∥∥2
F
,

and

E
[(
a>HX>a

)2]
= E

[
r∑
i=1

(
a>hi

)2 (
a>xi

)2
+
∑
i 6=j

(
a>hi

) (
a>xi

) (
a>hj

) (
a>xj

)]

=
r∑
i=1

[
‖hi‖22 ‖xi‖

2
2 + 2

(
h>i xi

)2]
+
∑
i 6=j

[(
h>i xi

) (
h>j xj

)
+
(
h>i hj

) (
x>i xj

)
+
(
h>i xj

) (
x>i hj

)]
=
(
Tr
(
H>X

))2
+
∥∥HX>∥∥2

F
+ Tr

(
H>XH>X

)
.

83



Finally, to bound E
[∥∥a>H∥∥2k

2

]
for an arbitraryH ∈ Rn×r, we write the singular

value decomposition of H as H = UΣV >, where U = [u1,u2, · · · ,ur] ∈ Rn×r,

Σ = diag {σ1, σ2, · · · , σr}, and V ∈ Rr×r. This gives

∥∥a>H∥∥2
2

=
r∑
i=1

σ2
i (a

>ui)
2.

Let bi = σia
>ui for i = 1, · · · , r, which are independent random variables obeying

bi ∼ N (0, σ2
i ) due to the fact U>U = Ir. Since E [b2ti ] = σ2t

i (2t− 1)!! ≤ ckσ
2t
i for

any i = 1, · · · , r and t = 1, · · · , k, where ck is some large enough constant depending

only on k, we arrive at

E

( r∑
i=1

b2i

)k
 ≤ ck

(
r∑
i=1

σ2
i

)k

= ck ‖H‖2kF ,

as claimed.

Lemma 19. Fix X\ ∈ Rn×r. Suppose the ai’s are i.i.d. random vectors following

ai ∼ N (0, In), i = 1, · · · ,m. For any 0 < δ ≤ 1, suppose m ≥ cδ−2n log n for some

sufficiently large constant c > 0. Then we have∥∥∥∥∥ 1

m

m∑
i=1

∥∥a>i X\
∥∥2
2
aia

>
i −

∥∥X\
∥∥2
F
In − 2X\X\>

∥∥∥∥∥ ≤ δ
∥∥X\

∥∥2
F
,

with probability at least 1− c1rn−13, where c1 > 0 is some absolute constant.

Proof. This proof adapts the results of [25, Lemma 7.4] with refining the probabilities.

Let a(1) be the first element of a vector a ∼ N (0, In). Based on [122, Theorem 1.10],

we have

P

(∣∣∣∣∣ 1

m

m∑
i=1

(ai(1))2 − 1

∣∣∣∣∣ ≥ δ

)
≤ e2 · e−(c1δ2m)

1/2

;

P

(∣∣∣∣∣ 1

m

m∑
i=1

(ai(1))4 − 3

∣∣∣∣∣ ≥ δ

)
≤ e2 · e−(c2δ2m)

1/4

;
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P

(∣∣∣∣∣ 1

m

m∑
i=1

(ai(1))6 − 15

∣∣∣∣∣ ≥ δ

)
≤ e2 · e−(c3δ2m)

1/6

.

So, by setting m� δ−2n, we have∣∣∣∣∣ 1

m

m∑
i=1

(ai(1))2 − 1

∣∣∣∣∣ ≤ δ;∣∣∣∣∣ 1

m

m∑
i=1

(ai(1))4 − 3

∣∣∣∣∣ ≤ δ;∣∣∣∣∣ 1

m

m∑
i=1

(ai(1))6 − 15

∣∣∣∣∣ ≤ δ,

(A.1)

with probability at least 1−c4n−13 for some constant c4 > 0. Moreover, following [121,

Lemma 1], we know

P
(

(ai(1))2 ≥ 1 + 2
√
t+ 2t

)
≤ exp (−t),

which gives

P
(
(ai(1))2 ≥ 36.5 logm

)
≤ exp (−14 logm) = m−14,

if setting t = 14 logm. Therefore, as long as m ≥ cn, we have

max
1≤i≤m

|ai(1)| ≤
√

36.5 logm, (A.2)

with probability at least 1− c5n−13 for some constant c5 > 0.

With (A.1) and (A.2), the results in [25, Lemma 7.4] imply that for any 0 < δ ≤ 1,

as soon as m ≥ cδ−2n log n for some sufficiently large constant c, with probability at

least 1− c1n−13, ∥∥∥∥∥ 1

m

m∑
i=1

(
a>i x

)2
aia

>
i − ‖x‖

2
2 I − 2xx>

∥∥∥∥∥ ≤ δ ‖x‖22

holds for any fixed vector x ∈ Rn. LetX\ = [x\1,x
\
2, · · · ,x\r]. Instantiating the above

bound for the set of vectors x\k, k = 1, · · · , r and taking the union bound, we have∥∥∥∥∥ 1

m

m∑
i=1

∥∥a>i X\
∥∥2
2
aia

>
i −

∥∥X\
∥∥2
F
I − 2X\X\>

∥∥∥∥∥
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≤
r∑

k=1

∥∥∥∥∥ 1

m

m∑
i=1

(
a>i x

\
k

)2
aia

>
i −

∥∥x\k∥∥22 I − 2x\kx
\>
k

∥∥∥∥∥ ≤ δ

r∑
k=1

∥∥x\k∥∥22 = δ
∥∥X\

∥∥2
F
.

Lemma 20. [97, Lemma 1] Suppose F (·) is cumulative distribution function (i.e. non-

decreasing and right-continuous) with continuous density function f(·). Assume the

samples {xi}mi=1 are i.i.d. drawn from f . Let 0 < p < 1. If l < f(θ) < L for all θ in

{θ : |θ − θp| ≤ ε}, then

|θp({xi}mi=1)− θp(F )| < ε

holds with probability at least 1− 2 exp (−2mε2l2).

Lemma 21. [97, Lemma 2] Given a vector x = [x1, x2, · · · , xn], where we order the

entries in a non-decreasing manner x(1) ≤ x(2) ≤ · · · ≤ x(n−1) ≤ x(n). Given another

vector y = [y1, y2, · · · , yn], then

|x(k) − y(k)| ≤ ‖x− y‖∞,

holds for all k = 1, · · · , n.

Lemma 22. [97, Lemma 3] Consider clean samples {ỹi}mi=1. If a fraction s of them

are corrupted by outliers, one obtains contaminated samples {yi}mi=1, which contain

sm corrupted samples and (1 − s)m clean samples. Then for a quantile p such that

s < p < 1− s, we have

θp−s ({ỹi}mi=1) ≤ θp ({yi}mi=1) ≤ θp+s ({ỹi}mi=1) .

Lemma 23. [123, Lemma 4] For any matrix Zi of the form Zi =

[
U iΣ

1
2
i Qi

V iΣ
1
2
i Qi

]
, where

U i, V i and Qi are unitary matrices and Σi � 0 is a diagonal matrix, for i = 1, 2,

we have ∥∥Z1Z
>
1 −Z2Z

>
2

∥∥
F
≤ 2

∥∥U 1Σ1V
>
1 −U 2Σ2V

>
2

∥∥
F
.
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Lemma 24 (Orlicz-norm version Bernstein’s inequality). [124, Proposition 2] Let

S1,S2, · · · ,Sm be a finite sequence of independent zero-mean random matrices with

dimensions d1 × d2. Suppose ‖Si‖ψ2
≤ B, and define

σ2
S = max

{∥∥∥∥∥ 1

m

m∑
i=1

E
[
SiS

>
i

]∥∥∥∥∥ ,
∥∥∥∥∥ 1

m

m∑
i=1

E
[
S>i Si

]∥∥∥∥∥
}
.

Then there exists a constant C > 0 such that, for all t > 0, with probability at least

1− e−t∥∥∥∥∥ 1

m

m∑
i=1

Si

∥∥∥∥∥ ≤ C max

{
σS

√
t+ log (d1 + d2)

m
,B

√
log

(
B

σS

)
t+ log (d1 + d2)

m

}
.

Lemma 25. SupposeAi ∈ Rn1×n2’s are sensing matrices, each generated with i.i.d. Gaus-

sian entries, for i = 1, · · · ,m. Let n = (n1 + n2)/2, and m ≥ n. Then

max
i=1,2,··· ,m

‖Ai‖F ≤ 2
√
n (n+m) (A.3)

holds with probability exceeding 1−m · exp (−n (n+m)).

Proof. Let A be a sensing matrix, generated with i.i.d. standard Gaussian entries,

and Ak,t be the entry of A with index (k, t), then we know Ak,t ∼ N (0, 1). Since

‖A‖2F =
∑

k,tA
2
k,t, ‖A‖

2
F is a Chi-squared random variable with degree of freedom as

n1n2. According to [121, Lemma 1], we have

P
{
‖A‖2F ≥

(
1 + 2

√
λ+ 2λ

)
n1n2

}
≤ exp (−λn1n2),

for any λ > 0. Let λ = (n+m) /n. It is clear that λ ≥ 2 for m ≥ n. Moreover,

2λ ≥ 2
√
λ+ 1 for λ ≥ 2. Thus, we obtain

P
{
‖A‖2F ≥ 4n (n+m)

}
≤ exp (−n (n+m)).

Therefore, the proof is completed by applying the union bound.
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Lemma 26 (Restricted Isometry Property). [16] Fix 0 < δ < 1. For every 1 ≤ r ≤

min{n1, n2}, there exist positive constants c0 and c1 depending only on δ such that

provided m ≥ c0(n1 + n2)r,

(1− δ) ‖M‖F ≤
1√
m
‖A (M )‖2 ≤ (1 + δ) ‖M‖F

holds for all matrices M of rank at most r with probability at least 1− exp (−c1m).
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Appendix B: Technical Proofs in Chapter 2

B.1 Proof of Lemma 1

The crucial ingredient for proving the lower bound (2.23) is the following lemma,

whose proof is provided in Appendix B.6.

Lemma 27. Suppose m ≥ c

∥∥X\
∥∥4

F

σ4
r(X\)

nr log (nκ) with some large enough positive con-

stant c, then with probability at least 1− c1n−12 −me−1.5n, we have

vec (V )>∇2f(X)vec (V ) ≥ 2Tr
(
X\>V X\>V

)
+ 1.204σ2

r(X
\) ‖V ‖2F , (B.1)

for all matrices X and V where X satisfies
∥∥X −X\

∥∥
F
≤ 1

24

σ2
r(X\)
‖X\‖

F

. Here, c1 > 0

is some universal constant.

