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Abstract

Reinforcement learning (RL) aims to solve various tasks by modeling them as learning and se-
quential decision-making problems within an unknown environment. The empirical success of
contemporary RL applications largely owes to policy optimization methods, which seek to optimize
a parameterized policy to maximize the value function induced by executing the policy. Despite
their widespread practical adoption, the theoretical foundations of these approaches remain limited,
particularly due to the intrinsic non-concavity of the objective and non-stationarity issues in multi-
agent settings. Although substantial progress has been made in understanding the computational
feasibility of policy optimization methods, existing results still fall short of explicitly characterizing
the iteration complexity across a broad range of RL scenarios.

The first part of this thesis contributes to the algorithmic foundations of policy optimization by
investigating non-asymptotic convergence guarantees and improving dependencies on key problem
parameters. For tabular single-agent RL, this thesis examines the natural policy gradient (NPG)
method with entropy regularization, demonstrating that the method provably converges to the
optimal regularized policy at a dimension-free linear rate. Beyond entropy regularization, this
thesis develops a novel policy optimization method with the same linear convergence rate that
accommodates various choices of regularizers, even those lacking strong convexity and smoothness.

The second part of this thesis extends the study to various multi-agent systems, aiming to
provide better iteration complexity bounds for finding approximate Nash equilibrium (NE). For
two-player zero-sum matrix games, this thesis introduces novel extra-gradient policy optimization
methods that provably converge to the regularized NE at a dimension-free linear rate, which are
further generalized to two-player zero-sum Markov games and multi-player zero-sum polymatrix
games. Notably, the analysis offers last-iterate convergence guarantees without the need of in-
troducing additional uniqueness assumption and unknown constants, which are typical in existing
results. For multi-player potential games, this thesis establishes new iteration complexity bounds
for independent entropy-regularized NPG in finding a regularized NE, scaling sub-linearly with the
number of agents and independently of the action space size.

The final part of this thesis focuses on the statistical aspects of policy optimization, proposing
a unified algorithmic framework that imbues policy optimization methods with principled opti-
mism or pessimism under uncertainty. Specifically, this thesis explores reinforcement learning from
human feedback (RLHF) to align large language models (LLMs) with human preferences, devel-
oping novel, practically implementable policy optimization methods that regularize the maximum-
likelihood estimate of the reward function with the corresponding value function. This approach
circumvents the intractable construction of confidence intervals typical in standard implementations
of optimism/pessimism principles, and shares a simpler RLHF pipeline akin to direct preference
optimization by directly optimizing the policy.
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Chapter 1

Introduction

Reinforment learning (RL) is a machine learning paradigm focusing on sequential decision making
problems where an agent learns to achieve a goal by interacting with its environment. At its
essence, an RL agent learns to take the best action under any state input, so as to maximizes a
numerical reward feedback signal. In contrast to the supervised learning paradigm, the optimal
policy (state-action mapping) is typically not known to the system and hence needs to be identified
by exploring the unknown environment.

RL has achieved tremendous success in a wide spectrum of applications, including strategic
games [Mnih et al., 2015, Silver et al., 2016], robotic control [Lillicrap et al., 2016], AI alignment
[Ouyang et al., 2022], to name a few. In contemporary RL applications, it is increasingly common to
encounter environments with prohibitively large state and action spaces [Silver et al., 2016], which
heightens the challenge of achieving efficient RL. This is particularly true in situations with limited
data access due to high costs, time constraints, or high stakes, such as clinical trials [Liu et al.,
2019b] and autonomous systems [Kiumarsi et al., 2017]. Furthermore, the intrinsic nonconcavity
issues of RL formulations pose significant barriers to understanding the computational feasibility of
current RL algorithms. These challenges naturally lead to two fundamental questions as researchers
set out to establish the algorithmic foundations of RL:

• Q1: With an (estimated) environment model, how can we design practical algorithms to
learn the optimal policy efficiently in terms of iteration complexity?

• Q2: How can we incorporate efficient exploring mechanism into the learning process, to
improve the sample complexity of the learning system?

Regarding Q1, most of the recent empirical successes of RL can be attributed to the use of policy
gradient (PG) methods and their variants [Williams, 1992, Sutton et al., 2000, Kakade, 2001, Peters
and Schaal, 2008, Konda and Tsitsiklis, 2000]. In its basic form, the optimal policy of interest, or a
suitably parameterized version, is learned by attempting to maximize the value function in a Markov
decision processes (MDP), or achieving equilibrium in the presence of multiple agents. For the most
part, the maximization step is carried out by means of first-order optimization algorithms amenable
to large-scale applications, whose foundations were set forth in the early works of Williams [1992],
Sutton et al. [2000]. A partial list of widely adopted variants in modern practice includes policy
gradient (PG) methods [Sutton et al., 2000], natural policy gradient (NPG) methods [Kakade, 2001],
TRPO [Schulman et al., 2015], PPO [Schulman et al., 2017b], soft actor-critic methods [Haarnoja
et al., 2018], to name just a few. In comparison with model-based and value-based approaches, this
family of policy-based algorithms offers a remarkably flexible framework that accommodates both
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continuous and discrete action spaces, and lends itself well to the incorporation of powerful function
approximation schemes like neural networks. In stark contrast to its practical success, however,
theoretical understanding of policy optimization remains severely limited even for the tabular case,
largely owing to the ubiquitous nonconvexity issue underlying the objective function, as well as
the non-stationary nature of the multi-agent systems. Consequently, understanding and improving
the computational efficiency of RL algorithms — sometimes coupled with additional resource and
system-level constraints — inevitably lie at the core of cutting-edge RL research and are the key
enabler for future advances.

The contemporary theory of reinforcement learning offers a conceptual roadmap towards ad-
dressing Q2 by providing algorithm design principles that achieve (near) optimal sample complexity
[Auer et al., 2008, Azar et al., 2017, Jin et al., 2018, Bai et al., 2019, Jiang et al., 2017]. These
principles guide exploration towards less visited areas by constructing confidence sets of the un-
derlying model and iteratively executing the policy derived from the most promising one. Despite
strong theoretical guarantees, applying the optimism principle beyond the tabular case can be com-
putationally intractable and thus not readily applicable to many real-world RL applications. On
the other hand, many empirical heuristics promoting exploration lack theoretical validation. This
has led to growing interest in developing principled exploratory algorithms that allow for efficient
implementation and compatibility with deep learning architectures.

Throughout this thesis, we shall focus on:

• Designing efficient policy optimization methods with provable non-asymptotic iteration com-
plexity for single-agent RL;

• Developing novel independent and symmetrical learning algorithms with improved iteration
complexity for various multi-agent systems;

• Building efficient learning algorithms with provable non-asymptotic sample complexity for AI
alignment task.

The rest of this chapter is organized as follows. Section 1.1 to Section 1.3 provide an overview
of the main results of this thesis. Section 1.4 summarizes the related works. Finally, Section 1.5
provides the organization of the rest of the thesis.

1.1 Efficient policy optimization for single-agent RL

The goal of policy optimization in the single-agent RL setup is to maximize the value function that
measures long-term cumulative reward. Despite the enormous empirical success, the theoretical
underpinnings of policy gradient type methods have been limited even until recently, primarily due
to the intrinsic non-concavity underlying the value maximization problem of interest [Bhandari
and Russo, 2024, Agarwal et al., 2020b]. To further exacerbate the situation, an abundance of
problem instances contain suboptimal policies residing in regions with flat curvatures (namely,
vanishingly small gradients and high-order derivatives) [Agarwal et al., 2020b]. Such plateaus in the
optimization landscape could, in principle, be difficult to escape once entered, thereby necessitating
a higher degree of exploration in order to accelerate policy optimization.

1.1.1 Entropy-regularized RL

In practice, a strategy that has been frequently adopted to encourage exploration and improve
convergence is to enforce entropy regularization [Williams and Peng, 1991, Peters et al., 2010,
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Mnih et al., 2016, Duan et al., 2016, Haarnoja et al., 2017, Hazan et al., 2019, Vieillard et al.,
2020, Xiao et al., 2019]. By inserting an additional penalty term to the objective function, this
strategy penalizes policies that are not stochastic/exploratory enough, in the hope of preventing a
policy optimization algorithm from being trapped in an undesired local region. Through empirical
visualization, Ahmed et al. [2019] suggested that entropy regularization induces a smoother land-
scape that allows for the use of larger learning rates, and hence, faster convergence. However, the
theoretical support for regularization-based policy optimization remains highly inadequate.

Motivated by this, a recent line of works set out to elucidate, in a theoretically sound manner,
the efficiency of entropy-regularized policy gradient methods. Assuming access to exact policy
gradients, Agarwal et al. [2020b] and Mei et al. [2020b] developed convergence guarantees for regu-
larized PG methods (with relative entropy regularization considered in Agarwal et al. [2020b] and
entropy regularization in Mei et al. [2020b]). Encouragingly, both papers suggested the positive role
of regularization in guaranteeing faster convergence for the tabular setting. However, these works
fell short of explaining the role of entropy regularization for other policy optimization algorithms
like NPG methods, which we seek to understand in this thesis.

As an important and widely used extension of PG methods, natural policy gradient (NPG)
methods propose to employ natural policy gradients [Amari, 1998] as search directions, in order to
achieve faster convergence than the update rules based on policy gradients [Kakade, 2001, Peters
and Schaal, 2008, Bhatnagar et al., 2009, Even-Dar et al., 2009]. Informally speaking, NPG methods
precondition the gradient directions by Fisher information matrices (which are the Hessians of a
certain divergence metric), and fall under the category of quasi second-order policy optimization
methods. In fact, a variety of mainstream RL algorithms, such as trust region policy optimization
(TRPO) [Schulman et al., 2015] and proximal policy optimization (PPO) [Schulman et al., 2017b],
can be viewed as generalizations of NPG methods [Shani et al., 2020]. In this thesis, we pursue
in-depth theoretical understanding about this popular class of methods — in conjunction with
entropy regularization to be introduced momentarily.

Main contributions

Inspired by recent theoretical progress towards understanding PG methods [Agarwal et al., 2020b,
Bhandari and Russo, 2024, Mei et al., 2020b], we aim to develop non-asymptotic convergence
guarantees for entropy-regularized NPG methods in conjunction with softmax parameterization.
We focus attention on studying tabular discounted Markov decision processes (MDPs), which is
an important first step and a stepping stone towards demystifying the effectiveness of entropy-
regularized policy optimization in more complex settings.

Settings. Consider a γ-discounted infinite-horizon MDP with state space S and action space A.
Assuming availability of exact policy evaluation, the update rule of entropy-regularized NPG meth-
ods with softmax parameterization admits a simple update rule in the policy space (see Section 2.1
for precise descriptions)

π(t+1)(a|s) ∝
(
π(t)(a|s)

)1− ητ
1−γ exp

(ηQπ(t)

τ (s, a)

1− γ
)

(1.1)

for any (s, a) ∈ S × A, where τ > 0 is the regularization parameter, 0 < η ≤ 1−γ
τ is the learning

rate (or stepsize), π(t) indicates the t-th policy iterate, and Qπ
τ is the soft Q-function under policy π

(to be defined in (2.10a)). The update rule (1.1) is closely connected to several popular algorithms
in practice. For instance, the trust region policy optimization (TRPO) algorithm [Schulman et al.,
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2015], when instantiated in the tabular setting, can be viewed as implementing (1.1) with line
search. In addition, by setting the learning rate as η = 1−γ

τ , the update rule (1.1) coincides with
soft policy iteration (SPI) studied in Haarnoja et al. [2017].

The results of this thesis deliver fully non-asymptotic convergence rates of entropy-regularized
NPG methods without any hidden constants, which are previewed as follows (in an orderwise
manner). The definition of ε-optimality can be found in Table 1.1.

• Linear convergence of exact entropy-regularized NPG methods. We establish linear
convergence of entropy-regularized NPGmethods for finding the optimal policy of the entropy-
regularized MDP, assuming access to exact policy evaluation. To yield an ε-optimal policy
for the regularized MDP (cf. Table 1.1), the algorithm (1.1) with a general learning rate
0 < η ≤ 1−γ

τ needs no more than an order of

1

ητ
log

(
1

ε

)

iterations, where we hide the dependencies that are logarithmic on salient problem parameters
(see Theorem 1). Some highlights of our convergence results are (i) their near dimension-free
feature and (ii) their applicability to a wide range of learning rates (including small learning
rates).

• Linear convergence of approximate entropy-regularized NPG methods. We demon-
strate the stability of the regularized NPG method with a general learning rate 0 < η ≤ 1−γ

τ
even when the soft Q-functions of interest are only available approximately. This paves the
way for future investigations that involve finite-sample analysis. Informally speaking, the al-
gorithm exhibits the same convergence behavior as in the exact gradient case before an error
floor is hit, where the error floor scales linearly in the entrywise error of the soft Q-function
estimates (see Theorem 2).

Comparisons with prior art. Agarwal et al. [2020b] proved that unregularized NPG methods
with softmax parameterization attain an ε-accuracy within O(1/ε) iterations. In contrast, our
results assert that O(log(1/ε)) iterations suffice with the assistance of entropy regularization, which
hints at the potential benefit of entropy regularization in accelerating the convergence of NPG
methods. Shortly after the initial posting of our paper, Bhandari and Russo [2021] posted a note
that proves linear convergence of unregularized NPG methods with exact line search, by exploiting a
clever connection to policy iteration. Their convergence rate is governed by a quantity mins∈S ρ(s),
resulting in an iteration complexity at least |S| times larger than ours. In comparison, our results
cover a broad range of fixed learning rates (including small stepsizes that are of particular interest
in practice), and accommodate the scenario with inexact gradient evaluation. See Table 1.1 for a
quantitative comparison. Moreover, we note that the entropy-regularized NPG method with general
learning rates is closely related to TRPO in the tabular setting (see Shani et al. [2020]). The recent
work Shani et al. [2020] demonstrated that TRPO converges with an iteration complexity O(1/ε) in
entropy-regularized MDPs. The analysis therein is inspired by the mirror descent theory in generic
optimization literature, which characterizes sublinear convergence under properly decaying stepsizes
and accommodates various choices of divergence metrics. In comparison, our analysis strengthens
the performance guarantees by carefully exploiting properties specific to the current version of the
NPG method. In particular, we identify the delicate interplay between the crucial operational

quantities Q⋆
τ −Q(t)

τ and Q⋆
τ − τ log ξ(t) (to be defined later), and invoke the linear system theory to
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Paper Iteration complexity Regularization Learning rates

Agarwal et al. [2020b] 2
(1−γ)2ε

+ 2
ηε unregularized constant: (0,∞)

Bhandari and Russo [2021] 1
(1−γ)mins∈S ρ(s) log

(
1
ε

)
unregularized exact line search

This Thesis 1
1−γ log

(
1
ε

)
regularized constant: 1−γ

τ

This Thesis 1
ητ log

(
1
ε

)
regularized constant:

(
0, 1−γ

τ

)

Table 1.1: The iteration complexities of NPG methods to reach ε-accuracy in terms of optimization error,
where the unregularized (resp. regularized) version is given by (2.12) (cf. (2.14)) with η the learning rate.
We assume exact gradient evaluation and softmax parameterization, and hide the dependencies that are
logarithmic on problem parameters. Here, ε-accuracy or ε-optimality for the unregularized (resp. regularized)

case mean V ⋆(s) − V π(t)

(s) ≤ ε (resp. V ⋆
τ (s) − V π(t)

τ (s) ≤ ε) holds simultaneously for all s ∈ S; ρ denotes
the initial state distribution, which clearly obeys 1

mins∈S ρ(s) ≥ |S|.

establish appealing contraction, which allow for the use of more aggressive constant stepsizes and
hence improved convergence.

It is also helpful to compare our results with the state-of-the-art theory for PG methods with
softmax parameterization [Agarwal et al., 2020b, Mei et al., 2020b]. Specifically, Agarwal et al.
[2020b] established the asymptotic convergence of unregularized PG methods with softmax param-
eterization, while an iteration complexity of O(1/ε) was recently pinned down by Mei et al. [2020b].
In the presence of entropy regularization, Agarwal et al. [2020b] showed that PG with relative en-
tropy regularization and softmax parameterization enjoys an iteration complexity of O(1/ε2), while
Mei et al. [2020b] showed that the entropy-regularized softmax PG method converges linearly in
O(log(1/ε)) iterations. However, the dependencies of the iteration complexity in Mei et al. [2020b]
on other salient parameters like |S|, |A| and 1

1−γ are not fully specified. Very recently, Li et al. [2023]
delivered a negative message demonstrating that these dependencies can be highly pessimistic; in
fact, one can find an MDP instance which takes softmax PG methods (super)-exponential time (in
terms of |S| and 1

1−γ ) to converge. In contrast, the bounds derived in the current paper are fully
non-asymptotic, delineating clear dependencies on all salient problem parameters, which clearly
demonstrate the algorithmic advantages of NPG methods. Fig. 1.1 depicts the policy paths of PG
and NPG methods with entropy regularization for a simple bandit problem with three actions. It
is evident from the plots that the NPG method follows a more direct path to the global optimum
compared to the PG counterpart and hence converges faster. In addition, both algorithms converge
more rapidly as the regularization parameter τ increases.

1.1.2 General regularized RL

In practice, there are often competing objectives and additional constraints that the agent has to
deal with in conjunction with maximizing values, which motivate the studies of more general choices
of regularization techniques in RL. In what follows, we isolate a few representative examples.

• Promoting exploration. In the face of large problem dimensions and complex dynamics, it is
often desirable to maintain a suitable degree of randomness in the policy iterates, in order
to encourage exploration and discourage premature convergence to sub-optimal policies. A
popular strategy of this kind is to enforce entropy regularization [Williams and Peng, 1991],
which penalizes policies that are not sufficiently stochastic. Along similar lines, the Tsallis
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Figure 1.1: Comparisons of PG and NPG methods with entropy regularization for a bandit problem (γ = 0)
with 3 actions, whose corresponding rewards are 1.0, 0.9 and 0.1, respectively. The regularization parameter
is set as τ = 0.1 for the first row and τ = 1 for the second row. In (a) and (d), the policy paths of
(log π(a1), log π(a2)) following the PG method are plotted in orange, with the blue lines indicating the
gradient flow; in (b) and (e), the policy paths of (log π(a1), log π(a2)) following the NPG method are depicted
in red, with the blue lines indicating the natural gradient flow. The error contractions of both PG and NPG
methods with η = 0.1 are shown in (c) and (f).

entropy regularization [Chow et al., 2018b, Lee et al., 2018] further promotes sparsity of
the learned policy while encouraging exploration, ensuring that the resulting policy does not
assign non-negligible probabilities to too many sub-optimal actions.

• Safe RL. In a variety of application scenarios such as industrial robot arms and self-driving
vehicles, the agents are required to operate safely both to themselves and the surround-
ings [Amodei et al., 2016, Moldovan and Abbeel, 2012]; for example, certain actions might
be strictly forbidden in some states. One way to incorporate such prescribed operational
constraints is through adding a regularizer (e.g., a properly chosen log barrier or indicator
function tailored to the constraints) to explicitly account for the constraints.

• Cost-sensitive RL. In reality, different actions of an agent might incur drastically different
costs even for the same state. This motivates the design of new objective functions that
properly trade off the cumulative rewards against the accumulated cost, which often take the
form of certain regularized value functions.

Viewed in this light, it is of imminent value to develop a unified framework towards understanding
the capability and limitations of regularized policy optimization. While a recent line of works
[Agarwal et al., 2020b, Mei et al., 2020b, Cen et al., 2022b] have looked into specific types of
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regularization techniques such as entropy regularization, existing convergence theory remains highly
inadequate when it comes to a more general family of regularizers.

Main contributions

We focus on policy optimization for regularized RL in a γ-discounted infinite horizon Markov
decision process (MDP) with state space S, action space A, and reward function r(·, ·). The goal
is to find an optimal policy that maximizes a regularized value function. Informally speaking, the
regularized value function associated with a given policy π takes the following form:

V π
τ = V π − τE

[
hs
(
π(· | s)

)]
,

where V π denotes the original (unregularized) value function, τ > 0 is the regularization parameter,
hs(·) denotes a convex regularizer employed to regularize the policy in state s, and the expectation is
taken over certain marginal state distribution w.r.t. the MDP (to be made precise in Section 3.1.1).
It is noteworthy that this thesis does not require the regularizer hs to be either strongly convex or
smooth.