With Lemma 27 in place, we are ready to prove (2.23). Let V = T 1QT − T 2

satisfy the assumptions in Lemma 1, then we can demonstrate that

Tr
(
X\>V X\>V

)
= Tr

((
X\ − T 2 + T 2

)>
V
(
X\ − T 2 + T 2

)>
V
)

= Tr
((
X\ − T 2

)>
V
(
X\ − T 2

)>
V
)

+ 2Tr
((
X\ − T 2

)>
V T>2 V

)
+ Tr

(
T>2 V T

>
2 V
)

≥ Tr
(
T>2 V T

>
2 V
)
−
∥∥X\ − T 2

∥∥2 ‖V ‖2F − 2
∥∥X\ − T 2

∥∥ ‖T 2‖ ‖V ‖2F

=
∥∥T>2 V ∥∥2F − ∥∥X\ − T 2

∥∥2 ‖V ‖2F − 2
∥∥X\ − T 2

∥∥ ‖T 2‖ ‖V ‖2F (B.2)
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≥ −

( 1

24

σ2
r

(
X\
)∥∥X\
∥∥
)2

+ 2 · 1

24

σ2
r

(
X\
)∥∥X\
∥∥ ·

(
1

24

σ2
r

(
X\
)∥∥X\
∥∥ +

∥∥X\
∥∥) ‖V ‖2F (B.3)

≥ −0.0886σ2
r(X

\) ‖V ‖2F , (B.4)

where (B.2) follows from the fact that T>2 V ∈ Rr×r is a symmetric matrix [125,

Theorem 2], (B.3) arises from the fact
∥∥T>2 V ∥∥2F ≥ 0 as well as the assumptions of

Lemma 1, and (B.4) is based on the fact
∥∥X\

∥∥ ≥ σr(X
\). Combining (B.4) with

Lemma 27, we establish the lower bound (2.23).

To prove the upper bound (2.24) asserted in the lemma, we make the observation

that the Hessian in (2.22) satisfies

∥∥∇2f(X)
∥∥

=

∥∥∥∥∥ 1

m

m∑
i=1

[(
‖a>i X‖22 − ‖a>i X\‖22

)
Ir + 2X>aia

>
i X

]
⊗
(
aia

>
i

)∥∥∥∥∥
≤

∥∥∥∥∥ 1

m

m∑
i=1

[∣∣∣a>i (X +X\
) (
X −X\

)>
ai

∣∣∣ Ir + 2
∥∥a>i X∥∥22Ir]⊗ (aia>i )

∥∥∥∥∥
≤

∥∥∥∥∥ 1

m

m∑
i=1

[(
‖a>i X‖2 + ‖a>i X\‖2

)
·
∥∥a>i (X −X\

)∥∥
2

+ 2
∥∥a>i X∥∥22]aia>i

∥∥∥∥∥ (B.5)

=

∥∥∥∥∥ 1

m

m∑
i=1

(
‖a>i X‖2 + ‖a>i X\‖2

)
·
∥∥a>i (X −X\

)∥∥
2
·
(
aia

>
i

)
+

1

m

m∑
i=1

2
(∥∥a>i X∥∥22 − ∥∥a>i X\

∥∥2
2

)
·
(
aia

>
i

)
+

1

m

m∑
i=1

2
∥∥a>i X\

∥∥2
2

(
aia

>
i

)
− 2

(∥∥X\
∥∥2
F
In + 2X\X\>

)
+ 2

(∥∥X\
∥∥2
F
In + 2X\X\>

)∥∥∥∥∥
≤

∥∥∥∥∥ 3

m

m∑
i=1

(
‖a>i X‖2 + ‖a>i X\‖2

)
·
∥∥a>i (X −X\

)∥∥
2

(
aia

>
i

)∥∥∥∥∥︸ ︷︷ ︸
:=B1

+ 2

∥∥∥∥∥ 1

m

m∑
i=1

∥∥a>i X\
∥∥2
2

(
aia

>
i

)
−
∥∥X\

∥∥2
F
In − 2X\X\>

∥∥∥∥∥︸ ︷︷ ︸
:=B2
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+ 2
∥∥∥∥∥X\

∥∥2
F
In + 2X\X\>

∥∥∥︸ ︷︷ ︸
:=B3

, (B.6)

where (B.5) follows from the fact ‖I ⊗A‖ = ‖A‖. It is seen from Lemma 19 that

B2 ≤ δ
∥∥X\

∥∥2
F
≤ 0.02σ2

r

(
X\
)
,

when setting δ ≤ 0.02
σ2
r

(
X\
)∥∥X\
∥∥2

F

. Moreover, it is straightforward to check that

B3 ≤ 6
∥∥X\

∥∥2
F
.

With regards to the first term B1, note that by Lemma 17 and (2.25b), we can bound

∥∥a>i X∥∥2 ≤ ∥∥a>i X\
∥∥
2

+
∥∥a>i (X −X\)

∥∥
2
≤ 5.86

√
log n

∥∥X\
∥∥
F

+
1

24

√
log n ·

σ2
r

(
X\
)∥∥X\

∥∥
F

for 1 ≤ i ≤ m, and therefore,

B1 ≤ 1.471σ2
r

(
X\
)

log n

∥∥∥∥∥ 1

m

m∑
i=1

aia
>
i

∥∥∥∥∥ ≤ 1.48σ2
r

(
X\
)

log n, (B.7)

where the last inequality follows from Lemma 15. The proof is then finished by

combining (B.6) with the preceding bounds on B1, B2 and B3.

B.2 Proof of Lemma 2

We first note that

∥∥X t+1Qt+1 −X\
∥∥2
F
≤
∥∥X t+1Qt −X\

∥∥2
F

(B.8)

=
∥∥(X t − µ∇f (X t))Qt −X\

∥∥2
F

=
∥∥X tQt − µ∇f (X tQt)−X\

∥∥2
F

(B.9)

=
∥∥xt − x\ − µ · vec

(
∇f (X tQt)−∇f

(
X\
))∥∥2

2
, (B.10)

where we write

xt := vec (X tQt) and x\ := vec
(
X\
)
.
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Here, (B.8) follows from the definition of Qt+1 (see (2.13)), (B.9) holds owing to the

identity ∇f (X t)Qt = ∇f (X tQt) for Qt ∈ Or×r, and (B.10) arises from the fact

that ∇f
(
X\
)

= 0. Let

X t(τ) = X\ + τ
(
X tQt −X\

)
,

where τ ∈ [0, 1]. Then, by the fundamental theorem of calculus for vector-valued

functions [126],

RHS of (B.10) =

∥∥∥∥xt − x\ − µ · ∫ 1

0

∇2f (X t(τ))
(
xt − x\

)
dτ

∥∥∥∥2
2

(B.11)

=

∥∥∥∥(I − µ · ∫ 1

0

∇2f (X t(τ)) dτ

)(
xt − x\

)∥∥∥∥2
2

=
(
xt − x\

)>(
I − µ ·

∫ 1

0

∇2f (X t(τ)) dτ

)2 (
xt − x\

)
=
∥∥xt − x\∥∥22 − 2µ ·

(
xt − x\

)>(∫ 1

0

∇2f (X t(τ)) dτ

)(
xt − x\

)
+ µ2 ·

(
xt − x\

)>(∫ 1

0

∇2f (X t(τ)) dτ

)2 (
xt − x\

)
≤
∥∥xt − x\∥∥22 − 2µ ·

(
xt − x\

)>(∫ 1

0

∇2f (X t(τ)) dτ

)(
xt − x\

)
+ µ2 ·

∥∥∥∥∫ 1

0

∇2f (X t(τ)) dτ

∥∥∥∥2 ∥∥xt − x\∥∥22 . (B.12)

It is easy to verify that X t(τ) satisfies (2.25) for any τ ∈ [0, 1], since

∥∥X t(τ)−X\
∥∥
F

= τ
∥∥X tQt −X\

∥∥
F
≤ 1

24

σ2
r

(
X\
)∥∥X\

∥∥
F

,

and

max
1≤l≤m

∥∥a>l (X t(τ)−X\
)∥∥

2
= τ · max

1≤l≤m

∥∥a>l (X tQt −X\
)∥∥

2
≤ 1

24

√
log n ·

σ2
r

(
X\
)∥∥X\

∥∥
F

.

Lemma 1 then implies that

(
xt − x\

)>(∫ 1

0

∇2f (X t(τ)) dτ

)(
xt − x\

)
≥ 1.026σ2

r

(
X\
) ∥∥xt − x\∥∥22 ,
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and ∥∥∥∥∫ 1

0

∇2f (X t(τ)) dτ

∥∥∥∥ ≤ 1.5σ2
r

(
X\
)

log n+ 6
∥∥X\

∥∥2
F
.

Substituting the above two inequalities into (B.10) and (B.12) gives

∥∥X t+1Qt+1 −X\
∥∥2
F

≤
∥∥xt − x\∥∥22 − 2µ · 1.026σ2

r

(
X\
) ∥∥xt − x\∥∥22

+ µ2 ·
(

1.5σ2
r

(
X\
)

log n+ 6
∥∥X\

∥∥2
F

)2 ∥∥xt − x\∥∥22
=

[
1− 2.052σ2

r

(
X\
)
µ+

(
1.5σ2

r

(
X\
)

log n+ 6
∥∥X\

∥∥2
F

)2
µ2

] ∥∥X tQt −X\
∥∥2
F

≤
(
1− 1.026σ2

r

(
X\
)
µ
) ∥∥X tQt −X\

∥∥2
F
,

with the proviso that µ ≤ 1.026σ2
r(X\)(

1.5σ2
r(X\) logn+6‖X\‖2

F

)2 . This allows us to conclude that

∥∥X t+1Qt+1 −X\
∥∥
F
≤
(
1− 0.513σ2

r

(
X\
)
µ
) ∥∥X tQt −X\

∥∥
F
.

B.3 Proof of Lemma 3

Recognizing that

∥∥∥X t+1Qt+1 −X
(l)
t+1R

(l)
t+1

∥∥∥
F
≤
∥∥∥X t+1Qt+1 −X

(l)
t+1R

(l)
t Q

>
t Qt+1

∥∥∥
F

=
∥∥∥X t+1 −X(l)

t+1R
(l)
t Q

>
t

∥∥∥
F

=
∥∥∥X t+1Qt −X

(l)
t+1R

(l)
t

∥∥∥
F
,

we will focus on bounding
∥∥X t+1Qt −X

(l)
t+1R

(l)
t

∥∥
F
. Since

X t+1Qt −X
(l)
t+1R

(l)
t

= (X t − µ∇f (X t))Qt −
(
X

(l)
t − µ∇f (l)

(
X

(l)
t

))
R

(l)
t

= X tQt −X
(l)
t R

(l)
t − µ∇f (X t)Qt + µ∇f (l)

(
X

(l)
t

)
R

(l)
t

= X tQt −X
(l)
t R

(l)
t − µ

1

m

m∑
i=1

(∥∥a>i X t

∥∥2
2
− yi

)
aia

>
i X tQt
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+ µ
1

m

m∑
i=1

(∥∥∥a>i X(l)
t

∥∥∥2
2
− yi

)
aia

>
i X

(l)
t R

(l)
t − µ

1

m

(∥∥∥a>l X(l)
t

∥∥∥2
2
− yl

)
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>
l X

(l)
t R

(l)
t

= X tQt −X
(l)
t R

(l)
t − µ∇f (X tQt) + µ∇f

(
X

(l)
t R

(l)
t

)
︸ ︷︷ ︸

:=S
(l)
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− µ 1

m

(∥∥∥a>l X(l)
t

∥∥∥2
2
− yl

)
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>
l X

(l)
t R

(l)
t︸ ︷︷ ︸

:=S
(l)
t,2

,

we aim to control
∥∥S(l)

t,1

∥∥
F
and

∥∥S(l)
t,2

∥∥
F
separately.

We first bound the term
∥∥S(l)

t,2

∥∥
F
, which is easier to handle. Observe that by

Cauchy-Schwarz inequality,∣∣∣∣∥∥∥a>l X(l)
t

∥∥∥2
2
− yl

∣∣∣∣ =

∣∣∣∣a>l (X(l)
t R

(l)
t −X\

)(
X

(l)
t R

(l)
t +X\

)>
al

∣∣∣∣
≤
∥∥∥a>l (X(l)

t R
(l)
t −X\

)∥∥∥
2

∥∥∥a>l (X(l)
t R

(l)
t +X\

)∥∥∥
2
. (B.13)

The first term in (B.13) can be bounded by∥∥∥a>l (X(l)
t R

(l)
t −X\

)∥∥∥
2

≤
∥∥∥a>l (X(l)

t R
(l)
t −X tQt

)∥∥∥
2

+
∥∥a>l (X tQt −X\

)∥∥
2

≤
√
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∥∥∥X(l)
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(l)
t −X tQt

∥∥∥+ C2

(
1− 0.5σ2

r

(
X\
)
µ
)t√

log n ·
σ2
r

(
X\
)∥∥X\

∥∥
F

≤
√

6nC3

(
1− 0.5σ2

r

(
X\
)
µ
)t√ log n

n
·
σ2
r

(
X\
)∥∥X\

∥∥
F

+ C2

(
1− 0.5σ2

r

(
X\
)
µ
)t√

log n ·
σ2
r

(
X\
)∥∥X\

∥∥
F

= (
√

6C3 + C2)
(
1− 0.5σ2

r

(
X\
)
µ
)t√

log n ·
σ2
r

(
X\
)∥∥X\

∥∥
F

, (B.14)

where we have used the triangle inequality, Lemma 16, as well as the induction

hypotheses (2.33c) and (2.33b). Similarly, the second term in (B.13) can be bounded

as∥∥∥a>l (X(l)
t R

(l)
t +X\

)∥∥∥
2
≤
∥∥∥a>l (X(l)

t R
(l)
t −X\

)∥∥∥
2

+ 2
∥∥a>l X\

∥∥
2
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≤
(√

6C3 + C2

)√
log n ·

σ2
r

(
X\
)∥∥X\

∥∥
F

+ 11.72
√

log n
∥∥X\

∥∥
F

≤
(√

6C3 + C2 + 11.72
)√

log n
∥∥X\

∥∥
F
, (B.15)

where we have used (B.14), Lemma 17, and σ2
r

(
X\
)
≤
∥∥X\

∥∥2
F
. Similarly, we can also

obtain ∥∥∥a>l X(l)
t

∥∥∥
2
≤
(√

6C3 + C2 + 5.86
)√

log n
∥∥X\

∥∥
F
.

Substituting (B.14) and (B.15) into (B.13), and using the above inequality, we get∥∥∥S(l)
t,2

∥∥∥
F

= µ
1

m
·
∣∣∣∣∥∥∥a>l X(l)

t

∥∥∥2
2
− yl

∣∣∣∣ · ∥∥∥ala>l X(l)
t

∥∥∥
F
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4

(
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r

(
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)
µ
)t · µ 1

m
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r

(
X\
)

log n · ‖al‖2
∥∥∥a>l X(l)

t

∥∥∥
2

≤
√
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4

(
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r

(
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)
µ
)t · µ 1

m
· σ2

r

(
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)
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√
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∥∥
F

√
log n

=
√

6C3
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(
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r

(
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)
µ
)t · µ√n · (log n)3/2

m
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r

(
X\
) ∥∥X\

∥∥
F
, (B.16)

where C4 :=
√

6C3 + C2 + 11.72.

Next, we turn to
∥∥∥S(l)

t,1

∥∥∥
F
. By defining

s
(l)
t,1 = vec

(
S

(l)
t,1

)
, xt = vec (X tQt) , and x

(l)
t = vec

(
X

(l)
t R

(l)
t

)
,

we can write

s
(l)
t,1 = xt − x(l)

t − µ · vec
(
∇f (X tQt)−∇f(X

(l)
t R

(l)
t )
)

= xt − x(l)
t − µ ·

∫ 1

0

∇2f
(
X

(l)
t (τ)

)(
xt − x(l)

t

)
dτ

=

(
I − µ ·

∫ 1

0

∇2f
(
X

(l)
t (τ)

)
dτ

)(
xt − x(l)

t

)
.

Here, the second line follows from the fundamental theorem of calculus for vector-

valued functions [126], where

X
(l)
t (τ) = X

(l)
t R

(l)
t + τ

(
X tQt −X

(l)
t R

(l)
t

)
, (B.17)
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for τ ∈ [0, 1]. Using very similar algebra as in Appendix B.2, we obtain

∥∥∥S(l)
t,1

∥∥∥2
F
≤
∥∥∥xt − x(l)

t

∥∥∥2
2
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0
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X
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t
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2
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(
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t

)>(∫ 1

0

∇2f
(
X

(l)
t (τ)

)
dτ

)(
xt − x(l)

t

)
. (B.18)

It is easy to verify that for all τ ∈ [0, 1],

∥∥∥X(l)
t (τ)−X\

∥∥∥
F

=
∥∥∥(1− τ)

(
X

(l)
t R
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)
+X tQt −X\

∥∥∥
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F

+
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∥∥
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√
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)∥∥X\

∥∥
F
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F

(B.19)

=

(
C3

√
log n

n
+ C1

)
σ2
r

(
X\
)∥∥X\

∥∥
F

≤ 1

24

σ2
r

(
X\
)∥∥X\

∥∥
F

, (B.20)

where (B.19) follows from the induction hypotheses (2.33a) and (2.33b), and (B.20)

follows as long as C1 + C3 ≤ 1
24
. Further, for all 1 ≤ l ≤ m, by the induction

hypothesis (2.33b) and (2.33c),

∥∥∥a>l (X(l)
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)∥∥∥
2
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2

+
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(
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∥∥
F

≤ 1

24

√
log n ·
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r

(
X\
)∥∥X\

∥∥
F

,

as long as
√

6C3 + C2 ≤ 1
24
. Therefore, Lemma 1 holds for X(l)

t (τ), and similar to

Appendix B.2, (B.18) can be further bounded by

∥∥∥S(l)
t,1

∥∥∥
F
≤
(
1− 0.513σ2

r

(
X\
)
µ
) ∥∥∥X tQt −X

(l)
t R

(l)
t

∥∥∥
F

(B.21)
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as long as µ ≤ 1.026σ2
r(X\)(

1.5σ2
r(X\) logn+6‖X\‖2

F

)2 . Consequently, combining (B.16) and (B.21),

we can get∥∥∥X t+1Qt+1 −X
(l)
t+1R

(l)
t+1

∥∥∥
F
≤
∥∥∥S(l)
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∥∥∥
F
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∥∥∥
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µ
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∥∥
F

, (B.22)

where (B.22) follows from the induction hypothesis (2.33b), as long asm ≥ c
‖X\‖2

F

σ2
r(X\)

n log n

for some large enough constant c > 0.

B.4 Proof of Lemma 4

For any 1 ≤ l ≤ m, by the statistical independence of al and X(l)
t+1 and by

Lemma 17, we have∥∥∥a>l (X(l)
t+1R

(l)
t+1 −X\

)∥∥∥
2
≤ 5.86

√
log n

∥∥∥X(l)
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(l)
t+1 −X\

∥∥∥
F
.

Further, by the triangle inequality, Lemma 16, Lemma 3 and Lemma 2, we can deduce

that
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)∥∥
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2
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+ 5.86
√
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,

where the last line follows as long as
√

6C3 + 5.86C1 + 5.86C3 ≤ C2. The proof is

then finished by applying the union bound for all 1 ≤ l ≤ m.

B.5 Proof of Lemma 5

Define

Σ0 = diag {λ1 (Y ) , λ2 (Y ) , · · · , λr (Y )} = Λ0 + λI;

Σ
(l)
0 = diag

{
λ1

(
Y (l)

)
, λ2

(
Y (l)

)
, · · · , λr

(
Y (l)

)}
= Λ

(l)
0 + λ(l)I, 1 ≤ l ≤ m,

then by definition we have Y Z0 = Z0Σ0, Y (l)Z
(l)
0 = Z

(l)
0 Σ

(l)
0 , and

Σ0Z
>
0 Z

(l)
0 −Z>0 Z

(l)
0 Σ

(l)
0 =

1

2m
ylZ

>
0 ala

>
l Z

(l)
0 . (B.23)

Moreover, let Z0,c and Z
(l)
0,c be the complement matrices of Z0 and Z(l)

0 , respectively,

such that both [Z0,Z0,c] and
[
Z

(l)
0 ,Z

(l)
0,c

]
are orthonormal matrices. Below we will

prove the induction hypotheses (2.33) in the base case when t = 0 one by one.

B.5.1 Proof of (2.33a)

From Lemma 12, we have

∥∥X0Q0 −X\
∥∥
F
≤ 1√

2
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)
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>
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F
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>
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>
0

∥∥ . (B.24)

The last term in (B.24) can be further bounded as
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>
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where (B.25) follows from
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2
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F
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.

B.5.2 Proof of (2.33b)

Following Weyl’s inequality, by (2.33a), we have

∣∣σi (X0)− σi
(
X\
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r
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,
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and similarly, ∣∣∣σi(X(l)
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We will bound each term in (B.26), respectively. For the first term, we have
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where the last inequality follows from (B.23). Note that the first term in (B.27) can

be bounded as∥∥∥∥Z0 ·
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which follows from Lemma 16 and Lemma 17. The second term in (B.27) can be

bounded as
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[127]. Putting this together with the third term

in (B.27), we have
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σ2
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(
X\
) , (B.30)

where (B.29) follows from Lemma 19 and the Davis-Kahan sin Θ theorem [128], and

(B.30) follows from Lemma 16 and Lemma 17.