In order to maximize the regularized value function (3.3b), Lan [2023] exhibited a seminal
algorithm called Policy Mirror Descent (PMD), which can be viewed as an adaptation of the
mirror descent algorithm [Nemirovsky and Yudin, 1983, Beck and Teboulle, 2003] to the realm
of policy optimization. In particular, PMD subsumes the natural policy gradient (NPG) method
[Kakade, 2001] as a special case. To further generalize PMD [Lan, 2023], we propose an algorithm
called Generalized Policy Mirror Descent (GPMD). In each iteration, the policy is updated for
each state in parallel via a mirror-descent style update rule. In sharp contrast to Lan [2023] that
considered a generic Bregman divergence, our algorithm selects the Bregman divergence adaptively
in cognizant of the regularizer, which leads to complementary perspectives and insights. Several
important features and theoretical appeal of GPMD are summarized as follows.

• GPMD substantially broadens the range of (provably effective) algorithmic choices for reg-
ularized RL, and subsumes several well-known algorithms as special cases. For example, it
reduces to regularized policy iteration [Geist et al., 2019] when the learning rate tends to infin-
ity, and subsumes entropy-regularized NPG methods as special cases if we take the Bregman
divergence to be the Kullback-Leibler (KL) divergence [Cen et al., 2022b].

• Assuming exact policy evaluation and perfect policy update in each iteration, GPMD con-
verges linearly—in a dimension-free fashion— over the entire range of the learning rate η > 0.
More precisely, it converges to an ε-optimal regularized Q-function in no more than an order
of

1 + ητ

ητ(1− γ) log
1

ε

iterations (up to some logarithmic factor). Encouragingly, this appealing feature is valid for
a broad family of convex and possibly nonsmooth regularizers.

• The intriguing convergence guarantees are robust in the face of inexact policy evaluation and
imperfect policy updates, namely, the algorithm is guaranteed to converge linearly at the
same rate until an error floor is hit. See Section 3.2.2 for details.

• Numerical experiments demonstrate the practical applicability and appealing performance of
the proposed GPMD algorithm.
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Finally, we find it helpful to briefly compare the above findings with prior works. As soon
as the learning rate exceeds η ≥ 1/τ , the iteration complexity of our algorithm is at most on
the order of 1

1−γ log 1
ε , thus matching that of regularized policy iteration [Geist et al., 2019]. In

comparison to Lan [2023], our work sets forth a different framework to analyze mirror-descent
type algorithms for regularized policy optimization, generalizing and refining the approach in Cen
et al. [2022b] far beyond entropy regularization. When constant learning rates are employed, the
linear convergence of PMD [Lan, 2023] critically requires the regularizer to be strongly convex, with
only sublinear convergence theory established for convex regularizers. In contrast, we establish the
linear convergence of GPMD under constant learning rates even in the absence of strong convexity.
Furthermore, for the special case of entropy regularization, the stability analysis of GPMD also
significantly improves over the prior art in Cen et al. [2022b], preventing the error floor from blowing
up when the learning rate approaches zero, as well as incorporating the impact of optimization error
that was previously uncaptured. More detailed comparisons with Lan [2023] and Cen et al. [2022b]
can be found in Section 3.2.

1.2 Efficient policy optimization for multi-agent systems

Finding equilibria of multi-player games via gradient play lies at the heart of game theory, which
permeates a remarkable breadth of modern applications, including but not limited to competitive
reinforcement learning (RL) [Littman, 1994], generative adversarial networks (GANs) [Goodfellow
et al., 2020] and adversarial training [Mertikopoulos et al., 2018b]. While it seems appealing to
apply single-agent RL methods to each agent in a multi-agent system in a straightforward fashion,
this approach neglects non-stationarity of the environment due to the presence of other agents,
and thus lacks theoretical support in general. The complication has given rise to the paradigm of
centralized training with decentralized execution (CTDE) [Lowe et al., 2017], where the policies are
first obtained through training with a centralized controller with access to all agents’ observations
and then disseminated to each agent for execution. However, this approach falls short of adapting
to changes in the environment without retraining and raises privacy concerns as well. It is hence
of great interest to understand and design more versatile independent learning algorithms that
only depend on the agents’ local observations, require minimal coordination between agents, and
provably converge.

1.2.1 Two-player zero-sum matrix games

We start by studying one of the most basic forms of multi-agent games, namely two-player zero-
sum matrix games. Our goal is to find the equilibrium policies of both players in an independent
and decentralized manner [Daskalakis et al., 2020, Wei et al., 2021b] with guaranteed last-iterate
convergence. Namely, each player will execute symmetric and independent updates iteratively using
its own payoff without observing the opponent’s actions directly, and the final policies of the iterative
process should be a close approximation to the equilibrium up to any prescribed precision. This
kind of algorithms is more advantageous and versatile especially in federated environments, as it
requires neither prior coordination between the players like two-timescale algorithms, nor a central
controller to collect and disseminate the policies of all the players, which are often unavailable due
to privacy constraints.
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Last-iterate convergence in competitive games

In recent years, there have been significant progresses in understanding the last-iterate convergence
of simple iterative algorithms for unconstrained saddle-point optimization, where one is interested in
bounding the sub-optimality of the last iterate of the algorithm, rather than say, the ergodic iterate
— which is the average of all the iterations — that are commonly studied in the earlier literature.
This shift of focus is motivated, for example, by the infeasibility of averaging large machine learning
models in training GANs [Goodfellow et al., 2020]. While vanilla Gradient Descent /Ascent (GDA)
may diverge or cycle even for bilinear matrix games [Daskalakis et al., 2018], quite remarkably, small
modifications lead to guaranteed last-iterate convergence to the equilibrium in a non-asymptotic
fashion. A flurry of algorithms is proposed, including Optimistic Gradient Descent Ascent (OGDA)
[Rakhlin and Sridharan, 2013, Daskalakis and Panageas, 2018, Wei et al., 2021a], predictive updates
[Yadav et al., 2018], implicit updates [Liang and Stokes, 2019], and more. Several unified analyses
of these algorithms have been carried out (see, e.g. Mokhtari et al. [2020a], Liang and Stokes [2019]
and references therein), where these methods in principle all make clever extrapolation of the local
curvature in a predictive manner to accelerate convergence. With slight abuse of terminology, in
this thesis, we refer to this ensemble of algorithms as extragradient methods [Korpelevich, 1976,
Tseng, 1995, Mertikopoulos et al., 2018a, Harker and Pang, 1990].

However, saddle-point optimization in the constrained setting, which includes competitive games
as a special case, remains largely under-explored even for bilinear matrix games. While it is possible
to reformulate constrained bilinear games to unconstrained ones using softmax parameterization of
the probability simplex, this approach falls short of preserving the bilinear structure and convex-
concave properties in the original problem, which are crucial to the convergence of gradient methods.
Therefore, there is a strong necessity of understanding and developing improved extragradient
methods in the constrained setting, where existing analyses in the unconstrained setting do not
generalize straightforwardly. Daskalakis and Panageas [2019] proposed the optimistic variant of
the multiplicative weight updates (MWU) method [Arora et al., 2012]—which is extremely natural
and popular for optimizing over probability simplexes—called Optimistic Multiplicative Weight
Updates (OMWU), and established the asymptotic last-iterate convergence of OMWU for matrix
games. Very recently, Wei et al. [2021a] established non-asymptotic last-iterate convergences of
OMWU. However, these last-iterate convergence results require the Nash equilibrium to be unique,
and cannot be applied to problems with multiple Nash equilibria.

Main contributions

Motivated by the algorithmic role of entropy regularization in single-agent RL [Neu et al., 2017,
Geist et al., 2019, Cen et al., 2022b], federated RL [Yang et al., 2023] as well as its wide use in game
theory to account for imperfect and noisy information [McKelvey and Palfrey, 1995, Savas et al.,
2019], we initiate the design and analysis of extragradient algorithms using multiplicative updates
for finding the so-called quantal response equilibrium (QRE), which are solutions to competitive
games with entropy regularization [McKelvey and Palfrey, 1995]. While finding QRE is of interest
in its own right, by controlling the knob of entropy regularization, the QRE provides a close
approximation to the Nash equilibrium (NE), and in turn acts as a smoothing scheme for finding
the NE. Our contributions are summarized below, with the detailed problem formulations provided
in Section 4.1.

• Near dimension-free last-iterate convergence to QRE of entropy-regularized matrix games.
We propose two policy extragradient algorithms to solve entropy-regularized matrix games,
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Equilibrium
type

Method Convergence rate Dimension-free
Require

unique NE

ε-QRE
PU & OMWU
This Thesis

linear yes n/a

ε-NE

OMWU
Daskalakis and Panageas [2019]

asymptotic no yes

OMWU
Wei et al. [2021a]

sublinear + linear no yes

PU & OMWU
This Thesis

sublinear yes no

Table 1.2: Comparisons of last-iterate convergence of the proposed entropy-regularized PU and OMWU
methods with prior results for finding ε-QRE or ε-NE of competitive matrix games. We note that the
convergence rates of unregularized OMWU established in Wei et al. [2021a] are problem-dependent, and
scale at least polynomially on the size of the action spaces. Desirable features in the last two columns are
highlighted in blue.

namely the Predictive Update (PU) and OMWU methods, where both players execute sym-
metric and multiplicative updates without knowing the entire payoff matrix nor the oppo-
nent’s actions. Encouragingly, we show that the last iterate of the proposed algorithms
converges to the unique QRE at a linear rate that is almost independent of the size of the
action spaces. Roughly speaking, to find an ε-optimal QRE in terms of Kullback-Leibler (KL)
divergence, it takes no more than

Õ
(

1

ητ
log

(
1

ε

))

iterations, where Õ(·) hides logarithmic dependencies. Here, τ is the regularization parameter,
and η is the learning rate of both players no larger than O(1/(τ + ∥A∥∞)), where ∥A∥∞ =
maxi,j |Ai,j | is the ℓ∞ norm of the payoff matrix A. Optimizing the learning rate, the iteration

complexity is bounded by Õ
(
∥A∥∞τ−1 log(1/ε)

)
.

• Last-iterate convergence to ε-NE of unregularized matrix games without uniqueness assump-
tion. The QRE provides an accurate approximation to the NE by setting the entropy reg-
ularization τ sufficiently small, therefore our result directly translates to finding a NE with
last-iterate convergence guarantee. Roughly speaking, to find an ε-NE (measured in terms of
the duality gap), it takes no more than

Õ
(∥A∥∞

ε

)

iterations with optimized learning rates, again independent of the size of the action spaces
up to logarithmic factors. Unlike prior literature [Daskalakis and Panageas, 2019, Wei et al.,
2021a], our last-iterate convergence guarantee does not require the NE to be unique.

• Extensions to two-player zero-sum Markov games. By connecting value iteration with ma-
trix games, we propose a policy extragradient method for solving infinite-horizon discounted
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entropy-regularized zero-sumMarkov games, which finds an ε-optimal minimax soft Q-function

— in terms of ℓ∞ error — in at most Õ
(

1
τ(1−γ)2

log2
(
1
ε

))
iterations, where γ ∈ (0, 1) is the dis-

count factor. By setting τ sufficiently small, the proposed method finds an ε-approximate NE

(measured in terms of the duality gap) of the unregularized Markov game within Õ
(

1
(1−γ)3ε

)

iterations, which is independent of the dimension of the state-action space up to logarithmic
factors.

To the best of our knowledge, this work is the first one that develops policy extragradi-
ent algorithms for solving entropy-regularized competitive games with multiplicative updates and
dimension-free linear last-iterate convergence, and demonstrates entropy regularization as a smooth-
ing technique to find ε-NE without the uniqueness assumption. Table 1.2 provides detailed compar-
isons of the proposed methods with prior arts for solving competitive games. Our results highlight
the positive role of entropy regularization for accelerating convergence and safeguarding against
imperfect payoff information in competitive games.

1.2.2 Two-player zero-sum Markov games

Two-player zero-sum Markov games [Shapley, 1953] generalizes two-player zero-sum matrix games
by incoporating state transition dynamics and hence enabling modeling more complicated real-world
problems. Substantial algorithmic developments have been made for finding equilibria in two-player
zero-sum Markov games, where Dynamical Programming (DP) techniques have long been used as
a fundamental building block, leading to prototypical iterative schemes such as Value Iteration
(VI) [Shapley, 1953] and Policy Iteration (PI) [Van Der Wal, 1978, Patek and Bertsekas, 1999].
Different from their single-agent counterparts, these methods require solving a two-player zero-sum
matrix game for every state per iteration. A considerable number of recent works [Zhao et al., 2022,
Alacaoglu et al., 2022, Cen et al., 2021, Chen et al., 2021] are based on these DP iterations, by
plugging in various (gradient-based) solvers of two-player zero-sum matrix games. However, these
methods are inherently nested-loop, which barriers straightforward implementation. In addition,
PI-based methods are asymmetric and come with only one-sided convergence guarantees [Patek
and Bertsekas, 1999, Zhao et al., 2022, Alacaoglu et al., 2022].

This motivates us to design policy optimization algorithms that are single-loop, symmetric, with
finite-time last-iterate convergence to the Nash Equilibrium (NE) or Quantal Response Equilibrium
(QRE) under bounded rationality, two prevalent solution concepts in game theory. These design
principles naturally come up as a result of pursuing simple yet efficient algorithms: single-loop
updates preclude sophisticated interleaving of rounds between agents; symmetric updates ensure
no agent will compromise its rewards in the learning process, which can be otherwise exploited by a
faster-updating opponent; in addition, asymmetric updates typically lead to one-sided convergence,
i.e., only one of the agents is guaranteed to converge to the minimax equilibrium in a non-asymptotic
manner, which is less desirable; moreover, last-iterate convergence guarantee absolves the need for
agents to switch between learning and deployment; last but not least, it is desirable to converge
as fast as possible, where the iteration complexities are non-asymptotic with clear dependence on
salient problem parameters.

Going beyond nested-loop algorithms, single-loop policy gradient methods have been proposed
recently for solving two-player zero-sum Markov games. Here, we are interested in finding an ε-
optimal NE or QRE in terms of the duality gap, i.e. the difference in the value functions when
either of the agents deviates from the solution policy.

• For the infinite-horizon discounted setting, Daskalakis et al. [2020] demonstrated that the
independent policy gradient method, with direct parameterization and asymmetric learning
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rates, finds an ε-optimal NE within a polynomial number of iterations. Zeng et al. [2022]
improved over this rate using an entropy-regularized policy gradient method with softmax
parameterization and asymmetric learning rates. On the other end, Wei et al. [2021b] pro-
posed an optimistic gradient descent ascent (OGDA) method [Rakhlin and Sridharan, 2013]
with direct parameterization and symmetric learning rates,1 which achieves a last-iterate
convergence at a rather pessimistic iteration complexity.

• For the finite-horizon episodic setting, Zhang et al. [2022a], Yang and Ma [2023] showed
that the weighted average-iterate of the optimistic Follow-The-Regularized-Leader (FTRL)
method, when combined with slow critic updates, finds an ε-optimal NE in a polynomial
number of iterations.

A more complete summary of prior results can be found in Table 1.3 and Table 1.4. In brief,
while there have been encouraging progresses in developing computationally efficient policy gradient
methods for solving zero-sum Markov games, achieving fast finite-time last-iterate convergence with
single-loop and symmetric update rules remains a challenging goal.

Main contributions

Motivated by the positive role of entropy regularization in enabling faster convergence of policy
optimization in single-agent RL [Cen et al., 2022b, Lan, 2023] and two-player zero-sum games [Cen
et al., 2021], we propose a single-loop policy optimization algorithm for two-player zero-sum Markov
games in both the infinite-horizon and finite-horizon settings. The proposed algorithm follows the
style of actor-critic [Konda and Tsitsiklis, 2000], with the actor updating the policy via the entropy-
regularized optimistic multiplicative weights update (OMWU) method [Cen et al., 2021] and the
critic updating the value function on a slower timescale. Both agents execute multiplicative and
symmetric policy updates, where the learning rates are carefully selected to ensure a fast last-iterate
convergence. In both the infinite-horizon and finite-horizon settings, we prove that the last iterate
of the proposed method learns the optimal value function and converges at a linear rate to the
unique QRE of the entropy-regularized Markov game, which can be further translated into finding
the NE by setting the regularization sufficiently small.

• For the infinite-horizon discounted setting, the last iterate of our method takes at most

Õ
( |S|
(1− γ)4τ log

1

ε

)

iterations for finding an ε-optimal QRE under entropy regularization, where Õ(·) hides loga-
rithmic dependencies. Here, |S| is the size of the state space, γ is the discount factor, and τ
is the regularization parameter. Moreover, this implies the last-iterate convergence with an
iteration complexity of

Õ
( |S|
(1− γ)5ε

)

for finding an ε-optimal NE.

1To be precise, Wei et al. [2021b] proved the average-iterate convergence of the duality gap, as well as the last-
iterate convergence of the policy in terms of the Euclidean distance to the set of NEs, where it is possible to translate
the latter last-iterate convergence to the duality gap. The resulting iteration complexity, however, is much worse
than that of the average-iterate convergence in terms of the duality gap, with a problem-dependent constant that
can scale pessimistically with salient problem parameters.
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Solution
type

Reference
Iteration
complexity

Single
loop

Symmetric
Last-iterate
convergence

ε-NE

PI-based Methods
Zhao et al. [2022]

Alacaoglu et al. [2022]
Õ
(

∥1/ρ∥∞
(1−γ)3ε

)∗
✗ ✗ ✓

VI-based Methods
Cen et al. [2021]
Chen et al. [2021]

Õ
(

1
(1−γ)3ε

)
✗ ✓ ✓

Daskalakis et al. [2020] Polynomial∗ ✓ ✗ ✗

Zeng et al. [2022] Õ
(

|S|2∥1/ρ∥5∞
(1−γ)14c4ε3

)∗
✓ ✗ ✓

Wei et al. [2021b]
Õ
(

|S|3
(1−γ)9ε2

)
✓ ✓ ✗

Õ
(
|S|5(|A|+|B|)1/2
(1−γ)16c4ε2

)
✓ ✓ ✓

This Thesis Õ
(

|S|
(1−γ)5ε

)
✓ ✓ ✓

ε-QRE

VI-based Methods
Cen et al. [2021]

Õ
(

1
(1−γ)3

log2 1
ε

)
✗ ✓ ✓

Zeng et al. [2022] Õ
(

|S|2∥1/ρ∥5∞
(1−γ)11c4τ3

log 1
ε

)∗
✓ ✗ ✓

This Thesis Õ
(

|S|
(1−γ)4τ

log 1
ε

)
✓ ✓ ✓

Table 1.3: Comparison of policy optimization methods for finding an ε-optimal NE (resp. QRE) of two-
player zero-sum discounted Markov games in terms of the duality gap, i.e., a policy pair (µ, ν) satisfying
maxµ′,ν′(V µ′,ν(ρ) − V µ,ν′

(ρ)) ≤ ε (resp. maxµ′,ν′(V µ′,ν
τ (ρ) − V µ,ν′

τ (ρ)) ≤ ε). Note that ∗ implies one-sided
convergence, i.e., only one of the agents is guaranteed to achieve finite-time convergence to the equilibrium.
Here, c > 0 refers to some problem-dependent constant. For simplicity and a fair comparison, we replace
various notions of concentrability coefficient and distribution mismatch coefficient with a crude upper bound
∥1/ρ∥∞, where ρ is the initial state distribution.

• For the finite-horizon episodic setting, the last iterate of our method takes at most

Õ
(
H2

τ
log

1

ε

)

iterations for finding an ε-optimal QRE under entropy regularization, where H is the horizon
length. Similarly, this implies the last-iterate convergence with an iteration complexity of

Õ
(
H3

ε

)

for finding an ε-optimal NE.