For the second term in (B.26), we have
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where the first term of (B.31) is bounded similarly as (B.30), and (B.32) follows from

Lemma 17. Combining (B.28), (B.30), and (B.32), we obtain∥∥∥X0Q0 −X
(l)
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.
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where the last inequality holds as long as m &
‖X\‖5

F

σ5
r(X\)

n
√
r log n = nr3 log n.

B.5.3 Proof of (2.33c)

For every 1 ≤ l ≤ m, from (2.33a) and (2.33b), we have∥∥∥X(l)
0 R

(l)
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where (B.33) follows from Lemma 16 and Lemma 17, and (B.34) follows from (2.33b).

B.5.4 Finishing the Proof

The proof of Lemma 5 is now complete by appropriately adjusting the constants.
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B.6 Proof of Lemma 27

Without loss of generality, we assume ‖V ‖F = 1. Write

vec (V )>∇2f(X)vec (V )

=
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m
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In what follows, we let X = X\ + t
σ2
r(X\)
‖X\‖

F

H with t ≤ 1/24 and ‖H‖F = 1 which

immediately obeys
∥∥X −X\

∥∥
F
≤ 1

24

σ2
r(X\)
‖X\‖

F

, and express the right-hand side of (B.35)

as
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The aim is thus to control p (V ,H , t) for all matrices satisfying ‖H‖F = 1 and

‖V ‖F = 1, and for all t obeying t ≤ 1/24.

We first bound the second term in (B.36). Let V = [v1,v2, · · · ,vr], then by

Lemma 19,∣∣∣∣∣ 1

m

m∑
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103



≤
r∑

k=1

∣∣∣∣∣ 1

m

m∑
i=1

∥∥a>i X\
∥∥2
2

(
a>i vk

)2 − ∥∥X\
∥∥2
F
‖vk‖22 − 2

∥∥X\>vk
∥∥2
2

∣∣∣∣∣
=

r∑
k=1

∣∣∣∣∣v>k
(

1

m

m∑
i=1

∥∥a>i X\
∥∥2
2
aia

>
i −

∥∥X\
∥∥2
F
− 2X\X\>

)
vk

∣∣∣∣∣
≤

r∑
k=1

‖vk‖22

∥∥∥∥∥ 1

m

m∑
i=1

∥∥a>i X\
∥∥2
2
aia

>
i −

∥∥X\
∥∥2
F
− 2X\X\>

∥∥∥∥∥
≤ δ
∥∥X\

∥∥2
F

r∑
k=1

‖vk‖22 = δ
∥∥X\

∥∥2
F
‖V ‖2F .

By setting δ ≤ 1
24

σ2
r(X\)
‖X\‖2

F

, we see that with probability at least 1− c1rn−13,

1

m

m∑
i=1

∥∥a>i X\
∥∥2
2

∥∥a>i V ∥∥22 ≤ ∥∥X\
∥∥2
F

∥∥V ∥∥2
F

+ 2
∥∥X\>V

∥∥2
F

+
1

24
σ2
r

(
X\
)
‖V ‖2F , (B.37)

holds simultaneously for all matrices V , as long as m &
‖X\‖4

F

σ4
r(X\)

n log n.

Next, we turn to the first term q (V ,H , t) in (B.36), and we need to accommodate

all matrices satisfying ‖H‖F = 1 and ‖V ‖F = 1, and all scalars obeying t ≤ 1/24.

The strategy is that we first establish the bound of q (V ,H , t) for any fixed H , V

and t, and then extend the result to a uniform bound for all H , V and t by covering

arguments.

B.6.1 Bound with Fixed Matrices and Scalar

Recall that

q (V ,H , t) =
1

m

m∑
i=1

[∥∥a>i X∥∥22∥∥a>i V ∥∥22 + 2
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:=Gi
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We will start by assuming thatX and V are both fixed and statistically independent

of {ai}mi=1. In view of Lemma 18,

E [Gi] = E
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[(
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where (B.38) follows ‖V ‖F = 1 and X = X\ + t
σ2
r(X\)
‖X\‖

F

H , and (B.39) arises from the

calculations with ‖H‖F = 1 and t ≤ 1/24. Therefore, if we define Ti = E [Gi] − Gi,
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where (B.40) follows from the Cauchy-Schwarz inequality, (B.41) comes from the

Hölder’s inequality, and (B.42) is a consequence of Lemma 18. Apply Lemma 14 to

arrive at
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which further leads to
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SubstitutingX = X\+t
σ2
r(X\)
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H forX, and using the facts ‖H‖F = 1, ‖V ‖F = 1

and t ≤ 1/24, we can calculate the following bounds:
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which, combining with (B.44), yields
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B.6.2 Covering Arguments

Since we have obtained a lower bound on q (V ,H , t) for fixed V ,H and t, we now

move on to extending it to a uniform bound that covers all V , H and t simultane-

ously. Towards this, we will invoke the ε-net covering arguments for all V , H and t,

respectively, and will rely on the fact max1≤i≤m ‖ai‖2 ≤
√

6n asserted in Lemma 16.

For notational convenience, we define
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First, consider the ε-net covering argument for V . Suppose V 1 and V 2 are such

that ‖V 1‖F = 1, ‖V 2‖F = 1, and ‖V 1 − V 2‖F ≤ ε. Then, since
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≤ 6n · ‖X‖2 · 2

√
6n ·
√

6n · ε+ 2 · 12n · ‖X‖ · 6n · ‖X‖ ε+ 8
∥∥X\

∥∥2ε
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= 216εn2

∥∥∥∥∥X\ + t
σ2
r

(
X\
)∥∥X\

∥∥
F

H

∥∥∥∥∥
2

+ 8
∥∥X\

∥∥2ε
≤ 432εn2

(∥∥X\
∥∥2 + t2

σ4
r

(
X\
)∥∥X\

∥∥2
F

‖H‖2
)

+ 8
∥∥X\

∥∥2ε
≤
(
432.75n2 + 8

)
ε
∥∥X\

∥∥2 ≤ 1

24
σ2
r

(
X\
)
,

as long as ε =
σ2
r(X\)

10584n2‖X\‖2 . Based on Lemma 13, the cardinality of this ε-net will be

(
9

ε

)(n+r+1)r

=

(
9 · 10584n2

∥∥X\
∥∥2

σ2
r

(
X\
) )(n+r+1)r

≤ exp (cnr log (nκ)).

Secondly, consider the ε-net covering argument for H . Suppose H1 and H2 obey

‖H1‖F = 1, ‖H2‖F = 1, and ‖H1 −H2‖F ≤ ε. Then one has

|g (V ,H1, t)− g (V ,H2, t)|

= |q (V ,H1, t)− q (V ,H2, t)|

=

∣∣∣∣∣ 1

m

m∑
i=1

∥∥∥∥∥a>i
(
X\ + t

σ2
r

(
X\
)∥∥X\

∥∥
F

H1

)∥∥∥∥∥
2

2

∥∥a>i V ∥∥22
+

1

m

m∑
i=1

2

(
a>i

(
X\ + t

σ2
r

(
X\
)∥∥X\

∥∥
F

H1

)
V >ai

)2

− 1

m

m∑
i=1

∥∥∥∥∥a>i
(
X\ + t

σ2
r

(
X\
)∥∥X\

∥∥
F

H2

)∥∥∥∥∥
2

2

∥∥a>i V ∥∥22
− 1

m

m∑
i=1

2

(
a>i

(
X\ + t

σ2
r

(
X\
)∥∥X\

∥∥
F

H2

)
V >ai

)2 ∣∣∣∣∣
≤ 1

m

m∑
i=1

∥∥a>i V ∥∥22 ·
∣∣∣∣∣∣
∥∥∥∥∥a>i

(
X\ + t

σ2
r

(
X\
)∥∥X\

∥∥
F

H1

)∥∥∥∥∥
2

2

−

∥∥∥∥∥a>i
(
X\ + t

σ2
r

(
X\
)∥∥X\

∥∥
F

H2

)∥∥∥∥∥
2

2

∣∣∣∣∣∣
+

2

m

m∑
i=1

∣∣∣∣∣∣
(
a>i

(
X\ + t

σ2
r

(
X\
)∥∥X\

∥∥
F

H1

)
V >ai

)2

−

(
a>i

(
X\ + t

σ2
r

(
X\
)∥∥X\

∥∥
F

H2

)
V >ai

)2
∣∣∣∣∣∣

≤ 6n ·
√

6n · t
σ2
r

(
X\
)∥∥X\

∥∥
F

ε · 2
√

6n · 25

24

∥∥X\
∥∥+ 2 · 6n · t

σ2
r

(
X\
)∥∥X\

∥∥
F

ε · 12n · 25

24

∥∥X\
∥∥
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≤ 75

8
εn2σ

2
r

(
X\
)∥∥X\

∥∥
F

∥∥X\
∥∥ ≤ 1

24
σ2
r

(
X\
)
,

as long as ε = 1
225n2 ·

‖X\‖
F

‖X\‖ . Based on Lemma 13, the cardinality of this ε-net will be

(
9

ε

)(n+r+1)r

=

(
9 · 225n2 ·

∥∥X\
∥∥∥∥X\
∥∥
F

)(n+r+1)r

≤ exp (cnr log n).

Finally, consider the ε-net covering argument for all t, such that t ≤ 1/24. Suppose

t1 and t2 satisfy t1 ≤ 1/24, t2 ≤ 1/24 and |t1 − t2| ≤ ε. Then we get

|g (V ,H , t1)− g (V ,H , t2)|

= |q (V ,H , t1)− q (V ,H , t2)|

=

∣∣∣∣∣ 1

m

m∑
i=1

∥∥∥∥∥a>i
(
X\ + t1

σ2
r

(
X\
)∥∥X\

∥∥
F

H

)∥∥∥∥∥
2

2

∥∥a>i V ∥∥22
+

1

m

m∑
i=1

2

(
a>i

(
X\ + t1

σ2
r

(
X\
)∥∥X\

∥∥
F

H

)
V >ai

)2

− 1

m

m∑
i=1

∥∥∥∥∥a>i
(
X\ + t2

σ2
r

(
X\
)∥∥X\

∥∥
F

H

)∥∥∥∥∥
2

2

∥∥a>i V ∥∥22
− 1

m

m∑
i=1

2

(
a>i

(
X\ + t2

σ2
r

(
X\
)∥∥X\

∥∥
F

H

)
V >ai

)2 ∣∣∣∣∣
≤ 1

m

m∑
i=1

∥∥a>i V ∥∥22 ·
∣∣∣∣∣∣
∥∥∥∥∥a>i

(
X\ + t1

σ2
r

(
X\
)∥∥X\

∥∥
F

H

)∥∥∥∥∥
2

2

−

∥∥∥∥∥a>i
(
X\ + t2

σ2
r

(
X\
)∥∥X\

∥∥
F

H

)∥∥∥∥∥
2

2

∣∣∣∣∣∣
+

2

m

m∑
i=1

∣∣∣∣∣∣
(
a>i

(
X\ + t1

σ2
r

(
X\
)∥∥X\

∥∥
F

H

)
V >ai

)2

−

(
a>i

(
X\ + t2

σ2
r

(
X\
)∥∥X\

∥∥
F

H

)
V >ai

)2
∣∣∣∣∣∣

≤ 6n ·
√

6n ·
σ2
r

(
X\
)∥∥X\

∥∥
F

ε · 2
√

6n · 25

24

∥∥X\
∥∥+ 2 · 6n ·

σ2
r

(
X\
)∥∥X\

∥∥
F

ε · 12n · 25

24

∥∥X\
∥∥

≤ 225εn2σ
2
r

(
X\
)∥∥X\

∥∥
F

∥∥X\
∥∥ ≤ 1

24
σ2
r

(
X\
)
,

as long as ε = 1
5400n2 ·

‖X\‖
F

‖X\‖ . The cardinality of this ε-net will be 1/24
ε
≤ cn2 · ‖X

\‖
‖X\‖

F

.
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Therefore, when m ≥ c

∥∥X\
∥∥4

F

σ4
r(X\)

nr log (nκ) with some large enough constant c, for

all matrices V and X such that
∥∥X −X\

∥∥
F
≤ 1

24

σ2
r(X\)
‖X\‖

F

, we have

q (V ,H , t) ≥
∥∥X\

∥∥2
F

+ 2
∥∥X\>V

∥∥2
F

+ 2Tr
(
X\>V X\>V

)
+ 1.246σ2

r

(
X\
)
, (B.45)

with probability at least 1− e−c1nr log (nκ) −me−1.5n.

B.6.3 Finishing the Proof

Combining (B.37) and (B.45), we can prove

vec (V )>∇2f(X)vec (V ) ≥
∥∥X\

∥∥2
F

+ 2
∥∥X\>V

∥∥2
F

+ 2Tr
(
X\>V X\>V

)
+ 1.246σ2

r

(
X\
)

− 1

m

m∑
i=1

∥∥a>i X\
∥∥2
2

∥∥a>i V ∥∥22
≥
∥∥X\

∥∥2
F

+ 2
∥∥X\>V

∥∥2
F

+ 2Tr
(
X\>V X\>V

)
+ 1.246σ2

r

(
X\
)

−
∥∥X\

∥∥2
F
− 2

∥∥X\>V
∥∥2
F
− 1

24
σ2
r

(
X\
)

≥ 2Tr
(
X\>V X\>V

)
+ 1.204σ2

r

(
X\
)
,

as claimed.
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Appendix C: Technical Proofs in Chapter 3

C.1 Proof of Lemma 6: Approximate Dual Certificate

Denote the solution to (3.4) by X̂ = X0 + H 6= X0, then we have X̂ � 0,

HT⊥ � 0, and furthermore,

‖A(H)− (η +w)‖1 = ‖y −A(X0 +H)‖1

= ‖y −A(X̂)‖1

≤ ‖y −A(X0)‖1 = ‖η +w‖1,

where the inequality follows from the optimality of X̂ since both X̂ and X0 are

feasible to (3.4). Since

‖A(H)− (η +w)‖1 = ‖AS(H)− η −wS‖1 + ‖AS⊥(H)−wS⊥‖1,

and

‖η +w‖1 = ‖η +wS‖1 + ‖wS⊥‖1,

where wS ∈ Rm is a vector whose entries are same with w on indices in S, and

otherwise are zeros, and w = wS +wS⊥ , we have

‖AS⊥(H)‖1 ≤ ‖AS⊥(H)−wS⊥‖1 + ‖wS⊥‖1
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≤ ‖η +w‖1 − ‖AS(H)− η −wS‖1 + ‖wS⊥‖1

≤ ‖η +wS‖1 − ‖AS(H)− η −wS‖1 + 2‖wS⊥‖1

≤ ‖AS(H)‖1 + 2‖wS⊥‖1,

where the last inequality follows from the triangle inequality. We could further bound

‖AS⊥(HT )‖1 ≤ ‖AS⊥(H)‖1 + ‖AS⊥(HT⊥)‖1

≤ ‖AS(H)‖1 + ‖AS⊥(HT⊥)‖1 + 2‖wS⊥‖1

≤ ‖AS(HT )‖1 + ‖AS(HT⊥)‖1 + ‖AS⊥(HT⊥)‖1 + 2‖wS⊥‖1

= ‖AS(HT )‖1 + ‖A(HT⊥)‖1 + 2‖wS⊥‖1. (C.1)

Our assumptions on A imply that(
1 +

1

10

)
Tr (HT⊥) ≥ 1

m
‖A (HT⊥)‖1

≥ 1

m
(‖AS⊥(HT )‖1 − ‖AS(HT )‖1 − 2‖wS⊥‖1)

≥ |S
⊥|

5m

(
1− 1

12

)
‖HT‖F −

|S|
m

(
1 +

1

10

)
‖HT‖1 −

2ε

m
,

where the first inequality follows from (3.7) due to ‖HT⊥‖1 = Tr (HT⊥), asHT⊥ � 0,

the second inequality follows from (C.1), and the last inequality follows from (3.8)

and (3.9). This gives

Tr (HT⊥) ≥
(
|S⊥|
6m
− |S|

m

√
2r

)
‖HT‖F −

2ε

m
, (C.2)

where we use the inequality ‖HT‖1 ≤
√

2r‖HT‖F.

On the other hand, since µ/(9/m) is a subgradient of the `1-norm at η from

(3.11), we have

‖η‖1 +
〈m

9
µ,w −A(H)

〉
≤ ‖w + η −A(H)‖1 ≤ ‖η +w‖1 ≤ ‖η‖1 + ‖w‖1,
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which, by a simple transformation, is

〈µ,A(H)〉 ≥ 〈µ,w〉 − 9

m
‖w‖1 ≥ −

(
‖µ‖∞ +

9

m

)
‖w‖1 ≥ −

18ε

m
.

Then with

〈H ,Y 〉 = 〈A(H),µ〉,

we can get

−18ε

m
≤ 〈A(H),µ〉 = 〈H ,Y 〉 = 〈HT ,Y T 〉+ 〈HT⊥ ,Y T⊥〉

≤ ‖Y T‖F ‖HT‖F −
1

r
〈HT⊥ , IT⊥〉

≤ 1

13r
‖HT‖F −

1

r
Tr(HT⊥),

which gives

Tr(HT⊥) ≤ 1

13
‖HT‖F +

18rε

m
. (C.3)

Combining with (C.2), we know(
|S⊥|
6m
− |S|

m

√
2r

)
‖HT‖F −

2ε

m
≤ 1

13
‖HT‖F +

18rε

m
.

Since |S
⊥|

6m
− |S|

m

√
2r − 1

13
> 0 under the assumption on |S|

m
in Lemma 6, we have

‖HT‖F ≤
20rε

m
(
|S⊥|
6m
− |S|

m

√
2r − 1

13

) ≤ c1
rε

m
,

where c1 is some fixed constant. Finally, we have

‖X̂ −X0‖F ≤ ‖HT‖F + ‖HT⊥‖F

≤ ‖HT‖F + Tr(HT⊥)

≤
(

1 +
1

13

)
‖HT‖F +

18rε

m
≤ c

rε

m
,

for some constant c.
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C.2 Proof of Lemma 9

First, by standard results in random matrix theory [120, Corollary 5.35], we have∥∥∥∥ m

|S⊥|
Y (1) −

(
α0 +

β0 − α0

r

)
I

∥∥∥∥ ≤ β0
40r

,

with probability at least 1−2e−γ|S⊥|/r2 for some constant γ provided
∣∣S⊥∣∣ ≥ cnr2 for

some constant c. In particular, this gives∥∥∥∥ m

|S⊥|
Y

(1)

T⊥
−
(
α0 +

β0 − α0

r

)
IT⊥

∥∥∥∥ ≤ β0
40r

. (C.4)

Let a′j = (I −UU>)aj be the projection of aj onto the orthogonal complement

of the column space of U , then we have

Y
(0)

T⊥
=

1

m

∑
j∈S⊥

εjε
>
j ,

where εj =
(

1
r

∑r
i=1

∣∣a>j ui∣∣2 I{|a>j ui|≤3}
)1/2

a′j, j ∈ S⊥, are i.i.d. copies of a zero-

mean, isotropic and sub-Gaussian random vector ε, which satisfies E[εε>] = α0IT⊥ .

Following [120, Theorem 5.39], we have∥∥∥∥ m

|S⊥|
Y

(0)

T⊥
− α0IT⊥

∥∥∥∥ ≤ α0

40r
, (C.5)

with probability at least 1−2e−γ|S⊥|/r2 for some constant γ provided
∣∣S⊥∣∣ ≥ cnr2 for

some constant c. As a result, if m ≥ cnr2 for some large constant c and |S| ≤ c1m

for some constant c1 small enough, with probability at least 1− e−γm/r2 , there exists∥∥∥∥Y (0)

T⊥
− Y (1)

T⊥
+
β0 − α0

r
IT⊥

∥∥∥∥
≤

∥∥∥∥∥Y (0)

T⊥
− Y (1)

T⊥
+
β0 − α0

r

∣∣S⊥∣∣
m
IT⊥

∥∥∥∥∥+

(
1−

∣∣S⊥∣∣
m

)
β0 − α0

r

≤
∥∥∥∥ m

|S⊥|
Y

(0)

T⊥
− m

|S⊥|
Y

(1)

T⊥
+
β0 − α0

r
IT⊥

∥∥∥∥+
|S|
m

β0 − α0

r
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≤ β0
30r

+
α0

60r
. (C.6)

Next, let’s check
∥∥∥Y (2)

T⊥

∥∥∥. Since Y (2) = 1
m

∑
j∈S 9χjaja

>
j , where E[9χjaja

>
j ] = 0,

by [120, Theorem 5.39] we have

∥∥∥Y (2)
∥∥∥ =
|S|
m

∥∥∥∥∥ 1

|S|
∑
j∈S

9χjaja
>
j

∥∥∥∥∥ ≤ 1

10r
,

with probability at least 1− 2 exp(−γm/r) as long as m ≥ cnr2 and |S| = c1m/r ≥

c2nr, for some constants c, c1 and c2. In particular, this gives

∥∥∥Y (2)

T⊥

∥∥∥ ≤ 1

10r
. (C.7)

Putting this together with (C.6), we can obtain that if m ≥ cnr2 and |S| =

c1m/r ≥ c2nr for some constants c, c1 and c2, with probability at least 1− e−γm/r2 ,∥∥∥∥Y T⊥ +
1.7

r
IT⊥

∥∥∥∥ =

∥∥∥∥Y (0)

T⊥
− Y (1)

T⊥
+ Y

(2)

T⊥
+

1.7

r
IT⊥

∥∥∥∥(α0

60
+
β0
30

+ 0.11

)
1

r
≤ 0.25

r
.