Detailed comparisons between the proposed method and prior arts are provided in Table 1.3 and
Table 1.4. To the best of our knowledge, this thesis presents the first method that is simultaneously
single-loop, symmetric, and achieves fast finite-time last-iterate convergence in terms of the duality
gap in both infinite-horizon and finite-horizon settings. From a technical perspective, the infinite-
horizon discounted setting is in particular challenging, where ours is the first single-loop algorithm
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Solution
type

Reference
Iteration
complexity

Single
loop

Symmetric
Last-iterate
convergence

ε-NE

OFTRL
Zhang et al. [2022a]

Õ
(
H28/5

ε6/5

)
✓ ✓ ✗

Modified OFTRL
Zhang et al. [2022a]

Õ
(
H4

ε

)
✓ ✓ ✗

OFTRL
Yang and Ma [2023]

Õ
(
H5

ε

)
✓ ✓ ✗

This Thesis Õ
(
H3

ε

)
✓ ✓ ✓

ε-QRE This Thesis Õ
(
H2

τ log 1
ε

)
✓ ✓ ✓

Table 1.4: Comparison of policy optimization methods for finding an ε-optimal NE or QRE of two-player
zero-sum episodic Markov games in terms of the duality gap.

that guarantees an iteration complexity of Õ(1/ε) for last-iterate convergence in terms of the
duality gap, with clear and improved dependencies on other problem parameters in the meantime.
In contrast, several existing works introduce additional problem-dependent constants [Daskalakis
et al., 2020, Wei et al., 2021b, Zeng et al., 2022] in the iteration complexity, which can scale rather
pessimistically—sometimes even exponentially—with problem dimensions [Li et al., 2023].

Our technical developments require novel ingredients that deviate from prior tools such as error
propagation analysis for Bellman operators [Perolat et al., 2015, Patek and Bertsekas, 1999] from a
dynamic programming perspective, as well as the gradient dominance condition [Daskalakis et al.,
2020, Zeng et al., 2022] from a policy optimization perspective. Importantly, at the core of our
analysis lies a carefully-designed one-step error contraction bound for policy learning, together with
a set of recursive error bounds for value learning, all of which tailored to the non-Euclidean OMWU
update rules that have not been well studied in the setting of Markov games.

1.2.3 Multi-player zero-sum polymatrix games

In reality, there is no shortage of scenarios where the feedback can be obtained only in a delayed
manner [He et al., 2014], i.e., the agents only receive the payoff information sent from a previous
round instead of the current round, due to communication slowdowns and congestions, for example.
Substantial progress has been made towards reliable and efficient online learning with delayed
feedbacks in various settings, e.g., stochastic multi-armed bandit [Pike-Burke et al., 2018, Vernade
et al., 2017], adversarial multi-armed bandit [Cesa-Bianchi et al., 2016, Li et al., 2019], online
convex optimization [Quanrud and Khashabi, 2015, McMahan and Streeter, 2014] and multi-player
game [Meng et al., 2023]. Typical approaches to combatting delays include subsampling the payoff
history [Weinberger and Ordentlich, 2002, Joulani et al., 2013], or adopting adaptive learning rates
suggested by delay-aware analysis [Quanrud and Khashabi, 2015, McMahan and Streeter, 2014,
Hsieh et al., 2022, Flaspohler et al., 2021]. Most of these efforts, however, have been limited
to the study of individual regret, which characterizes the performance gap between an agent’s
learning trajectory and the best policy in hindsight. It remains highly inadequate when it comes
to guaranteeing convergence to the equilibrium in a multi-player environment, especially in the
presence of delayed feedbacks, thus leaving the scalability and resiliency of gradient play open to
questions.
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In this work, we initiate the study of asynchronous learning algorithms for an important class
of games called zero-sum polymatrix games (also known as network matrix games [Bergman and
Fokin, 1998]), which generalizes two-player zero-sum matrix games to the multiple-player setting
and serves as an important stepping stone to more general multi-player general-sum games. Zero-
sum polymatrix games are commonly used to describe situations in which agents’ interactions are
captured by an interaction graph and the entire system of games are closed so that the total payoffs
keep invariant in the system. They find applications in an increasing number of important domains
such as security games [Cai et al., 2016], graph transduction [Bernardi, 2021], and more.

In particular, we focus on finite-time last-iterate convergence to two prevalent solution con-
cepts in game theory, namely Nash Equilibrium (NE) and Quantal Response Equilibrium (QRE)
which considers bounded rationality [McKelvey and Palfrey, 1995]. Despite the seemingly simple
formulation, few existing works have achieved this goal even in the synchronous setting, i.e., with
instantaneous feedback. Leonardos et al. [2021] studied a continuous-time learning dynamics that
converges to the QRE at a linear rate. Anagnostides et al. [2022b] demonstrated Optimistic Mirror
Descent (OMD) [Rakhlin and Sridharan, 2013] enjoys finite-time last-iterate convergence to the
NE, yet the analysis therein requires continuous gradient of the regularizer, which incurs compu-
tation overhead for solving a subproblem every iteration. In contrast, an appealing alternative is
the entropy regularizer, which leads to closed-form multiplicative updates and is computationally
more desirable, but remains poorly understood. In sum, designing efficient learning algorithms that
provably converge to the game equilibria has been technically challenging, even in the synchronous
setting.

Main contributions

In this work, we develop provably convergent algorithms—broadly dubbed as asynchronous gradi-
ent play—to find the QRE and NE of zero-sum polymatrix games in a decentralized and symmet-
ric manner with delayed feedbacks. We propose an entropy-regularized Optimistic Multiplicative
Weights Update (OMWU) method [Cen et al., 2021], where each player symmetrically updates
their strategies without access to the payoff matrices and other players’ strategies, and initiate a
systematic investigation on the impacts of delays on its convergence under two schemes of learning
rates schedule. Our main contributions are summarized as follows.

• Finite-time last-iterate convergence of single-timescale OMWU. We begin by showing that,
in the synchronous setting, the single-timescale OMWU method—when the same learning
rate is adopted for extrapolation and update—achieves last-iterate convergence to the QRE
at a linear rate, which is independent of the number of agents as well as the size of action
spaces (up to logarithmic factors). In addition, this implies a last-iterate convergence to an
ε-approximate NE in Õ(ε−1) iterations by adjusting the regularization parameter, where Õ(·)
hides logarithmic dependencies. While the last-iterate linear convergence to QRE continues to
hold in the asynchronous setting, as long as the delay sequence follows certain mild statistical
assumptions, it converges at a slower rate due to a smaller tolerable range of learning rates,
with the iteration complexity to find an ε-NE degenerating to Õ(ε−2). In addition, regret
analysis of single-timescale OMWU is also provided.

• Finite-time convergence of two-timescale OMWU. To accelerate the convergence rate in the
presence of delayed feedback, we propose a two-timescale OMWU method which separates
the learning rates of extrapolation and update in a delay-aware manner for applications with
constant and known delays (e.g. from timestamp information). The learning rate separation
is critical in bypassing the convergence slowdown encountered in the single-timescale case,
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Learning rate Type of delay
Iteration complexity

ε-QRE ε-NE

single-timescale
none τ−1dmax ∥A∥∞ log ε−1 dmax ∥A∥∞ ε−1

statistical τ−2d2max ∥A∥2∞ (γ + 1)2 log ε−1 d2max ∥A∥2∞ (γ + 1)2ε−2

two-timescale
constant τ−1dmax ∥A∥∞ (γ + 1)2 log ε−1 dmax ∥A∥∞ (γ + 1)2ε−1

bounded τ−2nd3max ∥A∥3∞ (γ + 1)5/2ε−1 nd3max ∥A∥3∞ (γ + 1)5/2ε−3

Table 1.5: Iteration complexities of the proposed OMWU method for finding ε-QRE/NE of zero-sum poly-
matrix games, where logarithmic dependencies are omitted. Here, γ denotes the maximal time delay when
the delay is bounded, n denotes the number of agents in the game, dmax is the maximal degree of the graph,
and ∥A∥∞ = maxi,j ∥Ai,j∥∞ is the ℓ∞ norm of the entire payoff matrix A (over all games in the network).
We only present the result under statistical delay when the delays are bounded for ease of comparison, while
more general bounds are given in Section 6.2.2.

where we show that two-timescale OMWU achieves a faster last-iterate linear convergence
to QRE in the presence of constant delays, with an improved Õ(ε−1) iteration complexity
to ε-NE that matches the rate without delay. We further tackle the more practical yet
challenging setting where the feedback sequence is permutated by bounded delays—possibly
in an adversarial manner—and demonstrate provable convergence to the equilibria in an
average-iterate manner.

We summarize the iteration complexities of the proposed methods for finding ε-approximate
solutions of QRE and NE in Table 1.5. To the best of our knowledge, this thesis presents the
first algorithm design and analysis that focus on equilibrium finding in a multi-player game with
delayed feedbacks. In contrast, most of existing works concerning individual regret in the syn-
chronous/asynchronous settings typically yield average-iterate convergence guarantees (see e.g.,
Bailey [2021], Meng et al. [2023]) and fall short of characterizing the actual learning trajectory to
the equilibrium.

1.2.4 Multi-player potential games

Moving beyond competitive games, we focus on potential games [Monderer and Shapley, 1996b],
an important class of games that admit a potential function to capture the differences in each
agent’s utility function induced by unilateral deviations. In particular, the analysis established in
this thesis is tailored to potential games in their most basic setting, i.e., static potential games,
an important stepping stone to the more general Markov setting. Despite its simple formulation
and decades-long research, however, the computational underpinnings of such problems are still far
from mature, especially when it comes to finding the Nash equilibrium (NE) of potential games in a
decentralized manner. While several recent works have made significant breakthroughs by achieving
logarithmic regrets with independent learning dynamics [Daskalakis et al., 2021, Anagnostides et al.,
2022a], these results only guarantee convergence to coarse correlated equilibrium or correlated
equilibrium, which are arguably much weaker equilibrium concepts than NE and hence do not lead
to an approximate NE solution.
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Main contributions

We seek to find the quantal response equilibrium (QRE) [McKelvey and Palfrey, 1995], the pro-
totypical extension of NE for games with bounded rationality [Selten, 1989], where each agent
runs independent natural policy gradient (NPG) methods [Kakade, 2001] involving symmetric, de-
centralized, and multiplicative updates according to its own payoff. This amounts to solving a
potential game with entropy regularization, whose algorithmic role has been studied in the setting
of single-agent RL [Mei et al., 2020b, Cen et al., 2022b] as well as two-player zero-sum games [Cen
et al., 2021], but yet to be explored in more general settings. Our contributions are summarized
below.

• Finite-time global convergence of independent entropy-regularized NPG meth-
ods. We show that independent entropy-regularized NPG methods provably converge to the
QRE of a potential game, and it takes no more than

O
(
min{

√
N,Φmax}Φmax

τ2ε2

)

iterations to find an ε-optimal QRE (to be defined precisely). Here, N stands for the number
of agents, τ > 0 the entropy regularization parameter, and Φmax > 0 the maximum value of
the potential function.

• Finite-time global convergence to ε-NE without isolation assumption. By setting
the entropy regularization parameter τ sufficiently small, the result translates to finding an
approximate NE with non-asymptotic convergence guarantees, thereby obviating the addi-
tional assumption in prior literature [Fox et al., 2022, Palaiopanos et al., 2017, Zhang et al.,
2022b] that requires the set of stationary policies to be isolated. Specifically, it takes no more
than

Õ
(
min{

√
N,Φmax}Φmax

ε4

)

iterations to find an ε-NE for the unregularized potential game, where Õ hides logarithmic
dependencies.

These rates give the first set of iteration complexities—to the best of our knowledge—that are
independent of the size of the action spaces, up to logarithmic factors. In addition, the iteration
complexities exhibit a sublinear dependency with the number of agents, outperforming existing
NE-finding algorithms whose complexities depend at least linearly with the number of agents.
Even more appealingly, when interpreting our convergence rates for the important special case of
identical-interest games with bounded payoffs [Monderer and Shapley, 1996a], they further become
independent with the number of agents, leading to the first method that achieves a dimension-free
convergence rate of Õ

(
1/ε4

)
to find an ε-NE.

1.3 Principled policy optimization for AI alignment

Fine-tuning large language models (LLMs) by reinforcement learning from human feedback (RLHF)
[Ziegler et al., 2019] has been shown to significantly improve the helpfulness, truthfulness and
controllability of LLMs, as illustrated by InstructGPT [Ouyang et al., 2022] and many follow-ups.
Roughly speaking, there are two critical components of RLHF: (1) reward modeling, which maps
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human preference rankings into a quantitative reward function that can guide policy improvement;
and (2) RL fine-tuning, which seeks to adjust LLM output to align with human preferences by
leveraging the learned reward function, i.e., increasing the probability of preferred answers and
decreasing the probability of unfavored answers.

Evidently, the curation of preference data is instrumental in the performance of RLHF, which
is commonly modeled as pairwise comparisons from a Bradley-Terry ranking model [Bradley and
Terry, 1952]. In particular, given a query x, human annotators choose a preferred answer from
two candidate answers y1 and y2 generated by an LLM. Despite the simple form, collecting large-
scale and high-quality preference data can be expensive and time-consuming. Depending on the
availability of preference data, two paradigms of RLHF are considered: (1) offline RLHF, where
only a pre-collected preference dataset is available, possibly generated from a pre-trained LLM
after supervised fine-tuning (SFT); and (2) online RLHF, where additional preference data can
be collected adaptively to improve alignment. While initial work on RLHF focused on the offline
setting, the online setting has also begun to receive considerable attention, as even a small amount
of additional preference data has been shown to greatly boost performance.

There has been significant work on the theoretical underpinnings of RLHF that seeks to uncover
algorithmic improvements. Notably, while the original RLHF pipeline decouples reward modeling
from RL fine-tuning, direct preference optimization (DPO) [Rafailov et al., 2023] integrates these
as a single step in the offline setting, leveraging a closed-form solution for the optimal policy in
the RL fine-tuning phase. This has led to a welcome simplification of the RLHF pipeline, allowing
direct optimization of the policy (i.e., the LLM) from preference data.

Nevertheless, significant challenges remain in RLHF, particularly concerning how to incorporate
estimates of reward uncertainty in direct preference optimization when parameterizing policies with
large-scale neural networks — such as LLMs — in a theoretically and practically effective manner.
In standard reinforcement learning (RL), managing uncertainty when an agent interacts with an
environment is a critical aspect in achieving near-optimal performance [Sutton and Barto, 2018],
when using methods that range from policy-based [Schulman et al., 2017b, Xiao et al., 2021], value-
based [Mnih et al., 2015, Kumar et al., 2020], and actor-critic methods [Mnih et al., 2016]. One
dominant approach in the bandit setting, for example, is to construct confidence intervals of the
reward estimates, then acting according to the upper and lower confidence bounds — following the
principles of optimism and pessimism in the online and offline settings respectively [Lattimore and
Szepesvári, 2020, Lai et al., 1985, Rashidinejad et al., 2022].

Despite the fact that uncertainty estimation is even more critical in RLHF, due to the coarse
nature of preference data, effective implementations of theoretically justified optimistic and pes-
simistic principles have yet to be developed in the RLHF literature. For example, existing online
preference alignment methods, such as Nash-MD [Munos et al., 2023] and OAIF [Guo et al., 2024],
do not incorporate exploration; similarly, pessimism is also not implemented in offline preference
alignment methods, such as DPO [Rafailov et al., 2023] and IPO [Azar et al., 2024]. A key reason
for these omissions is that it is extremely difficult to construct confidence intervals for arbitrary
neural networks [Gawlikowski et al., 2023], let alone LLMs. Since optimism for online exploration
and pessimism for offline RL both require uncertainty estimation, and given the difficulty of con-
ducting uncertainty estimation for large-scale neural networks, a natural and important question
arises:

Can we implement the optimistic/pessimistic principles under uncertainty in a practically efficient
manner for online/offline preference alignment in LLMs while retaining theoretical guarantees?
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Main contributions

In this thesis, we provide affirmative answer to the question. Our major contributions are as follows.

(i) We propose value-incentivized preference optimization (VPO) for both online and offline
RLHF, a unified algorithmic framework that directly optimizes the LLM policy with the op-
timistic/pessimistic principles under uncertainty. Avoiding explicit uncertainty estimation,
VPO regularizes maximum likelihood estimation of the reward function toward (resp. against)
responses that lead to the highest value in the online (resp. offline) setting, hence implement-
ing optimism (resp. pessimism). Theoretical regret guarantees of VPO are developed for both
online and offline RLHF, matching their corresponding rates in the standard RL literature
with explicit uncertainty estimation.

(ii) In addition, VPO reveals the critical role of reward calibration, where the shift ambiguity
of the reward model inherent in the Bradley-Terry model [Bradley and Terry, 1952] can be
exploited to implement additional behavior regularization [Pal et al., 2024, Ethayarajh et al.,
2024]. This allows VPO to provide a theoretical foundation for popular conservative offline
RL methods (e.g., [Kumar et al., 2020]), as well as regularized RLHF methods (e.g., DPOP
[Pal et al., 2024]).

(iii) VPO admits a practically-implementable form suitable for RLHF on LLMs, and more gen-
erally, deep-learning architectures. We conduct extensive experimental studies using TL;DR

and ARC-Challenge tasks in online and offline settings with optimistic and pessimistic bias,
respectively. The results demonstrate improved empirical performance.

1.4 Related works

1.4.1 Single-agent RL

There has been a flurry of recent activities in studying theoretical behaviors of policy optimization
methods. For example, Fazel et al. [2018], Jansch-Porto et al. [2020], Tu and Recht [2019], Zhang
et al. [2020b], Mohammadi et al. [2021] established the global convergence of policy optimization
methods for a couple of control problems (see the survey in Hu et al. [2023] for a comprehensive
review of the latest developments in this area); Bhandari and Russo [2024] identified structural
properties that guarantee the global optimality of PG methods without parameterization; Karimi
et al. [2019] studied the convergence of PG methods to an approximate first-order stationary point,
and Zhang et al. [2020d] proposed a variant of PG methods that converges to locally optimal policies
leveraging saddle-point escaping algorithms in nonconvex optimization. Beyond the tabular setting,
the convergence of PG methods with function approximations has been studied in Agarwal et al.
[2020b], Wang et al. [2020], Liu et al. [2019a]. In particular, Cai et al. [2020] developed an optimistic
variant of NPG that incorporates linear function approximation. We do not elaborate on this line
of works since our focus is on understanding the performance of entropy-regularized NPG in the
tabular setting; we also do not elaborate on PG methods that involve sample-based estimates, since
we primarily consider exact gradients or black-box gradient estimators.

Regarding entropy regularization, Neu et al. [2017], Geist et al. [2019] provided unified views
of entropy-regularized MDPs from an optimization perspective by connecting them to algorithms
such as mirror descent [Nemirovsky and Yudin, 1983] and dual averaging [Nesterov, 2009]. The
soft policy iteration algorithm has been identified as a special case of entropy-regularized NPG,
highlighting again the link between policy gradient methods and soft Q-learning [Schulman et al.,
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2017a]. The asymptotic convergence of soft policy iteration was established in Haarnoja et al.
[2017], which fell short of providing explicit convergence rate guarantees. Additionally, Grill et al.
[2019] developed planning algorithms for entropy-regularized MDPs, and Mei et al. [2020b] showed
that the sub-optimality gap of soft policy iteration is small if the policy improvement is small in
consecutive iterations.

Global convergence of policy gradient methods. Recent years have witnessed a surge of
activities towards understanding the global convergence properties of policy gradient methods and
their variants for both continuous and discrete RL problems, examples including Fazel et al. [2018],
Bhandari and Russo [2024], Agarwal et al. [2020b], Zhang et al. [2020b], Wang et al. [2020], Mei
et al. [2020a], Bhandari and Russo [2021], Khodadadian et al. [2021], Liu et al. [2020b], Mei et al.
[2020a], Agazzi and Lu [2020], Xu et al. [2020a], Wang et al. [2020], Cen et al. [2022b], Mei et al.
[2021], Liu et al. [2019a], Wang et al. [2021], Zhang et al. [2021b,a, 2020a], Shani et al. [2020], among
other things. Neu et al. [2017] provided the first interpretation of NPG methods as mirror descent
[Nemirovsky and Yudin, 1983], thereby enabling the adaptation of techniques for analyzing mirror
descent to the studies of NPG-type algorithms such as TRPO [Shani et al., 2020, Tomar et al.,
2022]. It has been shown that the NPG method converges sub-linearly for unregularized MDPs
with a fixed learning rate [Agarwal et al., 2020b], and converges linearly if the learning rate is set
adaptively [Khodadadian et al., 2021], via exact line search [Bhandari and Russo, 2021], or following
a geometrically increasing schedule [Xiao, 2022]. Noteworthily, Li et al. [2023] established a lower
bound indicating that softmax PG methods can take an exponential time—in the size of the state
space—to converge, while the convergence rates of NPG-type methods are almost independent of
the problem dimension. In addition, another line of recent works [Abbasi-Yadkori et al., 2019, Hao
et al., 2021, Lazic et al., 2021] established regret bounds for approximate NPG methods—termed
as KL-regularized approximate policy iteration therein—for infinite-horizen undiscounted MDPs,
which are beyond the scope of this thesis.