C.3 Proof of Lemma 10

Let Ỹ =
(
Y (0) − Y (1)

)
U , and Ỹ

′
=
(
I −UU>

)
Ỹ be the projection of Ỹ onto

the orthogonal complement of U , then we have

∥∥∥Y (0)
T − Y

(1)
T

∥∥∥2
F

=
∥∥∥U>Ỹ ∥∥∥2

F
+ 2

∥∥∥Ỹ ′∥∥∥2
F
. (C.8)

First consider the term ‖U>Ỹ ‖2F in (C.8), where the kth column of U>Ỹ can be

expressed explicitly as

(
U>Ỹ

)
k

=
1

m

∑
j∈S⊥

[
1

r

r∑
i=1

∣∣a>j ui∣∣2 I{|a>j ui|≤3} −
(
α0 +

β0 − α0

r

)]
·
(
a>j uk

) (
U>aj

)
:=

1

m
Φck,

116



where Φ ∈ Rr×|S⊥| is constructed by U>aj’s, and ck ∈ R|S⊥| is composed of ck,j’s,

each one expressed as

ck,j =

[
1

r

r∑
i=1

∣∣a>j ui∣∣2 I{|a>j ui|≤3} −
(
α0 +

β0 − α0

r

)](
a>j uk

)
,

with

E[c2k,j] =
1

r2
(
θ0 + (r − 1) β0 − β2

0 − (r − 1)α2
0

)
=

1

r

(
β0 − α2

0

)
+

1

r2
(
θ0 + α2

0 − β2
0 − β0

)
≤ 4.07

r
.

Note that c2k,j’s are i.i.d. sub-exponential random variables with
∥∥c2k,j∥∥ψ1

≤ K, for

some constant K, then according to [120, Corollary 5.17],

P


∣∣∣∣∣∣
∑
j∈S⊥

(
c2k,j − Ec2k,j

)∣∣∣∣∣∣ ≥ ε

r

∣∣S⊥∣∣
 ≤ 2exp

(
−c

ε2
∣∣S⊥∣∣
K2r2

)
,

which shows that as long as |S| ≤ c1m, for some constants c and c1,

‖ck‖22 ≤
4.07 + c

r
m ≤ 4.1m

r

holds with probability at least 1− e−γm/r2 . Furthermore, for a fixed vector x ∈ R|S⊥|

obeying ‖x‖2 = 1, ‖Φx‖22 is distributed as a chi-square random variable with r degrees

of freedom. From [121, Lemma 1], we have

‖Φx‖22 ≤
m

12000r2
,

with probability at least 1 − e−γm/r2 , provided m ≥ cnr2 for some sufficiently large

constant c. Therefore, we can obtain∥∥∥(U>Ỹ )
k

∥∥∥2
2

=
1

m2

∥∥∥∥Φ ck
‖ck‖2

∥∥∥∥2
2

‖ck‖22 ≤
1

2700r3
,

which yields

‖U>Ỹ ‖2F =
r∑

k=1

∥∥∥(U>Ỹ )
k

∥∥∥2
2
≤ 1

2700r2
, (C.9)
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with probability at least 1− e−γm/r2 , when m ≥ cnr2 and |S| ≤ c1m.

To bound the second term in (C.8), we could adopt the same techniques as before.

The kth column of Ỹ
′
can be expressed explicitly as(

Ỹ
′)
k

=
1

m

∑
j∈S⊥

[
1

r

r∑
i=1

∣∣a>j ui∣∣2 I{|a>j ui|≤3} −
(
α0 +

β0 − α0

r

)]
· (a>j uk)

(
I −UU>

)
aj

:=
1

m

∑
j∈S⊥

ck,ja
′
j :=

1

m
Ψck,

where Ψ ∈ Rn×|S⊥| is constructed by a′j’s, each of which, as a reminder, is the

projection of aj onto the orthogonal complement of the column space of U as a′j =(
I −UU>

)
aj. Equivalently, Ψ =

(
I −UU>

)
A, where A ∈ Rn×|S⊥| is constructed

by aj’s, j ∈ S⊥. For a fixed vector x ∈ R|S⊥| obeying ‖x‖2 = 1, we have ‖Ψx‖22 =∥∥(I −UU>)Ax∥∥2
2
≤ ‖Ax‖22, where ‖Ax‖

2
2 is distributed as a chi-square random

variable with n degrees of freedom. Again [121, Lemma 1] tells us

‖Ψx‖22 ≤ ‖Ax‖
2
2 ≤

m

12000r2
,

with probability exceeding 1 − e−γm/r
2 , provided m ≥ cnr2 for a sufficiently large

constant c. Hence, ∥∥∥(Ỹ ′)
k

∥∥∥2
2
≤ 1

m2

∥∥∥∥Ψ ck
‖ck‖2

∥∥∥∥2
2

‖ck‖22 ≤
1

2700r3
,

which leads to ∥∥∥Ỹ ′∥∥∥2
F

=
r∑

k=1

∥∥∥(Ỹ ′)
k

∥∥∥2
2
≤ 1

2700r2
. (C.10)

Then, combining (C.9) and (C.10), we know that∥∥∥Y (0)
T − Y

(1)
T

∥∥∥
F

=

√∥∥∥U>Ỹ ∥∥∥2
F

+ 2
∥∥∥Ỹ ′∥∥∥2

F
≤ 1

30r
. (C.11)

Next, let’s check ‖Y (2)
T ‖2F, which can be written as

‖Y (2)
T ‖

2
F = ‖U>Ȳ ‖2F + 2‖Ȳ ′‖2F,
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where Ȳ = Y (2)U and Ȳ ′ = (I − UU>)Ȳ . For the first term ‖U>Ȳ ‖2F, the kth

column of U>Ȳ can be formulated explicitly as

(
U>Ȳ

)
k

=
1

m

∑
j∈S

9χj
(
a>j uk

) (
U>aj

)
:=

1

m
Φ̄dk,

where Φ̄ ∈ Rr×|S| is constructed by U>aj’s, and dk ∈ R|S| is composed of dk,j’s, each

one expressed as

dk,j = 9χj
(
a>j uk

)
,

with E[d2k,j] = 81. Note that d2k,j’s are i.i.d. sub-exponential random variables with∥∥d2k,j∥∥ψ1
≤ K, for some constant K, then based on [120, Corollary 5.17],

P

{∣∣∣∣∣∑
j∈S

(
d2k,j − Ed2k,j

)∣∣∣∣∣ ≥ ε |S|

}
≤ 2exp

(
−c1

ε2 |S|
K2

)
,

which indicates that if |S| = cm/r, for some constant c,

‖dk‖22 ≤ (81 + c1) |S| ≤ 82 |S| := δ0 |S|

holds with probability at least 1 − e−γm/r. And for a fixed vector x ∈ R|S| obeying

‖x‖2 = 1,
∥∥Φ̄x∥∥2

2
is also a chi-square random variable with r degrees of freedom, so

∥∥Φ̄x∥∥2
2
≤ m

2700δ0cr2
,

with probability at least 1 − e−γm/r2 , provided m ≥ c1nr
2 for some sufficiently large

constant c1. Thus we have

∥∥(U>Ȳ )
k

∥∥2
2

=
1

m2

∥∥∥∥Φ̄ dk
‖dk‖2

∥∥∥∥2
2

‖dk‖22 ≤
1

2700r3
,

which gives

‖U>Ȳ ‖2F =
r∑

k=1

∥∥(U>Ȳ )
k

∥∥2
2
≤ 1

2700r2
, (C.12)
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with probability at least 1 − e−γm/r
2 , when m ≥ c1nr

2 and |S| = cm/r, for some

appropriate constants c and c1.

Now consider the second term ‖Ȳ ′‖2F in ‖Y (2)
T ‖2F, where the kth column of Ȳ ′ can

be expressed explicitly as

(
Ȳ
′
)
k

=
1

m

∑
j∈S

9χj(a
>
j uk)

(
I −UU>

)
aj :=

1

m

∑
j∈S

dk,ja
′
j :=

1

m
Ψ̄dk,

where Ψ̄ ∈ Rn×|S| is constructed by a′j’s. Also, we can decompose Ψ̄ as Ψ̄ =(
I −UU>

)
Ā, where Ā ∈ Rn×|S| is constructed by aj’s, j ∈ S. For a fixed vec-

tor x ∈ R|S| obeying ‖x‖2 = 1, we have
∥∥Ψ̄x∥∥2

2
=
∥∥(I −UU>) Āx∥∥2

2
≤
∥∥Āx∥∥2

2
,

where
∥∥Āx∥∥2

2
is a chi-square random variable with n degrees of freedom as well. Since

we already know that provided m ≥ c1nr
2 for a sufficiently large constant c1,

∥∥Ψ̄x∥∥2
2
≤
∥∥Āx∥∥2

2
≤ m

2700δ0cr2
,

with probability exceeding 1− e−γm/r2 , we can have∥∥∥(Ȳ ′)
k

∥∥∥2
2
≤ 1

m2

∥∥∥∥Ψ̄ dk
‖dk‖2

∥∥∥∥2
2

‖dk‖22 ≤
1

2700r3
,

and a further result ∥∥∥Ȳ ′∥∥∥2
F

=
r∑

k=1

∥∥∥(Ȳ ′)
k

∥∥∥2
2
≤ 1

2700r2
, (C.13)

which, combining with (C.12), leads to∥∥∥Y (2)
T

∥∥∥
F

=

√∥∥U>Ȳ ∥∥2
F

+ 2
∥∥∥Ȳ ′∥∥∥2

F
≤ 1

30r
. (C.14)

Finally, we can obtain that if m ≥ cnr2 and |S| = c1m/r, for some constants c

and c1, with probability at least 1− e−γm/r2 ,

‖Y T‖F =
∥∥∥Y (0)

T − Y
(1)
T + Y

(2)
T

∥∥∥
F
≤ 1

15r
. (C.15)
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Appendix D: Technical Proofs in Chapter 4

D.1 Proof of Proposition 1

Due to scaling invariance, without loss of generality, it is sufficient to consider all

rank-2r matrices with unit Frobenius norm. First, we fix the rank-2r matrix G0 ∈

Rn1×n2 , and then generalize to all rank-2r matrices by a covering argument. Note

that |Ai (G0)|, i = 1, · · · ,m, are i.i.d. copies of |〈A,G0〉|, where A is generated with

i.i.d. standard Gaussian entries. Since ‖G0‖F = 1, 〈A,G0〉 follows the distribution

N (0, 1), and |〈A,G0〉| follows a folded normal distribution, whose probability density

function and cumulative distribution function are denoted by f1 and F1, respectively.