Regularization in RL. Regularization has been suggested to the RL literature either through
the lens of optimization [Dai et al., 2018, Agarwal et al., 2020b], or through the lens of dynamic
programming [Geist et al., 2019, Vieillard et al., 2020]. Our work is clearly an instance of the former
type. Several recent results in the literature merit particular attention: Agarwal et al. [2020b]
demonstrated sublinear convergence guarantees for PG methods in the presence of relative entropy
regularization, Mei et al. [2020b] established linear convergence of entropy-regularized PG methods.
Most of the existing literature focused on the entropy regularization or KL-type regularization, and
the studies of general regularizers had been quite limited until the recent work Lan [2023]. The
regularized MDP problems are also closely related to the studies of constrained MDPs, as both
types of problems can be employed to model/promote constraint satisfaction in RL, as recently
investigated in, e.g., Chow et al. [2018a], Efroni et al. [2020], Ding et al. [2021], Yu et al. [2019],
Xu et al. [2020b]. Note, however, that it is difficult to directly compare our algorithm with these
methods, due to drastically different formulations and settings.

1.4.2 Multi-agent systems

Independent learning in general-sum games. Considerable progress has been made towards
understanding independent learning dynamics in general-sum games Daskalakis et al. [2021], Anag-
nostides et al. [2022a] and general-sum Markov games (also known as stochastic games) Song et al.
[2022], Jin et al. [2023], Mao and Başar [2022] by establishing non-asymptotic convergence to corre-
lated equilibrium and coarse correlated equilibrium. However, such successes do not directly extend
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to potential games where NE is of interest. Specialized analysis for potential games is thus needed
as finding approximate NE in a two-player game can be PPAD-hard even with full information
Daskalakis [2013]. Notably, there have been attempts to establish asymptotic convergence with
independent learning dynamics Marden et al. [2007, 2009], Young [2004] for weakly acyclic games
Young [2020], which includes potential games as a special case.

Learning in two-player zero-sum matrix games. Freund and Schapire [1999] showed that
many standard methods such as GDA and MWU have a converging average duality gap at the rate
of O(1/

√
T ), which is improved to O(1/T ) by considering optimistic variants of these methods,

such as OGDA and OMWU [Rakhlin and Sridharan, 2013, Daskalakis et al., 2011, Syrgkanis et al.,
2015]. However, the last-iterate convergence of these methods are less understood until recently
[Daskalakis and Panageas, 2019, Wei et al., 2021a]. In particular, under the assumption that the NE
is unique for the unregularized matrix game, Daskalakis and Panageas [2019] showed the asymptotic
convergence of the last iterate of OMWU to the unique equilibrium, and Wei et al. [2021a] showed
the last iterate of OMWU achieves a linear rate of convergence after an initial phase of sublinear
convergence, however the rates therein can be highly pessimistic in terms of the problem dimension,
while our rate for entropy-regularized OMWU is dimension-free up to logarithmic factors. Sokota
et al. [2023], Pattathil et al. [2023] showed that optimistic update is not necessary for achieving
linear last-iterate convergence in the presence of regularization, albeit with a more strict restriction
on the step size. In terms of no-regret analysis, Rakhlin and Sridharan [2013] established a no-
regret learning rate of O(log T/T 1/2) with an auxiliary mixing of a uniform distribution at each
update, which is later improved to O(1/T 1/2) in Kangarshahi et al. [2018] with a slightly different
algorithm.

Learning in two-player zero-sum Markov games. In addition to the aforementioned works
on policy optimization methods (policy-based methods) for two-player zero-sum Markov games
(cf. Table 1.3 and Table 1.4), a growing body of works have developed model-based methods [Liu
et al., 2021, Zhang et al., 2020c, Li et al., 2022] and value-based methods [Bai and Jin, 2020, Bai
et al., 2020, Chen et al., 2022, Jin et al., 2023, Sayin et al., 2021, Xie et al., 2020], with a primary
focus on learning NE in a sample-efficient manner. Our work, together with prior literatures on
policy optimization, focuses instead on learning NE in a computation-efficient manner assuming
full-information.

Saddle-point optimization. Considerable progress has been made towards understanding OGDA
and extragradient (EG) methods in the unconstrained convex-concave saddle-point optimization
with general objective functions [Mokhtari et al., 2020a,b, Nemirovski, 2004, Liang and Stokes,
2019]. However, most works have focused on either average-iterate convergence (also known as er-
godic convergence) [Nemirovski, 2004], or the characterization of Euclidean update rules [Mokhtari
et al., 2020a,b, Liang and Stokes, 2019], where parameters are updated in an additive manner.
These analyses do not generalize in a straightforward manner to non-Euclidean updates. As a
result, the last-iterate convergence of non-Euclidean updates for saddle-point optimization still
lacks theoretical understanding in general, and most works fall short of characterizing a finite-time
convergence result. In particular, Mertikopoulos et al. [2018a] demonstrated the asymptotic last-
iterate convergence of EG, and Hsieh et al. [2019] investigated similar questions for single-call EG
algorithms. Lei et al. [2021] showed that OMWU converges to the equilibrium locally without
an explicit rate. Wei et al. [2021a] showed that the last-iterate of OGDA converges linearly for
strongly-convex strongly-concave constrained saddle-point optimization with an explicit rate.
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Entropy regularization in games. Entropy regularization has been used to account for im-
perfect information in the seminal work of McKelvey and Palfrey [1995] that introduced the QRE,
and a few representative works on entropy and more general regularizations in games include but
are not limited to Savas et al. [2019], Hofbauer and Sandholm [2002], Mertikopoulos and Sandholm
[2016].

Policy optimization in potential games. Fox et al. [2022], Palaiopanos et al. [2017], Zhang
et al. [2022b] established asymptotic convergence of independent NPG methods for Markov poten-
tial games with an additional assumption that requires the set of stationary policies to be isolated.
Heliou et al. [2017] demonstrated asymptotic convergence of NPG with diminishing step sizes for
potential games in the bandit feedback setting. In addition, Zhang et al. [2022b] proposed to
use a log-barrier regularization along with NPG to sidestep the isolation assumption and achieved
the same iteration complexity as that of PG methods with direct parameterization. In contrast,
we consider NPG with entropy regularization, which achieves a convergence rate that has better
dependencies on the size of the action spaces and the number of agents.

1.4.3 AI alignment

RLHF. Since the introduction of the original RLHF framework, there have been many proposed
simplifications of the preference alignment procedure and attempts to improve performance, includ-
ing but not limited to SLiC [Zhao et al., 2023], GSHF [Xiong et al., 2023], DPO [Rafailov et al.,
2023], and its variants, such as Nash-MD [Munos et al., 2023], IPO [Azar et al., 2024], OAIF [Guo
et al., 2024], SPO [Swamy et al., 2024], SPIN [Chen et al., 2024], GPO [Tang et al., 2024], and
DPOP [Pal et al., 2024]. These methods can roughly be grouped into online and offline variants,
depending on whether preference data is collected before training (offline) or by using the current
policy during training (online).

In offline preference alignment, identity preference optimization (IPO, [Azar et al., 2024]) argues
that it is problematic to use the Bradley-Terry model in DPO to convert pairwise preferences into
pointwise reward values, and proposes an alternative objective function to bypass the use of the
Bradley-Terry model. DPO-Positive (DPOP, [Pal et al., 2024]) observes a failure mode of DPO that
the standard DPO loss can reduce the model’s likelihood on preferred answers, and proposes to add
a regularization term to the DPO objective to avoid such a failure mode. On the other hand, online
AI feedback (OAIF, [Guo et al., 2024]) proposes an online version of DPO, where online preference
data from LLM annotators is used to evaluate and update the current LLM policy in an iterative
manner. Iterative reasoning preference optimization (Iterative RPO, Pang et al. [2024]) proposes
to add an additional negative log-likelihood term in the DPO loss to improve performances on
reasoning tasks. Finally, Chang et al. [2024] proposes to reuse the offline preference data via reset.

Reward-biased exploration in RL. Reward-biased maximum likelihood estimation (RBMLE)
promotes exploration by incoporating a bias term associated with the optimal value into the like-
lihood function. Kumar and Becker [1982] initiated the study of the RBMLE principle and proved
asymptotically convergence to optimal long-term reward for solving unknown MDPs. The approach
has been shown to achieve order-optimal finite-time regret bounds in multi-armed bandit problems
[Liu et al., 2020a, Hung et al., 2021] and online RL [Mete et al., 2021, Liu et al., 2024a] recently.
VPO draws inspiration from reward-biased exploration in the standard online RL literature, but
significantly broadens its scope to the offline setting and RLHF for the first time.
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Concurrent work on principled RLHF. Since posting the initial version of this work on
arXiv, we discovered several concurrent work that also appeared online around the same time
proposing similar regularization techniques as ours to encourage optimism (resp. pessimism) for
online (resp. offline) RLHF [Zhang et al., 2024b, Xie et al., 2024, Liu et al., 2024b]. In the context
of online RLHF, [Zhang et al., 2024b] empirically studies the similar algorithm as the proposed
online VPO under the contextual bandit formulation of RLHF; Xie et al. [2024] provides finite-
time regret analysis of the similar algorithm for the token-level MDP formulation with general
function approximation, which extends to general deterministic contextual MDP as well. In the
context of offline RLHF, Liu et al. [2024b] studies the similar algorithm as the proposed offline
VPO and provides sample complexity analysis under the same contextual bandit formulation, yet
focuses on general function approximation and different assumptions.

1.5 Thesis organization and notation

The rest of this thesis prospectus is organized as follows. Part I focuses on the theoretical devel-
opment of policy optimization for single-agent RL, where Chapter 2 and 3 provide the algorithms
and theories for learning entropy-regularized RL and general regularized RL, respectively. Part II
covers the main results on various multi-agent systems, with Chapter 4, 5, 6, 7 focusing on two-
player zero-sum matrix game, two-player zero-sum Markov game, multi-player polymatix game and
multi-player potential game, respectively.

We denote by ∆(S) (resp. ∆(A)) the probability simplex over the set S (resp. A). When
scalar functions such as | · |, exp(·) and log(·) are applied to vectors, their applications should be
understood in an entry-wise fashion. For instance, given any vector z = [zi]1≤i≤n ∈ Rn, the notation
| · | denotes |z| := [|zi|]1≤i≤n; other functions are defined analogously. For any vectors z = [zi]1≤i≤n

and w = [wi]1≤i≤n, the notation z ≥ w (resp. z ≤ w) means zi ≥ wi (resp. zi ≤ wi) for all 1 ≤ i ≤ n.
The softmax function softmax : Rn 7→ Rn is defined such that [softmax(θ)]i := exp(θi)/

(∑
i exp(θi)

)

for a vector θ = [θi]1≤i≤n ∈ Rn. For any convex and differentiable function h(·), the Bregman
divergence generated by h(·) is defined as

Dh(z, x) := h(z)− h(x)−
〈
∇h(x), z − x

〉
. (1.2)

For any convex (but not necessarily differentiable) function h(·), we denote by ∂h the subdifferential
of h. Given two probability distributions π1 and π2 over A, the Kullback-Leibler (KL) divergence

from π2 to π1 is defined by KL (π1 ∥π2) :=
∑

a∈A π1(a) log
π1(a)
π2(a)

. Given two probability distributions

p and q over S, we introduce the notation
∥∥p
q

∥∥
∞ := maxs∈S

p(s)
q(s) and

∥∥1
q

∥∥
∞ := maxs∈S

1
q(s) . Given

a matrix A, ∥A∥∞ is used to denote entrywise maximum norm, namely, ∥A∥∞ = maxi,j |Ai,j |.
The all-one vector is denoted as 1. We denote Jeffrey divergence [Jeffreys, 1998] by J(π, π′) =
KL (π ∥π′)+KL (π′ ∥π), which is the symmetric version of the KL divergence. For a vector a ∈ AN ,
we use ai ∈ A and a−i ∈ AN−1 to denote the entry with index i and all the rest entries as a vector,
respectively.
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Part I

Policy optimization for single-agent
RL
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Chapter 2

Entropy-regularized Natural Policy
Gradient Method

In this section, we formulate the problem of policy optimization for single-agent RL, as well as the
non-asymptotic convergence guarantee for entropy-regularized NPG method. For more details and
entire analysis, please refer to Cen et al. [2022b].

2.1 Model and algorithms

2.1.1 Problem settings

Markov decision processes. We focus on a discounted Markov decision process (MDP) [Put-
erman, 2014] denoted by M = (S,A, P, r, γ), where S is the state space, A is the action space,
γ ∈ (0, 1) indicates the discount factor, P : S ×A → ∆(S) is the transition kernel, and r : S ×A →
[0, 1] stands for the reward function.1 To be more specific, for each state-action pair (s, a) ∈ S ×A
and any state s′ ∈ S, we denote by P (s′|s, a) the transition probability from state s to state s′

when action a is taken, and r(s, a) the instantaneous reward received in state s due to action a. A
policy π : S → ∆(A) represents a (randomized) action selection rule, namely, π(a|s) specifies the
probability of executing action a in state s for each (s, a) ∈ S ×A.

Value functions and Q-functions. For any given policy π, we denote by V π : S → R the
corresponding value function, namely, the expected discounted cumulative reward with an initial
state s0 = s, given by

∀s ∈ S : V π(s) := E

[ ∞∑

t=0

γtr(st, at)
∣∣ s0 = s

]
, (2.1)

where the action at ∼ π(·|st) follows the policy π and st+1 ∼ P (·|st, at) is generated by the MDP
M for all t ≥ 0. We also overload the notation V π(ρ) to indicate the expected value function of a
policy π when the initial state is drawn from a distribution ρ over S, namely,

V π(ρ) := Es∼ρ [V
π(s)] . (2.2)

1For the sake of simplicity, we assume throughout that the reward resides within [0, 1]. Our results can be
generalized in a straightforward manner to other ranges of bounded rewards.
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Additionally, the Q-function Qπ : S × A → R of a policy π — namely, the expected discounted
cumulative reward with an initial state s0 = s and an initial action a0 = a — is defined by

∀(s, a) ∈ S ×A : Qπ(s, a) := E

[ ∞∑

t=0

γtr(st, at)
∣∣ s0 = s, a0 = a

]
, (2.3)

where the action at ∼ π(·|st) follows the policy π for all t ≥ 1, and st+1 ∼ P (·|st, at) is generated
by the MDPM for all t ≥ 0.

Discounted state visitation distributions. A type of marginal distributions — commonly
dubbed as discounted state visitation distributions — plays an important role in our theoretical
development. To be specific, the discounted state visitation distribution dπs0 of a policy π given the
initial state s0 ∈ S is defined by

∀s ∈ S : dπs0(s) := (1− γ)
∞∑

t=0

γtP(st = s | s0), (2.4)

where the trajectory (s0, s1, · · · ) is generated by the MDPM under policy π starting from state s0.
In words, dπs0(·) captures the state occupancy probabilities when each state visitation is properly
discounted depending on the time stamp. Further, for any distribution ρ over S, we define the
distribution dπρ as follows

∀s ∈ S : dπρ (s) := Es0∼ρ

[
dπs0(s)

]
, (2.5)

which describes the discounted state visitation distribution when the initial state s0 is randomly
drawn from a prescribed initial distribution ρ.

Softmax parameterization. It is common practice to parameterize the class of feasible poli-
cies in a way that is amenable to policy optimization. The focal point of this thesis is softmax
parameterization — a widely adopted scheme which naturally ensures that the policy lies in the
probability simplex. Specifically, for any θ : S × A → R (called “logic values”), the corresponding
softmax policy πθ is generated through the softmax transform

πθ := softmax(θ) or ∀(s, a) ∈ S ×A : πθ(a|s) :=
exp(θ(s, a))∑

a′∈A exp(θ(s, a′))
. (2.6)

In what follows, we shall often abuse the notation to treat πθ and θ as vectors in R|S||A|, and
suppress the subscript θ from πθ, whenever it is clear from the context.

Entropy-regularized value maximization. To promote exploration and discourage premature
convergence to suboptimal policies, a widely used strategy is entropy regularization, which searches
for a policy that maximizes the following entropy-regularized value function

V π
τ (ρ) := V π(ρ) + τ · H(ρ, π). (2.7)

Here, the quantity τ ≥ 0 denotes the regularization parameter, and H(ρ, π) stands for a sort of
discounted entropy defined as follows

H(ρ, π) := E
s0∼ρ,at∼π(·|st),

st+1∼P (·|st,at),∀t≥0

[ ∞∑

t=0

−γt log π(at|st)
]
=

1

1− γ E
s∼dπρ

[∑

a∈A
π(a|s) log 1

π(a|s)

]
. (2.8)
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Equivalently, V π
τ can be viewed as the value function of π by adjusting the instantaneous reward

to be policy-dependent regularized version as follows

∀(s, a) ∈ S ×A : rτ (s, a) := r(s, a)− τ log π(a|s). (2.9)

We also define V π
τ (s) analogously when the initial state is fixed to be any given state s ∈ S. The

regularized Q-function Qπ
τ of a policy π, also known as the soft Q-function,2 is related to V π

τ as

∀(s, a) ∈ S ×A : Qπ
τ (s, a) = r(s, a) + γEs′∼P (·|s,a)

[
V π
τ (s′)

]
, (2.10a)

∀s ∈ S : V π
τ (s) = Ea∼π(·|s)

[
− τ log π(a|s) +Qπ

τ (s, a)
]
. (2.10b)

Optimal policies and stationary distributions. Denote by π⋆ (resp. π⋆τ ) the policy that
maximizes the value function (resp. regularized value function with regularization parameter τ), and
let V ⋆ (resp. V ⋆

τ ) represent the resulting optimal value function (resp. regularized value function).
Importantly, the optimal policies π⋆ and π⋆τ of the MDP do not depend on the initial distribution
ρ [Mei et al., 2020b]. In addition, π⋆ and π⋆τ maximize the Q-function and the soft Q-function,
respectively (which is self-evident from (2.10a)). A simple yet crucial connection between π⋆ and
π⋆τ can be demonstrated via the following sandwich bound3

V π⋆
τ (ρ) ≤ V π⋆(ρ) ≤ V π⋆

τ (ρ) +
τ

1− γ log |A|, (2.11)

which holds for all initial distributions ρ. The key takeaway message is that: the optimal policy
π⋆τ of the regularized problem could also be nearly optimal in terms of the unregularized value
function, as long as the regularization parameter τ is chosen to be sufficiently small.

2.1.2 Algorithm: NPG methods with entropy regularization

Natural policy gradient methods. Towards computing the optimal policy (in the parame-
terized form), perhaps the first strategy that comes into mind is to run gradient ascent w.r.t. the
parameter θ until convergence — a first-order method commonly referred to as the policy gradi-
ent (PG) algorithm (e.g. Sutton et al. [2000]). In comparison, the natural policy gradient (NPG)
method [Kakade, 2001] adopts a pre-conditioned gradient update rule

θ ← θ + η
(
Fθ
ρ

)†∇θV
πθ(ρ), (2.12)

in the hope of searching along a direction independent of the policy parameterization in use. Here,
η is the learning rate or stepsize, Fθ

ρ denotes the Fisher information matrix given by

Fθ
ρ := E

s∼d
πθ
ρ ,a∼πθ(·|s)

[(
∇θ log πθ(a|s)

)(
∇θ log πθ(a|s)

)⊤]
, (2.13)

and we use B† to indicate the Moore-Penrose pseudoinverse of a matrix B. It has been understood
that the NPG method essentially attempts to monitor/control the policy changes approximately
in terms of the Kullback-Leibler (KL) divergence (see e.g. Schulman et al. [2015, Section 7]).

2In this thesis, we use the terms “regularized” value (resp. Q) functions and “soft” value (resp. Q) functions
interchangeably.

3To see this, invoke the optimality of π⋆
τ and the elementary entropy bound 0 ≤ H(ρ, π) ≤ 1

1−γ
log |A| to obtain

V π⋆
τ (ρ) + τ

1−γ
log |A| ≥ V π⋆

τ (ρ) + τH(ρ, π⋆
τ ) = V ⋆

τ (ρ) ≥ V π⋆
τ (ρ) ≥ V π⋆(ρ).
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NPG methods with entropy regularization. Equipped with entropy regularization, the NPG
update rule can be written as

θ ← θ + η
(
Fθ
ρ

)†∇θV
πθ
τ (ρ), (2.14)

where Fθ
ρ is defined in (2.13) and V π

τ (ρ) is defined in (2.7). Under softmax parameterization, this
update rule admits a fairly simple form in the policy space , which, interestingly, is invariant to
the choice of ρ. More precisely, if we let θ(t) denote the t-th iterate and π(t) = softmax(θ(t)) the
associated policy, then the entropy-regularized NPG updates satisfy

π(t+1)(a|s) =
1

Z(t)(s)

(
π(t)(a|s)

)1− ητ
1−γ exp

(ηQπ(t)

τ (s, a)

1− γ
)
, (2.15)

where Qπ(t)

τ is the soft Q-function of policy π(t), and Z(t)(s) is some normalization factor. This can
alternatively be viewed as an instantiation/variant of the trust region policy optimization (TRPO)
algorithm (see Schulman et al. [2015], Shani et al. [2020]). As an important special case, the update
rule (2.15) reduces to

π(t+1)(·|s) =
1

Z(t)(s)
exp

(Qπ(t)

τ (s, ·)
τ

)
when η =

1− γ
τ

(2.16)

for some normalization factor Z(t)(s). The procedure (2.16) can be interpreted as a “soft” version
of the classical policy iteration algorithm [Bertsekas, 2017] (as it employs a softmax function to
approximate the max operator) w.r.t. the soft Q-function, and is often dubbed as soft policy
iteration (SPI) (see Haarnoja et al. [2018, Section 4.1]).

To simplify notation, we shall use V
(t)
τ , Q

(t)
τ and d

(t)
ρ throughout to denote V π(t)

τ , Qπ(t)

τ and dπ
(t)

ρ ,
respectively. The complete procedure is summarized in Algorithm 1.

Algorithm 1: Entropy-regularized NPG with exact policy evaluation

1 inputs: learning rate η, initialization π(0).
2 for t = 0, 1, 2, · · · do
3 Compute the regularized Q-function Q

(t)
τ (defined in (2.10a)) of policy π(t).

4 Update the policy:

∀(s, a) ∈ S ×A : π(t+1)(a|s) = 1

Z(t)(s)

(
π(t)(a|s)

)1− ητ
1−γ exp

(ηQ(t)
τ (s, a)

1− γ
)
, (2.17)

where Z(t)(s) =
∑

a′∈A
(
π(t)(a′|s)

)1− ητ
1−γ exp

(ηQ(t)
τ (s,a′)
1−γ

)
.

2.2 Main results

2.2.1 Exact entropy-regularized NPG methods

We first study the convergence behavior of entropy-regularized NPG methods (2.17) assuming

access to exact policy evaluation in every iteration (namely, we assume the soft Q-function Q
(t)
τ

can be evaluated accurately in all t). Remarkably, this algorithm converges linearly — in terms of
computing both the optimal soft Q-function Q⋆

τ and the associated log policy log π⋆τ — as asserted
by the following theorem.
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Theorem 1 (Linear convergence of exact entropy-regularized NPG). For any learning rate 0 <
η ≤ (1− γ)/τ , the entropy-regularized NPG updates (2.17) satisfy

∥∥Q⋆
τ −Q(t+1)

τ

∥∥
∞ ≤ C1γ (1− ητ)t (2.18a)

∥∥log π⋆τ − log π(t+1)
∥∥
∞ ≤ 2C1τ

−1(1− ητ)t (2.18b)

for all t ≥ 0, where

C1 :=
∥∥Q⋆

τ −Q(0)
τ

∥∥
∞ + 2τ

(
1− ητ

1− γ

)∥∥log π⋆τ − log π(0)
∥∥
∞. (2.19)

It is worth emphasizing that Theorem 1 is stated in a completely non-asymptotic form containing
no hidden constants, and that our result covers any learning rate η in the range (0, (1− γ)/τ ]. A
few implications of this theorem are in order.

• Linear convergence of soft Q-functions. To reach
∥∥Q⋆

τ −Q(t)
τ

∥∥
∞ ≤ ε, the entropy-

regularized NPG method needs at most 1
ητ log

(
C1γ
ε

)
iterations. Remarkably, the iteration

complexity almost does not depend on the dimensions of the MDP (except for some very weak
dependency embedded in logC1) — this inherits a dimension-free feature of NPG methods
that has been highlighted in Agarwal et al. [2020b] for the unregularized case. When the
learning rate η is fixed in the admissible range, the iteration complexity scales inverse propor-
tionally with τ , suggesting a higher level of entropy regularization might accelerate conver-
gence, albeit to the solution of a regularized problem that is further away from the original
MDP.

• Linear convergence of log policies. In contrast to the unregularized case, entropy regu-
larization ensures uniqueness of the optimal policy and, therefore, makes it possible to study
the convergence of the policy directly. Our theorem reveals that the entropy-regularized NPG
method needs at most 1

ητ log
(
2C1
ετ

)
iterations to yield

∥∥log π⋆τ − log π(t+1)
∥∥
∞ ≤ ε.

• Linear convergence of soft value functions. As a byproduct, Theorem 1 implies that
the iterates of soft value functions also converge linearly, namely,

∥∥V ⋆
τ − V (t+1)

τ

∥∥
∞ ≤ (γ + 2)C1 (1− ητ)t . (2.20)

To see this, we make note of the following relation previously established in Nachum et al.
[2017]:

∀(s, a) ∈ S ×A : V ⋆
τ (s) = −τ log π⋆τ (a|s) +Q⋆

τ (s, a),

=⇒ V ⋆
τ (s) = E

a∼π(t+1)(·|s)

[
− τ log π⋆τ (a|s) +Q⋆

τ (s, a)
]
.

Consequently, combining this with the definition (2.10b) yields

∣∣V ⋆
τ (s)− V (t+1)

τ (s)
∣∣ = E

a∼π(t+1)(·|s)

[(
−τ log π⋆τ (a|s) +Q⋆

τ (s, a)
)
−
(
−τ log π(t+1)

τ (a|s) +Q(t+1)
τ (s, a)

)]

≤ τ
∥∥log π⋆τ − log π(t+1)

τ

∥∥
∞ +

∥∥Q⋆
τ −Q(t+1)

τ

∥∥
∞,

which together with (2.18) immediately establishes (2.20).
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• Convergence rate of SPI. The best convergence guarantee is achieved when η = (1− γ)/τ
(i.e. the SPI case), where the iteration complexity to reach

∥∥Q⋆
τ −Q(t)

τ

∥∥
∞ ≤ ε reduces to

1

1− γ log

(
γ
∥∥Q⋆

τ −Q(0)
τ

∥∥
∞

ε

)
,

which is proportional to the effective horizon 1
1−γ modulo some log factor. This means the

iteration complexity of SPI recovers that of policy iteration [Puterman, 2014]. Interestingly,
the contraction rate in this case (which is γ) is independent of the choice of the regularization
parameter τ . Similarly, the iteration complexity of SPI to reach

∥∥log π⋆τ − log π(t+1)
∥∥
∞ ≤ ε

becomes 1
1−γ log

(2∥Q⋆
τ−Q

(0)
τ ∥∞

ετ

)
, and the contraction rate is again independent of τ .

Comparison with entropy-regularized policy gradient methods. Mei et al. [2020b, The-
orem 6] proved that the entropy-regularized policy gradient method achieves4

V ⋆
τ (ρ)− V (t)

τ (ρ) ≤
(
V ⋆
τ (ρ)− V (0)

τ (ρ)
)

· exp


− (1− γ)4t

(8/τ + 4 + 8 log |A|)|S|

∥∥∥∥∥
d
π⋆
τ

ρ

ρ

∥∥∥∥∥

−1

∞

min
s
ρ(s)

(
inf

0≤k≤t−1
min
s,a

π(k)(a|s)
)2

 ,

and they further showed that infk≥0mins,a π
(k)(a|s) is non-vanishing in t. It remains unclear,

however, how inft≥0mins,a π
(t)(a|s) scales with other potentially large salient parameters like |S|,

|A|, 1
1−γ ,

1
τ . In truth, existing theory does not rule out the possibility of exponential dependency

on these salient parameters. It would thus be of great interest to establish algorithm-dependent
lower bounds to uncover the right scaling with these important parameters. In contrast, our
convergence guarantees for entropy-regularized NPG methods unveil concrete dependencies on all
problem parameters.

Computing an ε-optimal policy for the original MDP. Thus far, we have established an
intriguing convergence behavior of the entropy-regularized NPG method. However, caution needs
to be exercised when interpreting the efficacy of this method: the preceding results are concerned
with convergence to the optimal regularized value function V ⋆

τ , as opposed to finding the optimal
value function V ⋆ of the original MDP. Fortunately, by choosing the regularization parameter τ
to be sufficiently small (in accordance with the target accuracy level ε), we can guarantee that
V ⋆
τ ≈ V ⋆ (cf. (2.11)), thus ensuring the relevance and applicability of our results for solving the

original MDP. To be specific, let us adopt the following choice of τ :

τ =
(1− γ)ε
4 log |A| , (2.21)

and assume the error of the regularized value function satisfies
∥∥V ⋆

τ − V (t)
τ

∥∥
∞ < ε/2. By virtue

of Theorem 1, this optimization accuracy can be achieved via no more than 4 log |A|
(1−γ)ηε log

(
2C1γ
ε

)

iterations of entropy-regularized NPG updates with a general learning rate,5 or no more than

4Here, we have assumed the exact policy gradient is computed with respect to V
(t)
τ (ρ).

5This result is in fact better than the iteration complexity 2
(1−γ)2ε

of the unregularized NPG method established

in Agarwal et al. [2020b] as soon as η ≥ 2(1− γ) log |A| log
(
2C1γ

ε

)
. Consequently, our finding hints at the potential

advantage of entropy-regularized NPG methods over the unregularized counterpart even when solving the original
MDP.
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1
1−γ log

(γ
∥∥∥Q⋆

τ−Q
(0)
τ

∥∥∥
∞

ε

)
iterations with the specific choice η = 1−γ

τ . It then follows that

V ⋆(s)− V (t)(s) = V ⋆(s)− V ⋆
τ (s) + V ⋆

τ (s)− V (t)
τ (s) + V (t)

τ (s)− V (t)(s)

≤
(
V ⋆(s)− V ⋆

τ (s)
)
+
∥∥V ⋆

τ − V (t)
τ

∥∥
∞ +

(
V (t)
τ (s)− V (t)(s)

)

≤ 2τ log |A|
1− γ +

ε

2
= ε

for any s ∈ S, where we have used our choice of τ in (2.21). Here, the second inequality arises from
(2.11) as well as the fact that for any policy π,

∥∥V π
τ − V π

∥∥
∞ = τ max

s

∣∣H(s, π)
∣∣ ≤ τ log |A|

1− γ ,

given the elementary entropy bound 0 ≤ H(s, π) ≤ 1
1−γ log |A|.

2.2.2 Approximate entropy-regularized NPG methods

There is no shortage of scenarios where the soft Q-function Q
(t)
τ (s, a) is available only in an approx-

imate fashion, e.g. the cases when the value function has to be evaluated using finite samples. To
account for inexactness of policy evaluation, we extend our theory to accommodate the following
approximate update rule: for any s ∈ S and any t ≥ 0,

π(t+1)(·|s) ∝
(
π(t)(·|s)

)1− ητ
1−γ exp

(ηQ̂(t)
τ (s, ·)
1− γ

)
, where

∥∥Q̂(t)
τ −Q(t)

τ

∥∥
∞ ≤ δ. (2.22)

Here, δ is some quantity that captures the size of approximation errors. We do not specify the
estimator for the soft Q-function (as long as it satisfies the entrywise estimation bound), thus
allowing one to plug in both model-based and model-free value function estimators designed for
a variety of sampling mechanisms (e.g. Azar et al. [2013], Li et al. [2021]). Encouragingly, the
algorithm (2.22) is robust vis-à-vis inexactness of value function estimates, as it still converges
linearly until an error floor is hit.

Theorem 2 (Linear convergence of approximate entropy-regularized NPG). When 0 < η ≤ (1 −
γ)/τ , the inexact entropy-regularized NPG updates (2.22) satisfy

∥∥Q⋆
τ −Q(t+1)

τ

∥∥
∞ ≤ γ

[
(1− ητ)tC1 + C2

]
(2.23a)

∥∥log π⋆τ − log π(t+1)
∥∥
∞ ≤ 2τ−1

[
(1− ητ)tC1 + C2

]
(2.23b)

for all t ≥ 0, where C1 is the same as defined in (2.19) and C2 is given by

C2 :=
2δ

1− γ

(
1 +

γ

ητ

)
=

2δ

(1− γ)2
[
1 + γ

(
1− γ
ητ

− 1

)]
. (2.24)

Apparently, Theorem 2 reduces to Theorem 1 when δ = 0. As implied by this theorem, if the
ℓ∞ error of the soft-Q function estimates does not exceed

δ ≤ (1− γ)2ε
2γ
[
1 + γ

(
1−γ
ητ − 1

)] ,

then the algorithm (2.22) achieves 2ε-accuracy (i.e.
∥∥Q⋆

τ −Q(t)
τ

∥∥
∞ ≤ 2ε) within 1

ητ log
(C1γ

ε

)
itera-

tions. In particular, in the case of soft policy iteration (i.e. η = 1−γ
τ ), the tolerance level δ can be

up to (1−γ)2ε
2γ , which matches the theory of approximate policy iteration in Agarwal et al. [2019].

32



Remark 1. It is straightforward to combine Theorem 2 with known sample complexities for ap-
proximate policy evaluation to obtain a crude sample complexity bound. For instance, assuming
access to a generative model, Li et al. [2024b] asserts that for any fixed policy π, model-based policy
evaluation achieves

∥∥Q̂π
τ − Qπ

τ

∥∥
∞ ≤ δ with high probability, as long as the number of samples per

state-action pair exceeds the order of
1

(1− γ)3δ2
up to some logarithmic factor. By employing fresh samples for each policy evaluation, we can set

δ = (1−γ)2ε
2γ and invoke the union bound over Õ

(
1

1−γ

)
iterations to demonstrate that: SPI with

model-based policy evaluation needs at most

Õ
( |S| |A|
(1− γ)8ε2

)

samples to find an ε-optimal policy. Here, Õ(·) hides any logarithmic factor. We note, however,
that the above sample analysis is extremely crude and might be improvable by, say, allowing sample
reuses across iterations. It remains an interesting open question as to whether NPG with entropy
regularization is minimax-optimal with a generative model, where the minimax lower bound is on
the order of |S| |A|

(1−γ)3ε2
[Azar et al., 2013] and achievable by model-based plug-in estimators [Agarwal

et al., 2020a, Li et al., 2024b] but not by vanilla Q-learning [Li et al., 2024a].

2.3 Discussion

This thesis establishes non-asymptotic convergence of entropy-regularized natural policy gradient
methods, providing theoretical footings for the role of entropy regularization in guaranteeing fast
convergence. Our analysis opens up several directions for future research; we close the paper by
sampling a few of them.

• Extended analysis of policy gradient methods with inexact gradients. It would be of interest to
see whether our analysis framework can be applied to improve the theory of policy gradient
methods [Mei et al., 2020b] to accommodate the case with inexact policy gradients.

• Finite-sample analysis in the presence of sample-based policy evaluation. Another natural ex-
tension is towards understanding the sample complexity of entropy-regularized NPG methods
when the value functions are estimated using rollout trajectories (see e.g. Kakade and Lang-
ford [2002], Agarwal et al. [2020b], Shani et al. [2020]), or using bootstrapping (see e.g. Xu
et al. [2020c], Haarnoja et al. [2018], Wu et al. [2020]).

• Function approximation. The current work has been limited to the tabular setting. It would
certainly be interesting, and fundamentally important, to understand entropy-regularized
NPG methods in conjunction with function approximation; see Sutton et al. [2000], Agarwal
et al. [2019, 2020b] for a few representative scenarios.

• Beyond softmax parameterization. The current paper has been devoted to softmax parame-
terization, which enables a concise and NPG update rule. A couple of other parameterization
schemes have been proposed for (vanilla) PG methods as well [Agarwal et al., 2019, 2020b,
Bhandari and Russo, 2024, 2021], e.g. vanilla parameterization (paired with proper projec-
tion onto the probability simplex in each iteration), log-linear parameterization, and neural
softmax parameterization. Unfortunately, the analysis in our paper relies heavily on the
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softmax NPG update rule, and does not immediately extend to other parameterization. It
would be of great importance to establish convergence guarantees that accommodate other
parameterizations of practical interest.
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Chapter 3

Generalized Policy Mirror Descent
Method

In this section, we focus on the general framework of regularized RL that subsumes entropy regu-
larization as an special example. We present the proposed general policy mirror descent (GPMD)
method, as well as the accompanying theory confirming its convergence to the optimal policy. For
more details and entire analysis, please refer to Zhan et al. [2023a].

3.1 Model and algorithms

3.1.1 Problem settings

Regularized MDP. In practice, the agent is often asked to design policies that possess certain
structural properties in order to be cognizant of system constraints such as safety and operational
constraints, as well as encourage exploration during the optimization/learning stage. A natural
strategy to achieve these is to resort to the following regularized value function w.r.t. a given policy
π [Neu et al., 2017, Mei et al., 2020b, Cen et al., 2022b, Lan, 2023]:

∀s ∈ S : V π
τ (s) := E

at∼π(·|st),
st+1∼P (·|st,at), ∀t≥0

[ ∞∑

t=0

γt
{
r(st, at)− τhst

(
π(· | st)

)} ∣∣∣ s0 = s

]

= V π(s)− τ

1− γ
∑

s′∈S
dπs (s

′)hs′
(
π(· | s′)

)
, (3.1)

where hs : ∆ζ(A) → R stands for a convex and possibly nonsmooth regularizer for state s, τ > 0
denotes the regularization parameter, and dπs (·) is defined in (2.4). Here, for technical convenience,
we assume throughout that hs(·) (s ∈ S) is well-defined over an “ζ-neighborhood” of the probability
simplex ∆(A) defined as follows

∆ζ(A) :=
{
x = [xa]a∈A

∣∣∣ xa ≥ 0 for all a ∈ A; 1− ζ ≤
∑

a∈A
xa ≤ 1 + ζ

}
,

where ζ > 0 can be an arbitrary constant. For instance, entropy regularization adopts the choice
hs(p) =

∑
i∈A pi log pi for all s ∈ S and p ∈ ∆(A), which coincides with the negative Shannon

entropy of a probability distribution. Similar, a KL regularization adopts the choice hs(p) =
KL (( ∥ p) ∥ pref), which penalizes the distribution p that deviates from the reference pref . As another
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example, a weighted ℓ1 regularization adopts the choice hs(p) =
∑

i∈Aws,ipi for all s ∈ S and
p ∈ ∆(A), where ws,i ≥ 0 is the cost of taking action i at state s, and the regularizer hs(π(·|s))
captures the expected cost of the policy π in state s. Throughout this thesis, we impose the
following assumption.