It is known from Lemma 20 that

0.6745− ε ≤ med (|A(G0)|) ≤ 0.6745 + ε, (D.1)

with probability at least 1−2 exp (−cmε2) for a small ε, where c is a constant around

2× 0.63562. Similar arguments extend to other quantiles. From Lemma 20, we have

0.6588− ε ≤θ0.49 (|A (G0)|) ≤ 0.6588 + ε; (D.2)

0.6903− ε ≤θ0.51 (|A (G0)|) ≤ 0.6903 + ε, (D.3)

with probability at least 1−2 exp (−cmε2) for a small ε, where c is a constant around

2× 0.62872.
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Next, we extend the results to all rank-2r matricesG with ‖G‖F = 1 via a covering

argument. We argue for the median and similar arguments extend to other quantiles

straightforwardly. Let Nτ be a τ -net covering all rank-2r matrices with respect to

the Frobenius norm. Let n = (n1 +n2)/2, then from Lemma 13, |Nτ | ≤ (9/τ)2r(2n+1).

Taking the union bound, we obtain

0.6745− ε ≤ med (|A(G0)|) ≤ 0.6745 + ε, ∀G0 ∈ Nτ , (D.4)

with probability at least 1−(9/τ)2r(2n+1) exp (−cmε2). Set τ = ε/(2
√
n(n+m)). Un-

der this event and (A.3), which holds with probability at least 1−m exp (−n (n+m))

from Lemma 25, for any rank-2r matrix G with ‖G‖F = 1, there exists G0 ∈ Nτ such

that ‖G−G0‖F ≤ τ , and

|med (|A (G0)|)−med (|A (G)|)| ≤ max
i=1,··· ,m

∣∣ |〈Ai,G0〉| − |〈Ai,G〉|
∣∣ (D.5)

≤ max
i=1,··· ,m

|〈Ai,G0〉 − 〈Ai,G〉| (D.6)

≤ max
i=1,··· ,m

‖G0 −G‖F ‖Ai‖F

≤ τ max
i=1,··· ,m

‖Ai‖F ≤ ε, (D.7)

where (D.5) follows from Lemma 21, and (D.6) follows from the fact ||a| − |b|| ≤

|a− b|.

The rest of the proof is then to argue that (D.7) holds with probability at least 1−

c1 exp (−c2mε2) for some constants c1 and c2, as long asm ≥ c0 (ε−2 log ε−1)nr log (nr)

for some sufficiently large constant c0. Note that

(9/τ)2r(2n+1) = exp

(
2r (2n+ 1)

(
log 18 + log(ε−1) +

1

2
log n+

1

2
log (n+m)

))
≤ exp

(
5nr logm+ c3nr log ε−1

)
.
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It is straightforward to verify c3nr log ε−1 ≤ c4mε
2, where 2c4 < c− c2, based on the

specific setting of m, as long as c0 is large enough. Then, it suffices to show

5nr logm < c5mε
2, (D.8)

where c5 < c − c4 − c2, when m ≥ c0 (ε−2 log ε−1)nr log (nr) for some large enough

constant c0.

First, for any fixed n, if (D.8) holds for some m and m ≥ (5/c5) ε
−2nr, (D.8) holds

for a larger m as well, since

5nr log (m+ 1) = 5nr logm+
5nr

m
log

(
1 +

1

m

)m
≤ 5nr logm+ 5nr/m ≤ c5 (m+ 1) ε2.

Next, we show that for any fixed n, we can find a constant c0 such that (D.8)

holds as long as m = c0 (ε−2 log ε−1)nr log (nr). Pick a small enough ε < 1/e that is

fixed throughout the proof. Given c5, we can always find a large enough c0 such

that 1
3

log c0 < c5c0/15 − 5/3. Then as long as nr ≥ 3, we can get 1
3

log c0 <

(c5c0/15− 5/3) log ε−1 log nr, which further yields 1
3

log c0+log ε−1+2
3

log nr < (c5c0/15)

· log ε−1 log nr. As a result, we have

(c5c0/5) log ε−1 log nr > log c0 + 3 log ε−1 + 2 log nr

= log
(
c0ε
−3 (nr)2

)
> log

(
c0
(
ε−2 log ε−1

)
nr log (nr)

)
,

which implies (D.8).

D.2 Proof of Proposition 2

We prove the following lemma which directly implies Proposition 2.
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Lemma 28. Under the conditions of Proposition 2, we have

1

m

m∑
i=1

〈Ai,G〉·〈Ai,T 〉·I{|〈Ai,G〉|≤0.65αh‖G‖F}I{〈Ai,G〉·〈Ai,T 〉≥0} ≥ γ1〈G,T 〉−0.0011αh‖G‖F‖T ‖F

holds with high probability for all rank-2r matrices G,T ∈ Rn1×n2.

Specializing Lemma 28 to G = UV > −XY > and T = H1V
> + UH>2 yields

Proposition 2. The rest of the proof is dedicated to proving Lemma 28. Without loss

of generality, we can assume ‖G‖F = ‖T ‖F = 1. Define an auxiliary function as

χ (t) =


1, |t| < 0.65αh − δ;
1
δ

(0.65αh − |t|) , 0.65αh − δ ≤ |t| ≤ 0.65αh;

0, |t| > 0.65αh,

where δ is a sufficiently small constant. The function χ (t) is a Lipschitz function

with the Lipschitz constant 1/δ. We have

〈Ai,G〉 · 〈Ai,T 〉 · I{|〈Ai,G〉|≤0.65αh−δ} · I{〈Ai,G〉·〈Ai,T 〉≥0}

≤ 〈Ai,G〉 · 〈Ai,T 〉 · χ(〈Ai,G〉) · I{〈Ai,G〉·〈Ai,T 〉≥0} (D.9)

≤ 〈Ai,G〉 · 〈Ai,T 〉 · I{|〈Ai,G〉|≤0.65αh} · I{〈Ai,G〉·〈Ai,T 〉≥0}.

Let ζi = 〈Ai,G〉·〈Ai,T 〉·χ(〈Ai,G〉)·I{〈Ai,G〉·〈Ai,T 〉≥0}, i = 1, · · · ,m, of which each

can be considered as an i.i.d. copy of ζ, defined as ζ = 〈A,G〉 · 〈A,T 〉 · χ(〈A,G〉) ·

I{〈A,G〉·〈A,T 〉≥0}. From (D.9), we have

E [ζ] ≥ E
[
〈A,G〉 · 〈A,T 〉 · I{|〈A,G〉|≤0.65αh−δ} · I{〈A,G〉·〈A,T 〉≥0}

]
≥ E

[
〈A,G〉 · 〈A,T 〉 · I{|〈A,G〉|≤0.65αh−δ}

]
=
〈
E
[
〈A,G〉A · I{|〈A,G〉|≤0.65αh−δ}

]
,T
〉

= γ1 · 〈G,T 〉,

where γ1 = E
[
ξ2I{|ξ|≤0.65αh−δ}

]
with ξ ∼ N (0, 1). Moreover, for p ≥ 0,

(E [|ζ|p])1/p ≤
(
E
[∣∣〈A,G〉 · 〈A,T 〉 · I{|〈A,G〉|≤0.65αh} · I{〈A,G〉·〈A,T 〉≥0}

∣∣p])1/p
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≤
(
E
[∣∣〈A,G〉 · 〈A,T 〉 · I{|〈A,G〉|≤0.65αh}

∣∣p])1/p
≤ 0.65αh (E [|〈A,T 〉|p])1/p ≤ 0.65cαh

√
p,

which indicates that ζ is a sub-Gaussian random variable with ‖ζ‖ψ2
≤ 0.65cαh. Then

applying the Hoeffding-type inequality [120, Proposition 5.10], we have for any t ≥ 0,

P

{∣∣∣∣∣ 1

m

m∑
i=1

ζi − E [ζ]

∣∣∣∣∣ ≥ t

}
≤ exp

(
−cmt2/α2

h

)
,

for some c > 0. Let t = εαh, where ε is small enough. Then

1

m

m∑
i=1

ζi ≥ E [ζ]− εαh ≥ γ1〈G,T 〉 − εαh (D.10)

holds with probability at least 1− exp (−cmε2).

Next, a covering argument is needed to extend (D.10) to all rank-2r matrices

(G,T ) with unit Frobenius norm. Let Nτ be a τ -net covering all rank-2r matrices

with respect to the Frobenius norm, and define

Mτ = {(G0,T 0) : (G0,T 0) ∈ Nτ ×Nτ}

such that for any pair of rank-2r matrices (G,T ) with ‖G‖F = ‖T ‖F = 1, there

exists (G0,T 0) ∈ Mτ with ‖G0‖F = ‖T 0‖F = 1 satisfying ‖G0 −G‖F ≤ τ and

‖T 0 − T ‖F ≤ τ . Since both rank (G) ≤ 2r and rank (T ) ≤ 2r, then Lemma 13

guarantees |Mτ | ≤ (9/τ)2r(2n+1) · (9/τ)2r(2n+1) ≤ (9/τ)4r(2n+1). Taking the union

bound gives for all (G0,T 0) ∈Mτ ,

1

m

m∑
i=1

〈Ai,G0〉 · 〈Ai,T 0〉 · χ (〈Ai,G0〉) · I{〈Ai,G0〉·〈Ai,T 0〉≥0} ≥ γ1 · 〈G0,T 0〉 − εαh

with probability at least 1− (9/τ)4r(2n+1) exp (−cε2m). Furthermore,

∣∣∣ 1

m

m∑
i=1

〈Ai,G〉 · 〈Ai,T 〉 · χ (〈Ai,G〉) · I{〈Ai,G〉·〈Ai,T 〉≥0}
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− 1

m

m∑
i=1

〈Ai,G0〉 · 〈Ai,T 0〉 · χ (〈Ai,G0〉) · I{〈Ai,G0〉·〈Ai,T 0〉≥0}

∣∣∣
≤ 1

m

m∑
i=1

∣∣∣〈Ai,G〉 · 〈Ai,T 〉 · χ (〈Ai,G〉) · I{〈Ai,G〉·〈Ai,T 〉≥0}

− 〈Ai,G0〉 · 〈Ai,T 0〉 · χ (〈Ai,G0〉) · I{〈Ai,G0〉·〈Ai,T 0〉≥0}

∣∣∣
≤ 1

m

m∑
i=1

|〈Ai,G〉 · 〈Ai,T 〉 · χ (〈Ai,G〉)− 〈Ai,G0〉 · 〈Ai,T 0〉 · χ (〈Ai,G0〉)|

≤ 1

m

m∑
i=1

|〈Ai,G〉 · χ (〈Ai,G〉)− 〈Ai,G0〉 · χ (〈Ai,G0〉)| · |〈Ai,T 〉|

+
1

m

m∑
i=1

|〈Ai,T − T 0〉| · |〈Ai,G0〉 · χ (〈Ai,G0〉)|

≤ 0.65αh
δ

(
1

m

m∑
i=1

|〈Ai,G−G0〉| · |〈Ai,T 〉|

+
1

m

m∑
i=1

|〈Ai,T − T 0〉| · |〈Ai,G0〉|

)
(D.11)

≤ 0.65αh
δ

(
1√
m
‖A(G−G0)‖2 ·

1√
m
‖A(T )‖2

+
1√
m
‖A(T − T 0)‖2 ·

1√
m
‖A(G0)‖2

)
(D.12)

≤ c2αh
δ

(‖G−G0‖F ‖T ‖F + ‖T − T 0‖F ‖G0‖F) (D.13)

≤ c2αhτ

δ
,

where (D.11) follows from the Lipschitz property of tχ(t), (D.12) follows from the

Cauchy-Schwarz inequality, and (D.13) follows from Lemma 26.