Assumption 1. Consider an arbitrarily small constant ζ > 0. For for any s ∈ S, suppose that
hs(·) is convex and

hs(p) =∞ for any p /∈ ∆ζ(A). (3.2)

Following the convention in prior literature (e.g., Mei et al. [2020b]), we also define the corre-
sponding regularized Q-function as follows:

∀(s, a) ∈ S ×A : Qπ
τ (s, a) := r(s, a) + γ E

s′∼P (·|s,a)

[
V π
τ (s′)

]
. (3.3a)

As can be straightforwardly verified, one can also express V π
τ in terms of Qπ

τ as

∀s ∈ S : V π
τ (s) := E

a∼π(·|s)

[
Qπ

τ (s, a)− τhs
(
π(· | s)

)]
. (3.3b)

The optimal regularized value function V ⋆
τ and the corresponding optimal policy π⋆τ are defined

respectively as follows:

∀s ∈ S : V ⋆
τ (s) := V π⋆

τ
τ (s) = max

π
V π
τ (s), π⋆τ := argmax

π
V π
τ . (3.4)

It is worth noting that Puterman [2014] asserts the existence of an optimal policy π⋆τ that achieves
(3.4) simultaneously for all s ∈ S. Correspondingly, we shall also define the resulting optimal
regularized Q-function as

∀(s, a) ∈ S ×A : Q⋆
τ (s, a) = Qπ⋆

τ
τ (s, a). (3.5)

3.1.2 Algorithm: generalized policy mirror descent

Motivated by PMD [Lan, 2023], we put forward a generalization of PMD that selects the Bregman
divergence in cognizant of the regularizer in use. A thorough comparison with Lan [2023] will be
provided after introducing our generalized PMD algorithm.

Review: mirror descent (MD) for the composite model. To better elucidate our algorith-
mic idea, let us first briefly review the design of classical mirror descent—originally proposed by
Nemirovsky and Yudin [1983]—in the optimization literature. Consider the following composite
model:

minimizex F (x) := f(x) + h(x),

where the objective function consists of two components. The first component is assumed to be
differentiable, while the second component h(·) can be more general and is commonly employed to
model some sort of regularizers. To solve this composite problem, one variant of mirror descent
adopts the following update rule (see also Beck [2017], Duchi et al. [2010]):

x(k+1) = argmin
x

{
f
(
x(k)

)
+
〈
∇f(x(k)), x

〉
+ h(x) +

1

η
Dh

(
x, x(k)

)}
, (3.6)
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where η > 0 is the learning rate or step size, and Dh(·, ·) is the Bregman divergence defined in
(1.2). Note that the first term within the curly brackets of (3.6) can be safely discarded as it
is a constant given x(k). In words, the above update rule approximates f(x) via its first-order
Taylor expansion f

(
x(k)

)
+
〈
∇f(x(k)), x

〉
at the point x(k), employs the Bregman divergence Dh

to monitor the difference between the new iterate and the current iterate x(k), and attempts to
optimize such (properly monitored) approximation instead. While one can further generalize the
Bregman divergence to Dω for a different generator ω, we shall restrict attention to the case with
h = ω in the current paper.

The proposed algorithm. We are now ready to present the algorithm we come up with, which
is an extension of the PMD algorithm [Lan, 2023]. For notational simplicity, we shall write

V (k)
τ := V π(k)

τ , Q(k)
τ (s, a) := Qπ(k)

τ (s, a) and d(k)s0 (s) := dπ
(k)

s0 (s) (3.7)

throughout the paper, where π(k) denotes our policy estimate in the k-th iteration.
To begin with, suppose for simplicity that hs(·) is differentiable everywhere. In the k-th itera-

tion, a natural MD scheme that comes into mind for solving (3.1)—namely, maximizeπV
π
τ (s0) for

a given initial state s0—is the following update rule:

π(k+1)(· | s) = arg min
p∈∆(A)

{
−
〈
∇π(·|s)V

π
τ (s0)

∣∣∣
π=π(k)

, p
〉
+

τ

1− γ d
(k)
s0 (s)hs(p) +

1

η′
Dhs

(
p, π(k)(· | s)

)}

= arg min
p∈∆(A)

{
1

1− γ d
(k)
s0 (s)

{
−
〈
Q(k)

τ (s, ·), p
〉
+ τhs(p)

}
+

1

η′
Dhs

(
p, π(k)(· | s)

)}

= arg min
p∈∆(A)

{
−
〈
Q(k)

τ (s, ·), p
〉
+ τhs(p) +

1

η
Dhs

(
p, π(k)(· | s)

)}
(3.8)

for every state s ∈ S, which is a direct application of (3.6) to our setting. Here, we start with

a learning rate η′, and obtain simplification by replacing η′ with η(1− γ)/d(k)s0 (s). Notably, the
update strategy (3.8) is invariant to the initial state s0, akin to natural policy gradient methods
[Agarwal et al., 2020b].

This update rule is well-defined for, say, the case when hs is the negative entropy, since the
algorithm guarantees π(k) > 0 all the time and hence hs is always differentiable w.r.t. the k-th
iterate (see Cen et al. [2022b]). In general, however, it is possible to encounter situations when
the gradient of hs does not exist on the boundary (e.g., when hs represents a certain indicator
function). To cope with such cases, we resort to a generalized version of Bregman divergence (e.g.,
Kiwiel [1997], Lan et al. [2011], Lan and Zhou [2018]). To be specific, we attempt to replace the
usual Bregman divergence Dhs(p, q) by the following metric

Dhs(p, q; gs) := hs(p)− hs(q)− ⟨gs, p− q⟩ ≥ 0, (3.9)

where gs can be any vector falling within the subdifferential ∂hs(q). Here, the non-negativity
condition in (3.9) follows directly from the definition of the subgradient for any convex function.
The constraint on gs can be further relaxed by exploiting the requirement p, q ∈ ∆(A). In fact, for
any vector ξs = gs − cs1 (with cs ∈ R some constant and 1 the all-one vector), one can readily see
that

Dhs(p, q; gs) = hs(p)− hs(q)− ⟨gs, p− q⟩ = hs(p)− hs(q)− ⟨ξs, p− q⟩+ cs⟨1, p− q⟩
= hs(p)− hs(q)− ⟨ξs, p− q⟩ = Dhs(p, q; ξs), (3.10)
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where the last line is valid since 1⊤p = 1⊤q = 1. As a result, everything boils down to identifying
a vector ξs that falls within ∂hs(q) upon global shift.

Towards this, we propose the following iterative rule for designing such a sequence of vectors as
surrogates for the subgradient of hs:

ξ(0)(s, ·) ∈ ∂hs
(
π(0)(· | s)

)
; (3.11a)

ξ(k+1)(s, ·) = 1

1 + ητ
ξ(k)(s, ·) + η

1 + ητ
Q(k)

τ (s, ·), k ≥ 0, (3.11b)

where ξ(k+1)(s, ·) is updated as a convex combination of the previous ξ(k)(s, ·) and Q(k)
τ (s, ·), where

more emphasis is put on Q
(k)
τ (s, ·) when the learning rate η is large. As asserted by the following

lemma, the above vectors ξ(k)(s, ·) we construct satisfy the desired property, i.e., lying within the
subdifferential of hs under suitable global shifts. It is worth mentioning that these global shifts

{c(k)s } only serve as an aid to better understand the construction, but are not required during the
algorithm updates.

Lemma 1. For all k ≥ 0 and every s ∈ S, there exists a quantity c
(k)
s ∈ R such that

ξ(k)(s, ·)− c(k)s 1 ∈ ∂hs
(
π(k)(· | s)

)
. (3.12)

In addition, for every s ∈ S, there exists a quantity c⋆s ∈ R such that

τ−1Q⋆
τ (s, ·)− c⋆s1 ∈ ∂hs

(
π⋆τ (· | s)

)
. (3.13)

Thus far, we have presented all crucial ingredients of our algorithm. The whole procedure is
summarized in Algorithm 2, and will be referred to as Generalized Policy Mirror Descent (GPMD)
throughout the paper. Interestingly, several well-known algorithms can be recovered as special
cases of GPMD:

• When the Bregman divergence Dhs(·, ·) is taken as the KL divergence, GPMD reduces to the
well-renowned NPG algorithm [Kakade, 2001] when τ = 0 (no regularization), and to the
NPG algorithm with entropy regularization analyzed in Cen et al. [2022b] when hs(·) is taken
as the negative Shannon entropy.

• When η = ∞ (no divergence), GPMD reduces to regularized policy iteration in Geist et al.
[2019]; in particular, GPMD reduces to the standard policy iteration algorithm if in addition
τ is also 0.

Comparison with PMD [Lan, 2023]. Before continuing, let us take a moment to point out
the key differences between our algorithm GPMD and the PMD algorithm proposed in Lan [2023]
in terms of algorithm designs. Although the primary exposition of PMD in Lan [2023] fixes the
Bregman divergence as the KL divergence, the algorithm also works in the presence of a generic
Bregman divergence, whose relationship with the regularizer hs is, however, unspecified. Further-
more, GPMD adaptively sets this term to be the Bregman divergence generated by the regularizer
hs in use, together with a carefully designed recursive update rule (cf. (3.11)) to compute surrogates
for the subgradient of hs to facilitate implementation. Encouragingly, this specific choice leads to
a tailored performance analysis of GPMD, which was not present in and instead complementary
with that of PMD [Lan, 2023]. In truth, our theory offers linear convergence guarantees for more
general scenarios by adapting to the geometry of the regularizer hs; details to follow momentarily.
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Algorithm 2: PMD with generalized Bregman divergence (GPMD)

1 Input: initial policy iterate π(0), learning rate η > 0.

2 Initialize ξ(0) so that ξ(0)(s, ·) ∈ ∂hs
(
π(0)(·|s)

)
for all s ∈ S.

3 for k = 0, 1, · · · , do
4 For every s ∈ S, set

π(k+1)(·|s) = arg min
p∈∆(A)

{
−
〈
Q(k)

τ (s, ·), p
〉
+ τhs(p) +

1

η
Dhs

(
p, π(k)(·|s); ξ(k)

)}
,

(3.14a)
where

Dhs

(
p, q; ξ

)
:= hs(p)− hs(q)−

〈
ξ(s, ·), p− q

〉
. (3.14b)

5 For every (s, a) ∈ S ×A, compute

ξ(k+1)(s, a) =
1

1 + ητ
ξ(k)(s, a) +

η

1 + ητ
Q(k)

τ (s, a). (3.14c)

3.2 Main results

This section presents our convergence guarantees for the GPMD method presented in Algorithm 2.
We shall start with the idealized case assuming that the update rule can be precisely implemented,
and then discuss how to generalize it to the scenario with imperfect policy evaluation.

3.2.1 Convergence of exact GPMD

To start with, let us pin down the convergence behavior of GPMD, assuming that accurate evalu-

ation of the policy Q
(k)
τ is available and the subproblem (3.14a) can be solved perfectly. Here and

below, we shall refer to the algorithm in this case as exact GPMD. Encouragingly, exact GPMD
provably achieves global linear convergence from an arbitrary initialization, as asserted by the
following theorem.

Theorem 3 (Exact GPMD). Suppose that Assumption 1 holds. Consider any learning rate η > 0,
and set α := 1

1+ητ . Then the iterates of Algorithm 2 satisfy

∥∥Q⋆
τ −Q(k+1)

τ

∥∥
∞ ≤ γ

(
1− (1− α)(1− γ)

)k
C1, (3.15a)

∥∥V ⋆
τ − V (k+1)

τ

∥∥
∞ ≤ (γ + 2)

(
1− (1− α)(1− γ)

)k
C1, (3.15b)

for all k ≥ 0, where C1 := ∥Q⋆
τ −Q(0)

τ ∥∞ + 2α∥Q⋆
τ − τξ(0)∥∞.

In addition, if hs is 1-strongly convex w.r.t. the ℓ1 norm for some s ∈ S, then one further has

∥∥π⋆τ (s)− π(k+1)
τ (s)

∥∥
1
≤ τ−1

(
1− (1− α)(1− γ)

)k
C1, k ≥ 0. (3.16)

Our theorem confirms the fast global convergence of the GPMD algorithm, in terms of both
the resulting regularized Q-value (if hs(·) is convex) and the policy estimate (if hs(·) is strongly
convex). In summary, it takes GPMD no more than

1

(1− α)(1− γ) log
C1

ε
=

1 + ητ

ητ(1− γ) log
C1

ε
(3.17a)
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iterations to converge to an ε-optimal regularized Q-function (in the ℓ∞ sense), or

1

(1− α)(1− γ) log
C1

ετ
=

1 + ητ

ητ(1− γ) log
C1

ετ
(3.17b)

iterations to yield an ε-approximation (w.r.t. the ℓ1 norm error) of π⋆τ . The iteration complexity
(3.17) is nearly dimension-free—namely, depending at most logarithmically on the dimension of
the state-action space —making it scalable to large-dimensional problems.

Comparison with Lan [2023, Theorems 1-3]. To make clear our contributions, it is helpful
to compare Theorem 3 with the theory for the state-of-the-art algorithm PMD in Lan [2023].

• Linear convergence for convex regularizers under constant learning rates. Suppose that con-
stant learning rates are adopted for both GPMD and PMD. Our finding reveals that GPMD

enjoys global linear convergence—in terms of both ∥Q⋆
τ−Q(k+1)

τ ∥∞ and ∥V ⋆
τ −V (k+1)

τ ∥∞—even
when the regularizer hs(·) is only convex but not strongly convex. In contrast, Lan [2023,
Theorem 2] provided only sublinear convergence guarantees (with an iteration complexity
proportional to 1/ε) for the case with convex regularizers, provided that constant learning
rates are adopted.1

• A full range of learning rates. Theorem 3 reveals linear convergence of GPMD for a full range
of learning rates, namely, our result is applicable to any η > 0. In comparison, linear con-
vergence was established in Lan [2023] only when the learning rates are sufficiently large and
when hs is 1-strongly convex w.r.t. the KL divergence. Consequently, the linear convergence
results in Lan [2023] do not extend to several widely used regularizers such as negative Tsallis
entropy and log-barrier functions (even after scaling), which are, in contrast, covered by our
theory. It is worth noting that the case with small-to-medium learning rates is often more
challenging to cope with in theory, given that its dynamics could differ drastically from that
of regularized policy iteration.

• Further comparison of rates under large learning rates. [Lan, 2023, Theorem 1] achieves
a contraction rate of γ when the regularizer is strongly convex and the step size satisfies
η ≥ 1−γ

γτ , while the contraction rate of GPMD is 1− ητ
1+ητ (1− γ) under the full range of the

step size, which is slower but approaches the contraction rate γ of PMD as η goes to infinity.
Therefore, in the limit η → ∞, both GPMD and PMD achieve the contraction rate γ. As
soon as η ≥ 1/τ , their iteration complexities are on the same order.

3.2.2 Convergence of approximate GPMD

In reality, however, it is often the case that GPMD cannot be implemented in an exact manner,
either because perfect policy evaluation is unavailable or because the subproblem (3.14a) cannot
be solved exactly. To accommodate these practical considerations, this subsection generalizes our
previous result by permitting inexact policy evaluation and non-zero optimization error in solving
(3.14a). The following assumptions make precise this imperfect scenario.

Assumption 2 (Policy evaluation error). Suppose for any k ≥ 0, we have access to an estimate

Q̂
(k)
τ obeying ∥∥Q̂(k)

τ −Q(k)
τ

∥∥
∞ ≤ εeval. (3.18)

1In fact, Lan [2023, Theorem 3] suggests using a vanishing strongly convex regularization, as well as a corresponding
increasing sequence of learning rates, in order to enable linear convergence for non-strongly-convex regularizers.
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Assumption 3 (Subproblem optimization error). Consider any policy π and any vector ξ ∈ R|S||A|.
Define

fs(p;π, ξ) := −
〈
Q(s, ·), p

〉
+ τhs(p) +

1

η
Dhs

(
p, π(· | s); ξ(s, ·)

)
,

where Dhs(p, q; ξ) is defined in (3.9). Suppose there exists an oracle Gs,εopt(Q, π, ξ), which is capable
of returning π′(· | s) such that

fs
(
π′(· | s);π, ξ

)
≤ min

p∈∆(A)
fs(p;π, ξ) + εopt. (3.19)

Note that the oracle in Assumption 3 can be implemented efficiently in practice via various first-
order methods [Beck, 2017]. Under Assumptions 2 and 3, we can modify Algorithm 2 by replacing

{Q(k)
τ } with the estimate {Q̂(k)

τ }, and invoking the oracle Gs,εopt(Q, π, ξ) to solve the subproblem
(3.14a) approximately. The whole procedure, which we shall refer to as approximate GPMD, is
summarized in Algorithm 3.

Algorithm 3: Approximate PMD with generalized Bregman divergence (Approximate
GPMD)

1 Input: initial policy π(0), learning rate η > 0.

2 Initialize ξ̂(0)(s) ∈ ∂hs
(
π(0)(· | s)

)
for all s ∈ S.

3 for k = 0, 1, · · · , do
4 For every s ∈ S, invoke the oracle to obtain (cf. (3.19))

π(k+1)(s) = Gs,εopt

(
Q̂(k)

τ , π(k), ξ̂(k)
)
. (3.20)

5 For every (s, a) ∈ S ×A, compute

ξ̂(k+1)(s, a) =
1

1 + ητ
ξ̂(k)(s, a) +

η

1 + ητ
Q̂(k)

τ (s, a). (3.21)

The following theorem uncovers that approximate GPMD converges linearly—at the same rate
as exact GPMD—before an error floor is hit.

Theorem 4 (Approximate GPMD). Suppose that Assumptions 1, 2 and 3 hold. Consider any
learning rate η > 0. Then the iterates of Algorithm 3 satisfy

∥Q⋆
τ −Q(k+1)

τ ∥∞ ≤ γ
[(
1− (1− α)(1− γ)

)k
C1 + C2

]
, (3.22a)

∥V ⋆
τ − V (k+1)

τ ∥∞ ≤ (γ + 2)
[(
1− (1− α)(1− γ)

)k
C1 + C2

]
+ (1− α)εopt, (3.22b)

where α := 1
1+ητ , C1 is defined in Theorem 3, and

C2 :=
1

1− γ

[(
2 +

2γ

(1− γ)(1− α)

)
εeval +

(
1 +

2γ

(1− γ)(1− α)

)
εopt

]
.

In addition, if hs is 1-strongly convex w.r.t. the ℓ1 norm for any s ∈ S, then we can further
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obtain

∥Q⋆
τ −Q(k+1)

τ ∥∞ ≤ γ
[(
1− (1− α)(1− γ)

)k
C1 + C3

]
, (3.23a)

∥V ⋆
τ − V (k+1)

τ ∥∞ ≤ (γ + 2)
[(
1− (1− α)(1− γ)

)k
C1 + C3

]
+ (1− α)εopt, (3.23b)

∥∥π⋆τ (· | s)− π(k+1)(· | s)
∥∥
1
≤ τ−1

[(
1− (1− α)(1− γ)

)k
C1 + C3

]
+

√
2ηεopt
1 + ητ

, (3.23c)

where

C3 :=
1

1− γ

[(
2 +

εevalγ

τ(1− γ)

)
εeval +

(
1 +

4γ

(1− γ)(1− α)

)
εopt

]
. (3.24)

In the special case where εopt = 0 and η = ∞, Algorithm 3 reduces to regularized policy
iteration, and the convergence result can be simplified as follows

∥∥Q⋆
τ −Q(k)

τ

∥∥
∞ ≤ γ

k
∥∥Q⋆

τ −Q(0)
τ

∥∥
∞ +

2γεeval
(1− γ)‘2 .

In particular, when hs is taken as the negative entropy, our result strengthens the prior result
established in Cen et al. [2022b] for approximate entropy-regularized NPG method with εopt = 0
over a wide range of learning rates. Specifically, the error bound in Cen et al. [2022b] reads

γ · εeval
1−γ

(
2 + 2γ

ητ

)
, where the second term in the bracket scales inversely with respect to η and

therefore grows unboundedly as η approaches 0. In contrast, (3.23) and (3.24) suggest a bound

γ · εeval1−γ

(
2 + εevalγ

τ(1−γ)

)
, which is independent of the learning rate η in use and thus prevents the error

bound from blowing up when the learning rate approaches 0. Indeed, our result improves over the
prior art Cen et al. [2022b] whenever η ≤ 2(1−γ)

εeval
.

Remark 2 (Sample complexities). One might naturally ask how many samples are sufficient to
learn an ε-optimal regularized Q-function, by leveraging sample-based policy evaluation algorithms
in GPMD. Notice that it is straightforward to consider an expected version of Assumption 2 as
following: 



E
[∥∥Q̂(k)

τ −Q(k)
τ

∥∥
∞
]
≤ εeval;

E
[∥∥Q̂(k)

τ −Q(k)
τ

∥∥2
∞
]
≤ ε2eval,

where the expectation is with respect to the randomness in policy evaluation, then the convergence

results in Theorem 4 apply to E
[
∥Q⋆

τ − Q(k+1)
τ ∥∞

]
and E

[∥∥π⋆τ (· | s) − π(k+1)
τ (· | s)

∥∥
1

]
instead. This

randomized version makes it immediately amenable to combine with, e.g., the rollout-based policy
evaluators in Lan [2023, Section 5.1] to obtain (possibly crude) bounds on the sample complexity.
We omit these straightforward developments.

Roughly speaking, approximate GPMD is guaranteed to converge linearly to an error bound
that scales linearly in both the policy evaluation error εeval and the optimization error εopt, thus
confirming the stability of our algorithm vis-à-vis imperfect implementation of the algorithm. As
before, our theory improves upon prior works by demonstrating linear convergence for a full range
of learning rates even in the absence of strong convexity and smoothness.

3.3 Discussion

The present paper has introduced a generalized framework of policy optimization tailored to reg-
ularized RL problems. We have proposed a generalized policy mirror descent (GPMD) algorithm
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that achieves dimension-free linear convergence, which covers an entire range of learning rates and
accommodates convex and possibly nonsmooth regularizers. Numerical experiments have been con-
ducted to demonstrate the utility of the proposed GPMD algorithm. Our approach opens up a
couple of future directions that are worthy of further exploration. For example, the current work
restricts its attention to convex regularizers and tabular MDPs; it is of paramount interest to de-
velop policy optimization algorithms when the regularizers are nonconvex and when sophisticated
policy parameterization—including function approximation—is adopted. Understanding the sam-
ple complexities of the proposed algorithm—when the policies are evaluated using samples collected
over an online trajectory—is crucial in sample-constrained scenarios and is left for future investi-
gation. Furthermore, it might be worthwhile to extend the proposed algorithm to accommodate
multi-agent RL, with a representative example being regularized multi-agent Markov games [Cen
et al., 2021, Zhao et al., 2022, Cen et al., 2022a, 2023].
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Part II

Policy optimization for multi-agent
Systems
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Chapter 4

Two-player Zero-sum Matrix Games

In this chapter, we consider a two-player zero-sum game with bilinear objective and probability
simplex constraints, and demonstrate the positive role of entropy regularization in solving this
problem. Throughout this thesis, let A = {1, . . . ,m} and B = {1, . . . , n} be the action spaces of
each player. For more details and entire analysis, please refer to Cen et al. [2021].

4.1 Background and problem formulation

Zero-sum two-player matrix game. The focal point of this section is a constrained two-player
zero-sum matrix game, which can be formulated as the following min-max problem (or saddle point
optimization problem):

max
µ∈∆(A)

min
ν∈∆(B)

f(µ, ν) := µ⊤Aν, (4.1)

whereA ∈ Rm×n denotes the payoff matrix, µ ∈ ∆(A) and ν ∈ ∆(B) stand for the mixed/randomized
policies of each player, defined respectively as distributions over the probability simplex ∆(A) and
∆(B). It is well known since Neumann [1928] that the max and min operators in (4.1) can be
exchanged without affecting the solution. A pair of policies (µ⋆, ν⋆) is said to be a Nash equilibrium
(NE) of (4.1) if

f(µ⋆, ν) ≥ f(µ⋆, ν⋆) ≥ f(µ, ν⋆) for all (µ, ν) ∈ ∆(A)×∆(B). (4.2)

In words, the NE corresponds to when both players play their best-response strategies against their
respective opponents.

Entropy-regularized zero-sum two-player matrix game. There is no shortage of scenarios
where the payoff matrix A might not be known perfectly. In an attempt to accommodate im-
perfect knowledge of A, McKelvey and Palfrey [1995] proposed a seminal extension to the Nash
equilibrium called the quantal response equilibrium (QRE) when the payoffs are perturbed by
Gumbel-distributed noise. Formally, this amounts to solving the following matrix game with en-
tropy regularization [Mertikopoulos and Sandholm, 2016]:

max
µ∈∆(A)

min
ν∈∆(B)

fτ (µ, ν) := µ⊤Aν + τH(µ)− τH(ν), (4.3)

where H(π) := −∑i πi log(πi) denotes the Shannon entropy of a distribution π, and τ ≥ 0 is the
regularization parameter. As is well known, the optimal solution (µ⋆τ , ν

⋆
τ ) to (4.3), dubbed as the
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QRE, is unique whenever τ > 0 (due to the presence of strong concavity/convexity), which satisfies
the following fixed point equations:




µ⋆τ (a) =

exp([Aν⋆τ ]a/τ)∑m
a=1 exp([Aν⋆τ ]a/τ)

∝ exp([Aν⋆τ ]a/τ), for all a ∈ A,

ν⋆τ (b) =
exp(−[A⊤µ⋆

τ ]b/τ)∑n
b=1 exp(−[A⊤µ⋆

τ ]b/τ)
∝ exp(−[A⊤µ⋆τ ]b/τ), for all b ∈ B.

(4.4)

Goal. We aim to efficiently compute the QRE of the entropy-regularized matrix game in a decen-
tralized manner, and investigate how an efficient solver of QRE can be leveraged to find a NE of the
unregularized matrix game (4.1). Namely, we only assume access to “first-order information” as
opposed to full knowledge of the payoff matrix A or the actions of the opponent. The information
received by each player is formally described in the following sampling oracle.

Definition 1 (Sampling oracle for matrix games). For any policy pair (µ, ν) and payoff matrix A,
the sampling oracle returns the exact values of µ⊤A and Aν.

Additional notation. For notational convenience, we let ζ represent the concatenation of µ ∈
R|A| and ν ∈ R|B|, namely, ζ = (µ, ν). The solution to (4.3), which is specified in (4.4), is denoted
by ζ⋆τ = (µ⋆τ , ν

⋆
τ ). For any ζ = (µ, ν) and ζ ′ = (µ′, ν ′), we shall often abuse the notation and let

KL
(
ζ ∥ ζ ′

)
= KL

(
µ ∥µ′

)
+ KL

(
ν ∥ ν ′

)
.

The duality gap of the entropy-regularized matrix game (4.3) at ζ = (µ, ν) is defined as

DualGapτ (ζ) = max
µ′∈∆(A)

fτ (µ
′, ν)− min

ν′∈∆(B)
fτ (µ, ν

′) (4.5)

which is clearly nonnegative and DualGapτ (ζ
⋆
τ ) = 0. Similarly, let the optimality gap of the entropy-

regularized matrix game (4.3) at ζ = (µ, ν) be OptGap(ζ) =
∣∣fτ (µ, ν)− fτ (µ⋆τ , ν⋆τ )

∣∣.

4.2 Proposed extragradient methods: PU and OMWU

To begin, assume we are given a pair of policies z1 ∈ A, z2 ∈ B employed by each player respectively.
If we proceed with fictitious play, i.e. player 1 (resp. player 2) aims to optimize its own policy
by assuming the opponent’s policy is fixed as z2 (resp. z1), the saddle-point optimization problem
(4.3) is then decoupled into two independent min/max optimization problems:

max
µ∈∆(A)

µ⊤Az2 + τH(µ)− τH(z2) and min
ν∈∆(B)

z⊤1 Aν + τH(z1)− τH(ν),

which are naturally solved via mirror descent / ascent with KL divergence. Specifically, one step of
mirror descent / ascent takes the form




µ(t+1) = argmaxµ∈∆(A) (Az2 − τ logµ(t))⊤µ− 1

ηKL
(
µ ∥µ(t)

)

ν(t+1) = argminν∈∆(B) (A
⊤z1 + τ log ν(t))⊤ν + 1

ηKL
(
ν ∥ ν(t)

) ,

where η is the learning rate, or equivalently



µ(t+1)(a) ∝ µ(t)(a)1−ητ

exp(η[Az2]a), for all a ∈ A,

ν(t+1)(b) ∝ ν(t)(b)1−ητ
exp(−η[A⊤z1]b), for all b ∈ B.

(4.6)

The above update rule forms the basis of our algorithm design.
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Motivation: a form of implicit updates with linear convergence. To begin with, we select
the policy pair (z1, z2) = ζ(t+1) := (µ(t+1), ν(t+1)) as the solution to the following equations, and
call the conceptual update rule as the Implicit Update (IU) method:

Implicit Update:




µ(t+1)(a) ∝ µ(t)(a)1−ητ

exp(η[Aν(t+1)]a), for all a ∈ A,

ν(t+1)(b) ∝ ν(t)(b)1−ητ
exp(−η[A⊤µ(t+1)]b), for all b ∈ B.

(4.7)

Though unrealistic — since it uses the future updates and denies closed-form solutions — it leads
to a one-step convergence to the QRE when η = 1/τ (see the optimality condition in (4.4)).
Encouragingly, we have the following linear convergence guarantee of IU when adopting a general
learning rate.

Proposition 1 (Linear convergence of IU). Assume 0 < η ≤ 1/τ , then for all t ≥ 0, the iterates
ζ(t) := (µ(t), ν(t)) of the IU method in (4.7) satisfy

KL
(
ζ⋆τ ∥ ζ(t)

)
≤ (1− ητ)tKL

(
ζ⋆τ ∥ ζ(0)

)
.

In words, the IU method achieves an appealing linear rate of convergence that is independent
of the problem dimension. Motivated by this observation, we seek to design algorithms where the
policies (z1, z2) employed in (4.6) serve as good predictions of (µ(t+1), ν(t+1)), such that the resulting
algorithms are both practical and retain the appealing convergence rate of IU.

Proposed algorithms. We propose two extragradient algorithms for solving the entropy-regularized
matrix game, namely the Predictive Update (PU)method and the Optimistic Multiplicative Weights
Update (OMWU) method, where the latter is adapted from Rakhlin and Sridharan [2013]. Detailed
procedures can be found in Algorithm 4 and Algorithm 5, respectively. On a high level, both
algorithms maintain two intertwined sequences {(µ(t), ν(t))}t≥0 and {(µ̄(t), ν̄(t))}t≥0, and in each
iteration t = 0, 1, . . ., proceed in two steps:

• The midpoint (µ̄(t+1), ν̄(t+1)) serves as a prediction of (µ(t+1), ν(t+1)) by running one step
of mirror descent / ascent (cf. (4.6)) from either (z1, z2) = (µ(t), ν(t)) (for PU) or (z1, z2) =
(µ̄(t), ν̄(t)) (for OMWU).

• The update of (µ(t+1), ν(t+1)) then mimics the implicit update (4.7) using the prediction
(µ̄(t+1), ν̄(t+1)) obtained above.

When the proposed algorithms converge, both (µ(t), ν(t)) and (µ̄(t), ν̄(t)) converge to the same
point. The two players are completely symmetric and adopt the same learning rate, and require
only first-order information provided by the sampling oracle. While the two algorithms resemble
each other in many aspects, a key difference lies in the query and use of the sampling oracle: in
each iteration, OMWU makes a single call to the sampling oracle for gradient evaluation, while PU
calls the sampling oracle twice. It is worth noting that, when τ = 0 (i.e., no entropy regularization
is enforced), the OMWU method in Algorithm 5 reduces to the method analyzed in Rakhlin and
Sridharan [2013], Daskalakis and Panageas [2019], Wei et al. [2021a] without entropy regularization.

Remark 3. It is worth highlighting that the proposed algorithms are different from the mirror
prox algorithm [Nemirovski, 2004] or the optimistic mirror descent method [Mertikopoulos et al.,
2018a], as the extragradient is only applied to the bilinear term but not the entropy regularization
term. This seemingly small, but important, difference leads to a more concise closed-form update
rule and a cleaner analysis, as shall be seen momentarily.
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Algorithm 4: The PU method

1 initialization: µ(0), ν(0).
2 parameters: learning rate ηt.
3 for t = 0, 1, 2, · · · do
4 Update µ̄ and ν̄ according to

{
µ̄(t+1)(a) ∝ µ(t)(a)1−ηtτ

exp(ηt[Aν
(t)]a),

ν̄(t+1)(b) ∝ ν(t)(b)1−ηtτ
exp(−ηt[A⊤µ(t)]b).

5 Update µ and ν according to

{
µ(t+1)(a) ∝ µ(t)(a)1−ηtτ

exp(ηt[Aν̄
(t+1)]a),

ν(t+1)(b) ∝ ν(t)(b)1−ηtτ
exp(−ηt[A⊤µ̄(t+1)]b).

Algorithm 5: The OMWU method

1 initialization: µ(0) = µ̄(0), ν(0) = ν̄(0).
2 parameters: learning rate ηt.
3 for t = 0, 1, 2, · · · do
4 Update µ̄ and ν̄ according to

{
µ̄(t+1)(a) ∝ µ(t)(a)1−ηtτ

exp(ηt[Aν̄
(t)]a),

ν̄(t+1)(b) ∝ ν(t)(b)1−ηtτ
exp(−ηt[A⊤µ̄(t)]b).

5 Update µ and ν according to

{
µ(t+1)(a) ∝ µ(t)(a)1−ηtτ

exp(ηt[Aν̄
(t+1)]a),

ν(t+1)(b) ∝ ν(t)(b)1−ηtτ
exp(−ηt[A⊤µ̄(t+1)]b).

4.3 Last-iterate linear convergence guarantees

We are now positioned to present our main theorem concerning the last-iterate convergence of PU
and OMWU for solving (4.3).

Theorem 5 (Last-iterate convergence of PU and OMWU). Suppose that the learning rates ηt =
η = ηPU of PU in Algorithm 4 and ηt = η = ηOMWU of OMWU in Algorithm 5 satisfy

0 < ηPU ≤
1

τ + 2 ∥A∥∞
, and 0 < ηOMWU ≤ min

{
1

2τ + 2 ∥A∥∞
,

1

4 ∥A∥∞

}
. (4.8)

Then for any t ≥ 0, the iterates ζ(t) = (µ(t), ν(t)) and ζ̄(t) = (µ̄(t), ν̄(t)) of both PU and OMWU
achieve

• Linear convergence of policies in KL divergence and entrywise log-ratios:

max
{
KL
(
ζ⋆τ ∥ ζ(t)

)
, 1

2KL
(
ζ⋆τ ∥ ζ̄(t+1)

)}
≤ (1− ητ)tKL

(
ζ⋆τ ∥ ζ(0)

)
, (4.9a)

∥∥∥∥∥log
ζ(t)

ζ⋆τ

∥∥∥∥∥
∞

≤ 2(1− ητ)t
∥∥∥∥∥log

ζ(0)

ζ⋆τ

∥∥∥∥∥
∞

+
8 ∥A∥∞

τ
(1− ητ)t/2KL

(
ζ⋆τ ∥ ζ(0)

)1/2
. (4.9b)

• Linear convergence of values in optimality and duality gaps:

OptGapτ (ζ̄
(t)) ≤ 3η−1(1− ητ)tKL

(
ζ⋆τ ∥ ζ(0)

)
, (4.9c)

DualGapτ (ζ̄
(t)) ≤

(
η−1 + 2τ−1∥A∥2∞

)
(1− ητ)t−1KL

(
ζ⋆τ ∥ ζ(0)

)
. (4.9d)

Remark 4. To further understand the term KL
(
ζ⋆τ ∥ ζ(0)

)
in (4.9), setting µ(0) and ν(0) to be

uniform policies leads to a universal bound

KL
(
ζ⋆τ ∥ ζ(0)

)
= log |A|+ log |B| − H(µ⋆τ )−H(ν⋆τ ) ≤ log |A|+ log |B|

regardless of ζ⋆τ = (µ⋆τ , ν
⋆
τ ).
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Remark 5. Similar results continue to hold even when the two players use different regular-
ization parameters τµ, τν > 0 in (4.3), as long as the regularization parameter τ is replaced by
max{τµ, τν} in the upper bounds of the learning rate, and the contraction parameter is replaced by
1−min{τµ, τν}η.

Theorem 5 characterizes the convergence of the last-iterates ζ(t) and ζ̄(t) of PU and OMWU as
long as the learning rate lies within the specified ranges. While PU doubles the number of calls
to the sampling oracle, it also allows roughly as large as twice the learning rate compared with
OMWU (cf. (4.8)). Compared with the vast literature analyzing the average-iterate performance of
variants of extragradient methods [Daskalakis et al., 2011, Rakhlin and Sridharan, 2013], our results
contribute towards characterizing the last-iterate convergence of multiplicative update methods in
the presence of entropy regularization and simplex constraints, which to the best of our knowledge,
are the first of its kind. Several remarks are in order.

• Linear convergence to QRE. To achieve an ε-accurate estimate of the QRE in terms of
the KL divergence, the bound (4.9a) tells that it is sufficient to take

1

ητ
log

(
log |A|+ log |B|

ε

)

iterations using either PU or OMWU. Notably, this iteration complexity does not depend on
any hidden constants and only depends double logarithmically on the cardinality of action
spaces, which is almost dimension-free. Maximizing the learning rate, the iteration complexity
is bounded by (1 + ∥A∥∞/τ) log(1/ε) (modulo log factors), which only depends on the ratio
∥A∥∞/τ .

• Entrywise error of the policy log-ratios. Both PU and OMWU enjoy strong entrywise
guarantees in the sense we can guarantee the convergence of the ℓ∞ norm of the log-ratios be-
tween the learned policy pair and the QRE at the same dimension-free linear rate (cf. (4.9b)),
which suggests the policy pair converges in a somewhat uniform manner across the entire
action space.

• Linear convergence of optimality and duality gaps. Our theorem also establishes the
last-iterate convergence of the game values in terms of the optimality gap (cf. (4.9c)) and the
duality gap (cf. (4.9d)) for both PU and OMWU. In particular, as will be seen, bounding the
optimality gap of matrix games turns out to be the key enabler for generalizing our algorithms
to Markov games, and bounding the duality gap allows to directly translate our results to
finding a NE of unregularized matrix games.

Figure 4.1 illustrates the performance of the proposed PU and OMWU methods for solving
randomly generated entropy-regularized matrix games. It is evident that both algorithms converge
linearly, and achieve faster convergence rates when the regularization parameter increases.

Last-iterate convergence to approximate NE. The entropy-regularized matrix game can be
thought as a smooth surrogate of the unregularized matrix game (4.1); in particular, it is possible
to find an ε-NE by setting τ sufficiently small in (4.3). According to [Zhang et al., 2020c, Definition
2.1], a policy pair ζ = (µ, ν) is an ε-NE if it satisfies

DualGap(ζ) := max
µ′∈∆(A)

f(µ′, ν)− min
ν′∈∆(B)

f(µ, ν ′) ≤ ε.
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Figure 4.1: Performance illustration of the PU and OMWU methods for solving entropy-regularized matrix
games with |A| = |B| = 100, where the entries of the payoff matrix A is generated independently from the
uniform distribution on [−1, 1]. The learning rates are fixed as η = 0.1. The left panel plots various error
metrics of convergence w.r.t. the iteration count with the entropy regularization parameter τ = 0.01, while
the right panel plots these error metrics at 1000-th iteration with different choices of τ . Due to their similar
nature, PU and OMWU yield almost identical convergence behaviors and overlapping plots.

Observe that setting τ = ε/4
log |A|+log |B| guarantees

|fτ (µ, ν)− f(µ, ν)| < ε/4 for all (µ, ν) ∈ A× B

in view of the boundedness of the Shannon entropy H(·). Theorem 4.9 (cf. (4.9d)) also ensures
that our proposed algorithms find an approximate QRE ζ̄(T ) such that DualGapτ (ζ̄

(T )) ≤ ε/2 after

taking T = Õ
(

1
ηε

)
iterations, which is no more than

Õ
(∥A∥∞

ε

)

iterations with optimized learning rates. It follows immediately that

DualGap(ζ̄(T )) ≤ DualGapτ (ζ̄
(T )) + max

µ′,ν′

∣∣∣fτ (µ′, ν̄(T ))− fτ (µ̄(T ), ν ′)− (f(µ′, ν̄(T ))− f(µ̄(T ), ν ′))
∣∣∣ ≤ ε,
(4.10)

and therefore ζ̄(T ) is an ε-NE. Intriguingly, unlike prior work [Daskalakis and Panageas, 2019, Wei
et al., 2021a] that analyzed the last-iterate convergence of OMWU in the unregularized setting
(τ = 0), our last-iterate convergence does not require the NE of (4.1) to be unique. See Table 1.2
for further comparisons.