Let τ = c1δε, then provided m ≥ c2ε
−2 (log 1

δε

)
nr,

1

m

m∑
i=1

〈Ai,G〉 · 〈Ai,T 〉 · χ (〈Ai,G〉) · I{〈Ai,G〉·〈Ai,T 〉≥0} ≥ γ1 · 〈G,T 〉 − 1.1εαh

holds for all rank-2r matrices G and T with probability at least 1 − exp (−cε2m).

The proof is finished by setting δ arbitrarily small and ε = 0.001.
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D.3 Proof of Proposition 3

First, note that due to the definition of D in (4.30), −B2 can be written as

−B2 =
1

2m

∑
i∈D

∣∣〈Ai,UV
> −XY >〉

∣∣ · ∣∣〈Ai,H1V
> +UH>2 〉

∣∣
· I{|〈Ai,UV

>−XY >〉|≤0.70αh‖UV >−XY >‖
F
}

=
1

m

∑
i∈D

∣∣〈Ai,UV
> −XY >〉

∣∣ · ∣∣〈Bi,HW
>〉
∣∣ · I{|〈Ai,UV

>−XY >〉|≤0.70αh‖UV >−XY >‖
F
}

≤ 0.70αh
∥∥UV > −XY >∥∥

F
· 1

m

∑
i∈D

∣∣〈Bi,HW
>〉
∣∣ . (D.14)

Note that when i ∈ D, we have the following lemma, whose proof is given in Ap-

pendix D.7.

Lemma 29. If i ∈ D, one has
∣∣〈Bi,HW

>〉
∣∣ < 1

2

∣∣〈Bi,HH
>〉
∣∣.

Plugging Lemma 29 into (D.14), we obtain

−B2 ≤ 0.35αh
∥∥UV > −XY >∥∥

F
· 1

m

∑
i∈D

∣∣〈Bi,HH
>〉
∣∣

≤ 0.35αh
∥∥UV > −XY >∥∥

F

1

m

√
m

(∑
i∈D

∣∣〈Ai,H1H
>
2 〉
∣∣2)1/2

(D.15)

≤ 0.35αh
∥∥UV > −XY >∥∥

F

1√
m
‖A(H1H

>
2 )‖2

≤ 0.35 (1 + δ)αh
∥∥UV > −XY >∥∥

F

∥∥H1H
>
2

∥∥
F
, (D.16)

where (D.15) follows from the Cauchy-Schwarz inequality and the last inequality

follows from Lemma 26.

D.4 Proof of Proposition 4

First, note that by the definitions of Ei and Ẽi, we have

∣∣(Ai (UV >)− yi) IEi∣∣ ≤ αhmed
(∣∣y −A (UV >)∣∣) ;
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∣∣(Ai (UV >)−Ai (XY >)) IẼi∣∣ ≤ αhmed
(∣∣y −A (UV >)∣∣) .

Then we further obtain

|〈∇oftr (W ) ,H〉|

≤ 1

m

∑
i∈S

∣∣[(Bi (WW>)− yi) IEi − (Bi (WW>)− Bi (ZZ>)) IẼi] 〈Bi,HW
>〉
∣∣

=
1

m

∑
i∈S

∣∣[(Ai (UV >)− yi) IEi − (Ai (UV >)−Ai (XY >)) IẼi] 〈Bi,HW
>〉
∣∣

≤ 2αh
m

med
(∣∣y −A (UV >)∣∣)∑

i∈S

∣∣〈Bi,HW
>〉
∣∣

≤ 2αh
m

med
(∣∣y −A (UV >)∣∣)√|S|(∑

i∈S

∣∣〈Bi,HW
>〉
∣∣2)1/2

(D.17)

≤ αh

√
|S|
m

med
(∣∣y −A (UV >)∣∣)( 1

m

m∑
i=1

∣∣〈Ai,H1V
> +UH>2 〉

∣∣2)1/2

≤ 0.70αh
√
s
∥∥XY > −UV >∥∥

F
· (1 + δ)‖H1V

> +UH>2 ‖F (D.18)

≤ 0.71αh
√
s
∥∥XY > −UV >∥∥

F
‖H1V

> +UH>2 ‖F,

where (D.17) follows from the Cauchy-Schwarz inequality, (D.18) follows from (4.19)

and Lemma 26, and the last inequality follows by setting δ sufficiently small.

D.5 Proof of Proposition 5

Since ‖∇ftr (W )‖2F = max‖G‖F=1 |〈∇ftr (W ) ,G〉|2, it is sufficient to upper bound

|〈∇ftr (W ) ,G〉|2 for any arbitrary G =
[
G>1 G>2

]> ∈ R(n1+n2)×r with G1 ∈ Rn1×r

and G2 ∈ Rn2×r satisfying ‖G‖F = 1. We have

|〈∇ftr (W ) ,G〉|2 =

∣∣∣∣∣〈 1

m

m∑
i=1

(
Bi
(
WW>)− yi)BiW IEi ,G〉

∣∣∣∣∣
2

=

∣∣∣∣∣
〈

1

m

m∑
i=1

(
Ai
(
UV >

)
− yi

)
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=
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m
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(
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∣∣∣∣2
)
, (D.19)

where (D.19) follows from the Cauchy-Schwarz inequality. Due to (4.20), we have

1

m

m∑
i=1

(
〈Ai,UV

>〉 − yi
)2 · IEi

≤ 1

m

m∑
i=1

(
〈Ai,UV

>〉 − yi
)2 · I{|〈Ai,UV

>〉−yi|≤0.70αh‖UV >−XY >‖
F
}

≤ 0.702α2
h

∥∥UV > −XY >∥∥2
F
. (D.20)

From Lemma 26, we have

1

m

m∑
i=1

∣∣∣∣〈Ai,
1

2

(
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> +UG>2
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〉
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4
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> +UG>2

∥∥2
F

≤ 1

2
(1 + δ)2

(∥∥G1V
>∥∥2

F
+
∥∥UG>2 ∥∥2F)

≤ 1

2
(1 + δ)2 max

{
‖U‖2 , ‖V ‖2

}
≤ 1

2
(1 + δ)2 ‖W ‖2 . (D.21)

Plugging (D.20) and (D.21) into (D.19), we have

|〈∇ftr (W ) ,G〉|2 ≤ 1

2
· 0.702 (1 + δ)2 α2

h

∥∥UV > −XY >∥∥2
F
‖W ‖2 ,

and the proof is completed by setting δ small enough.

D.6 Proof of Proposition 6

First, consider the bound of ‖K1 − E [K1]‖. Define

Si = Ai (M)AiI{|Ai(M)|≤αyCM} − γ2M , i ∈ Sc1,
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which satisfies E [Si] = 0, and K1 − E [K1] = 1

|Sc1|
∑

i∈Sc1
Si.

Based on [120, Proposition 5.34], we know

P {|‖Ai‖ − E [‖Ai‖]| > t} ≤ 2e−t
2/2,

which shows ‖Ai‖−E[‖Ai‖] is a sub-Gaussian random variable satisfying ‖‖Ai‖ − E[‖Ai‖]‖ψ2

≤ c. Then, we have ‖Ai‖ψ2
≤ E[‖Ai‖]+c ≤ 2

√
n+c, where the last inequality follows

from the fact E[‖Ai‖] ≤ 2
√
n. As a result, we can calculate
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where c1 is some constant. Moreover, we have
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where c2 is some constant. By Lemma 24, we have∥∥∥∥∥∥ 1

|Sc1|
∑
i∈Sc1

Si

∥∥∥∥∥∥ ≤ C
√
nαy ‖M‖F max

{√
t+ log (2n)

|Sc1|
,
t+ log (2n)

|Sc1|

}
,

with probability at least 1− e−t, where C is some constant. Set t = c log n. As long

as |Sc1| = (1− s1)m/2 ≥ c′ log n, we have

‖K1 − E [K1]‖ ≤ Cαy‖M‖F

√
n log n

m
(D.22)

holds with probability at least 1− n−c for some c > 1.

Next, we employ the same technique to bound ‖K2 − E [K2]‖. Define T i =

yiAiI{|yi|≤αyCM}, which satisfies E[T i] = 0 andK2−E [K2] = 1
|S1|
∑

i∈S1 T i. We have

‖T i‖ψ2
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where c1 is some constant, and
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where c2 is some constant. Again, by Lemma 24 we have∥∥∥∥∥ 1

|S1|
∑
i∈S1

T i

∥∥∥∥∥ ≤ C
√
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t+ log (2n)
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t+ log (2n)
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with probability at least 1 − e−t. Then by setting t = c log n, and recalling |S1| =

s1m/2, we have with probability at least 1− n−c,
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. (D.23)

Combing (D.22) and (D.23), we have with probability at least 1− n−c,

‖K − (1− s1) γ2M‖
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≤ (1− s1) ‖K1 − γ2M‖+ s1 ‖K2‖

≤ Cαy‖M‖F

√
n log n

m
+ C
√
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s1 log n

m
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log n

m

}
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provided that m > c2 log n for large enough c2.

D.7 Proof of Lemma 29

Since H = W −ZQ, we can write

〈Bi,WW> −ZZ>〉 = 〈Bi,WW> − (ZQ)(ZQ)>〉

= 〈Bi,WW> − (W −H)(W −H)>〉

= 2〈Bi,HW
>〉 − 〈Bi,HH

>〉.

Therefore, i ∈ D if and only if

(
2〈Bi,HW

>〉 − 〈Bi,HH
>〉
)
〈Bi,HW

>〉 < 0. (D.24)

If 〈Bi,HW
>〉 > 0, we know 〈Bi,HW

>〉 < 1
2
〈Bi,HH

>〉; if 〈Bi,HW
>〉 < 0, we

know 〈Bi,HW
>〉 > 1

2
〈Bi,HH

>〉. Therefore, we have |〈Bi,HW
>〉| < 1

2
|〈Bi,HH

>〉|.
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