Remark 6. For simplicity, we have set the regularization parameter τ on the order of the final
accuracy ε. In practice, it might be desirable to use an annealing schedule of τ similar to the doubling
trick, see e.g. Yang et al. [2020], Li et al. [2021]. We omit such straightforward generalizations for
conciseness.
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Rationality. Another attractive feature of the algorithms developed above is being rational (as
introduced in Bowling and Veloso [2001]) in the sense that the algorithm returns the best-response
policy of one player when the opponent takes any fixed stationary policy. More specially, in terms
of matrix games, when player 2 sticks to a stationary policy ν, the update of player 1 reduces to

µ(t+1)(a) ∝ µ(t)(a)1−ητ
exp(η[Aν]a). (4.11)

In this case, Theorem 5 can be established in exactly the same fashion by restricting attention only
to the updates of µ(t).

4.4 Discussion

This work develops provably efficient policy extragradient methods (PU and OMWU) for entropy-
regularized matrix games, whose last iterates are guaranteed to converge linearly to the quantal
response equilibrium at a linear rate. Encouragingly, the rate of convergence is independent of the
dimension of the problem, i.e. the sizes of the space space and the action space. In addition, the last
iterates of the proposed algorithms can also be used to locate Nash equilibria for the unregularized
competitive games without assuming the uniqueness of the Nash equilibria by judiciously tuning
the amount of regularization.

This work opens up interesting opportunities for further investigations of policy extragradient
methods for solving competitive games. For example, can we develop a two-time-scale policy
extragradient algorithms for Markov games where the Q-function is updated simultaneously with
the policy but potentially at a different time scale, using samples, such as in an actor-critic algorithm
[Konda and Tsitsiklis, 2000]? This question is partially answered under exact gradient evaluation
in Chapter 5. Can we generalize the proposed algorithms to handle more general regularization
terms, similar to what has been accomplished in the single-agent setting [Lan, 2023, Zhan et al.,
2023a]? Can we generalize the proposed algorithm to other type of games [Ao et al., 2023]? We
leave the answers to future work.

52



Chapter 5

Two-player Zero-sum Markov Games

In this chapter, we formulate the problem of two-player zero-sum Markov game. We present a
noval policy optimization method along with its theoretical guarantees. For more details and entire
analysis, please refer to Cen et al. [2023].

5.1 Algorithm and theory: the infinite-horizon setting

5.1.1 Problem formulation

Two-player zero-sum discounted Markov game. A two-player zero-sum discounted Markov
game is defined by a tuple M = (S,A,B, P, r, γ), with finite state space S, finite action spaces
of the two players A and B, reward function r : S × A × B → [0, 1], transition probability kernel
P : S ×A× B → ∆(S) and discount factor 0 ≤ γ < 1. The action selection rule of the max player
(resp. the min player) is represented by µ : S → ∆(A) (resp. ν : S → ∆(B)), where the probability
of selecting action a ∈ A (resp. b ∈ B) in state s ∈ S is specified by µ(a|s) (resp. ν(b|s)). The
probability of transitioning from state s to a new state s′ upon selecting the action pair (a, b) ∈ A,B
is given by P (s′|s, a, b).

Value function and Q-function. For a given policy pair µ, ν, the state value of s ∈ S is
evaluated by the expected discounted sum of rewards with initial state s0 = s:

∀s ∈ S : V µ,ν(s) = E

[ ∞∑

t=0

γtr(st, at, bt)
∣∣s0 = s

]
, (5.1)

the quantity the max player seeks to maximize while the min player seeks to minimize. Here,
the trajectory (s0, a0, b0, s1, · · · ) is generated according to at ∼ µ(·|st), bt ∼ ν(·|st) and st+1 ∼
P (·|st, at, bt). Similarly, the Q-function Qµ,ν(s, a, b) evaluates the expected discounted cumulative
reward with initial state s and initial action pair (a, b):

∀(s, a, b) ∈ S ×A× B : Qµ,ν(s, a, b) = E

[ ∞∑

t=0

γtr(st, at, bt)
∣∣s0 = s, a0 = a, b0 = b

]
. (5.2)

For notation simplicity, we denote by Qµ,ν(s) ∈ R|A|×|B| the matrix [Qµ,ν(s, a, b)](a,b)∈A×B, so that

∀s ∈ S : V µ,ν(s) = µ(s)⊤Qµ,ν(s)ν(s).
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Shapley [1953] proved the existence of a policy pair (µ⋆, ν⋆) that solves the min-max problem

max
µ

min
ν
V µ,ν(s)

for all s ∈ S simultaneously, and that the mini-max value is unique. A set of such optimal policy
pair (µ⋆, ν⋆) is called the Nash equilibrium (NE) to the Markov game.

Entropy regularized two-player zero-sum Markov game. Entropy regularization is shown
to provably accelerate convergence in single-agent RL [Geist et al., 2019, Mei et al., 2020b, Cen
et al., 2022b] and facilitate the analysis in two-player zero-sum matrix games [Cen et al., 2021] as
well as Markov games [Cen et al., 2021, Zeng et al., 2022]. The entropy-regularized value function
V µ,ν
τ (s) is defined as

∀s ∈ S : V µ,ν
τ (s) = E

[ ∞∑

t=0

γt
(
r(st, at, bt)− τ logµ(at|st) + τ log ν(bt|st)

)∣∣∣s0 = s

]
, (5.3)

where τ ≥ 0 is the regularization parameter. Similarly, the regularized Q-function Qµ,ν
τ is given by

∀(s, a, b) ∈ S ×A× B : Qµ,ν
τ (s) = r(s, a, b) + γEs′∼P (·|s,a,b)

[
V µ,ν
τ (s′)

]
. (5.4)

It is known that [Cen et al., 2021] there exists a unique pair of policy (µ⋆τ , ν
⋆
τ ) that solves the

min-max entropy-regularized problem

max
µ

min
ν

V µ,ν
τ (s), (5.5a)

or equivalently
max
µ

min
ν

µ(s)⊤Qµ,ν
τ (s)ν(s) + τH

(
µ(s)

)
− τH

(
ν(s)

)
(5.5b)

for all s ∈ S, and we call (µ⋆τ , ν
⋆
τ ) the quantal response equilibrium (QRE) [McKelvey and Palfrey,

1995] to the entropy-regularized Markov game. We denote the associated regularized value function
and Q-function by

V ⋆
τ (s) = V µ⋆

τ ,ν
⋆
τ

τ (s) and Q⋆
τ (s, a, b) = Qµ⋆

τ ,ν
⋆
τ

τ (s, a, b).

Goal. We seek to find an ε-optimal QRE or ε-QRE (resp. ε-optimal NE or ε-NE) ζ = (µ, ν)
which satisfies

max
s∈S,µ′,ν′

(
V µ′,ν
τ (s)− V µ,ν′

τ (s)
)
≤ ε (5.6)

(resp. maxs∈S,µ′,ν′

(
V µ′,ν(s) − V µ,ν′(s)

)
≤ ε) in a computationally efficient manner. In truth,

the solution concept of ε-QRE provides an approximation of ε-NE with appropriate choice of the
regularization parameter τ . Basic calculations tell us that

V µ′,ν(s)− V µ,ν′(s) =
(
V µ′,ν
τ (s)− V µ,ν′

τ (s)
)
+
(
V µ′,ν(s)− V µ′,ν

τ (s)
)
−
(
V µ,ν′(s)− V µ,ν′

τ (s)
)

≤ V µ′,ν
τ (s)− V µ,ν′

τ (s) +
τ(log |A|+ log |B|)

1− γ ,

which guarantees that an ε/2-QRE is an ε-NE as long as τ ≤ (1−γ)ε
2(log |A|+log |B|) . For technical conve-

nience, we assume

τ ≤ 1

max{1, log |A|+ log |B|} (5.7)
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throughout the paper. In addition, one might instead be interested in the expected (entropy-
regularized) value function when the initial state is sampled from a distribution ρ ∈ ∆(S) over S,
which are given by

V µ,ν
τ (ρ) := E

s∼ρ
[V µ,ν

τ (s)] , and V µ,ν(ρ) := E
s∼ρ

[V µ,ν(s)] .

The ε-QRE/NE can be defined analogously, which facilitates comparisons to a number of related
works.

Additional notation. For notation convenience, we denote by ζ the concatenation of a policy
pair µ and ν, i.e., ζ = (µ, ν). The QRE to the regularized problem is denoted by ζ⋆τ = (µ⋆τ , ν

⋆
τ ).

We use shorthand notation µ(s) and ν(s) to denote µ(·|s) and ν(·|s). In addition, we write
KL (µ(s) ∥µ′(s)) and KL (ν(s) ∥ ν ′(s)) as KLs

(
µ ∥µ′

)
and KLs

(
ν ∥ ν ′

)
, and let

KLs
(
ζ ∥ ζ ′

)
= KLs

(
µ ∥µ′

)
+ KLs

(
ν ∥ ν ′

)
.

5.1.2 Single-loop algorithm design

In this section, we propose a single-loop policy optimization algorithm for finding the QRE of
the entropy-regularized Markov game, which is generalized from the entropy-regularized OMWU
method [Cen et al., 2021] for solving entropy-regularized matrix games, with a careful orchestrating
of the policy update and the value update.

Review: entropy-regularized OMWU for two-player zero-sum matrix games. We briefly
review the algorithm design of entropy-regularized OMWU method for two-player zero-sum matrix
game [Cen et al., 2021], which our method builds upon. The problem of interest can be described
as

max
µ∈∆(A)

min
ν∈∆(B)

µ⊤Aν + τH(µ)− τH(ν), (5.8)

where A ∈ R|A|×|B| is the payoff matrix of the game. The update rule of entropy-regularized
OMWU with learning rate η > 0 is defined as follows: ∀a ∈ A, b ∈ B,

{
µ(t)(a) ∝ µ(t−1)(a)1−ητ exp(η[Aν̄(t)]a)

ν(t)(b) ∝ ν(t−1)(b)1−ητ exp(−η[A⊤µ̄(t)]b)
, (5.9a)

{
µ̄(t+1)(a) ∝ µ(t)(a)1−ητ exp(η[Aν̄(t)]a)

ν̄(t+1)(b) ∝ ν(t)(b)1−ητ exp(−η[A⊤µ̄(t)]b)
. (5.9b)

We remark that the update rule can be alternatively motivated from the perspective of natu-
ral policy gradient [Kakade, 2001, Cen et al., 2022b] or mirror descent [Lan, 2023, Zhan et al.,
2023a] with optimistic updates. In particular, the midpoint (µ̄(t+1), ν̄(t+1)) serves as a prediction
of (µ(t+1), ν(t+1)) by running one step of mirror descent. Cen et al. [2021] established that the last
iterate of entropy-regularized OMWU converges to the QRE of the matrix game (5.8) at a linear

rate (1− ητ)t, as long as the step size η is no larger than min
{

1
2∥A∥∞+2τ ,

1
4∥A∥∞

}
.
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Single-loop algorithm for two-player zero-sum Markov games. In view of the similarity
in the problem formulations of (5.5b) and (5.8), it is tempting to apply the aforementioned method
to the Markov game in a state-wise manner, where the Q-function assumes the role of the payoff
matrix. It is worth noting, however, that Q-function depends on the policy pair ζ = (µ, ν) and
is hence changing concurrently with the update of the policy pair. We take inspiration from Wei
et al. [2021b] and equip the entropy-regularized OMWU method with the following update rule
that iteratively approximates the value function in an actor-critic fashion:

Q(t+1)(s, a, b) = r(s, a, b) + γEs′∼P (·|s,a,b)

[
V (t)(s′)

]
,

where V (t+1) is updated as a convex combination of the previous V (t) and the regularized game
value induced by Q(t+1) as well as the policy pair ζ̄(t+1) = (µ̄(t+1), ν̄(t+1)):

V (t+1)(s) = (1− αt+1)V
(t)(s)

+ αt+1

[
µ̄(t+1)(s)⊤Q(t+1)(s)ν̄(t+1)(s) + τH

(
µ̄(t+1)(s)

)
− τH

(
ν̄(t+1)(s)

)]
.

(5.10)

The update of V becomes more conservative with a smaller learning rate αt, hence stabilizing the
update of policies. However, setting αt too small slows down the convergence of V to V ⋆

τ . A key
novelty—suggested by our analysis—is the choice of the constant learning rates α := αt = ητ
which updates at a slower timescale than the policy due to τ < 1. This is in sharp contrast to
the vanishing sequence αt = 2/(1−γ)+1

2/(1−γ)+t adopted in Wei et al. [2021b], which is essential in their
analysis but inevitably leads to a much slower convergence. We summarize the detailed procedure
in Algorithm 6. Last but not least, it is worth noting that the proposed method access the reward
via “first-order information”, i.e., either agent can only update its policy with the marginalized
value function Q(s)ν(s) or Q(s)⊤µ(s). Update rules of this kind are instrumental in breaking the
curse of multi-agents in the sample complexity when adopting sample-based estimates in (5.12),
as we only need to estimate the marginalized Q-function rather than its full form [Li et al., 2022,
Chen et al., 2021].

5.1.3 Theoretical guarantees

Below we present our main results concerning the last-iterate convergence of Algorithm 6 for solving
entropy-regularized two-player zero-sum Markov games in the infinite-horizon discounted setting.

Theorem 6. Setting 0 < η ≤ (1−γ)3

32000|S| and αt = ητ , it holds for all t ≥ 0 that

max

{
1

|S|
∑

s∈S
KLs

(
ζ⋆τ ∥ ζ(t)

)
,

1

2|S|
∑

s∈S
KLs

(
ζ⋆τ ∥ ζ̄(t)

)
,
3η

|S|
∑

s∈S

∥∥Q(t)(s)−Q⋆
τ (s)

∥∥
∞

}

≤ 3000

(1− γ)2τ
(
1− (1− γ)ητ

4

)t
; (5.13a)

and

max
s∈S,µ,ν

(
V µ,ν̄(t)

τ (s)− V µ̄(t),ν
τ (s)

)
≤ 6000|S|

(1− γ)3τ max

{
8

(1− γ)2τ ,
1

η

}(
1− (1− γ)ητ

4

)t
. (5.13b)

Theorem 6 demonstrates that as long as the learning rate η is small enough, the last iterate
of Algorithm 6 converges at a linear rate for the entropy-regularized Markov game. Compared
with prior literatures investigating on policy optimization, our analysis focuses on the last-iterate
convergence of non-Euclidean updates in the presence of entropy regularization, which appears to
be the first of its kind. Several remarks are in order, with detailed comparisons in Table 1.3.
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Algorithm 6: Entropy-regularized OMWU for Discounted Two-player Zero-sum Markov
Game

1 Input: Regularization parameter τ > 0, learning rate for policy update η > 0, learning
rate for value update {αt}∞t=1.

2 Initialization: Set µ(0), µ̄(0), ν(0) and ν̄(0) as uniform policies; and set

Q(0) = 0, V (0) = τ(log |A| − log |B|).

3 for t = 0, 1, · · · do
4 for all s ∈ S do in parallel

5 When t ≥ 1, update policy pair ζ(t)(s) as:

{
µ(t)(a|s) ∝ µ(t−1)(a|s)1−ητ exp(η[Q(t)(s)ν̄(t)(s)]a)

ν(t)(b|s) ∝ ν(t−1)(b|s)1−ητ exp(−η[Q(t)(s)⊤µ̄(t)(s)]b)
. (5.11a)

6 Update policy pair ζ̄(t+1)(s) as:

{
µ̄(t+1)(a|s) ∝ µ(t)(a|s)1−ητ exp(η[Q(t)(s)ν̄(t)(s)]a)

ν̄(t+1)(b|s) ∝ ν(t)(b|s)1−ητ exp(−η[Q(t)(s)⊤µ̄(t)(s)]b)
. (5.11b)

7 Update Q(t+1)(s) and V (t+1)(s) as





Q(t+1)(s, a, b) = r(s, a, b) + γEs′∼P (·|s,a,b)
[
V (t)(s′)

]

V (t+1)(s) = (1− αt+1)V
(t)(s)

+αt+1

[
µ̄(t+1)(s)⊤Q(t+1)(s)ν̄(t+1)(s) + τH

(
µ̄(t+1)(s)

)
− τH

(
ν̄(t+1)(s)

)] .

(5.12)

• Linear convergence to the QRE. Theorem 6 demonstrates that the last iterate of Algo-

rithm 6 takes at most Õ
(

1
(1−γ)ητ log

1
ε

)
iterations to yield an ε-optimal policy in terms of

the KL divergence to the QRE max
s∈S

KLs
(
ζ⋆τ ∥ ζ̄(t)

)
≤ ε, the entrywise error of the regularized

Q-function
∥∥Q(t) −Q⋆

τ

∥∥
∞ ≤ ε, as well as the duality gap max

s∈S,µ,ν

(
V µ,ν̄(t)
τ (s) − V µ̄(t),ν

τ (s)
)
≤ ε

at once. Minimizing the bound over the learning rate η, the proposed method is guaranteed
to find an ε-QRE within

Õ
( |S|
(1− γ)4τ log

1

ε

)

iterations, which significantly improves upon the one-side convergence rate of Zeng et al.
[2022].

• Last-iterate convergence to ε-optimal NE. By setting τ = (1−γ)ε
2(log |A|+log |B|) , this imme-

diately leads to provable last-iterate convergence to an ε-NE, with an iteration complexity
of

Õ
( |S|
(1− γ)5ε

)
,

which again outperforms the convergence rate of Wei et al. [2021b].
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Remark 7. The learning rate η is constrained to be inverse proportional to |S|, which is for the
worst case and can be potentially loosened for problems with a small concentrability coefficient.

5.2 Algorithm and theory: the finite-horizon setting

Episodic two-player zero-sum Markov game. An episodic two-player zero-sum Markov game
is defined by a tuple {S,A,B, H, {Ph}Hh=1, {rh}Hh=1}, with S being a finite state space, A and B
denoting finite action spaces of the two players, and H > 0 the horizon length. Every step h ∈ [H]
admits a transition probability kernel Ph : S×A → ∆(S) and reward function rh : S×A×B → [0, 1].
Furthermore, µ = {µh}Hh=1 and {νh}Hh=1 denote the policies of the two players, where the probability
of the max player choosing a ∈ A (resp. the min player choosing b ∈ B) at time h is specified by
µh(a|s) (resp. νh(a|s)).

Entropy regularized value functions. The value function and Q-function characterize the
expected cumulative reward starting from step h by following the policy pair µ, ν. For conciseness,
we only present the definition of entropy-regularized value functions below and remark that the
their un-regularized counterparts V µ,ν

h and Qµ,ν
h can be obtained by setting τ = 0. We have

V µ,ν
h,τ (s) = E

[
H∑

h′=h

[rh′(sh′ , ah′ , bh′)− τ logµh′(ah′ |sh′) + τ log νh′(bh′ |sh′)]
∣∣∣ sh = s

]
;

Qµ,ν
h,τ (s, a, b) = rh(s, a, b) + Es′∼Ph(·|s,a,b)

[
V µ,ν
h+1,τ (s

′)
]
.

The solution concept of NE and QRE are defined in a similar manner by focusing on the episodic
versions of value functions. We again denote the unique QRE by ζ⋆τ = (µ⋆τ , ν

⋆
τ ).

Proposed method and convergence guarantee It is straightforward to adapt Algorithm 6 to
the episodic setting with minimal modifications, with detailed procedure showcased in Algorithm
7. The analysis, which substantially deviates from the discounted setting, exploits the structure
of finite-horizon MDP and time-inhomogeneous policies, enabling a much larger range of learning
rates as showed in the following theorem.

Theorem 7. Setting 0 < η ≤ 1
8H and αt = ητ , it holds for all h ∈ [H] and t ≥ Th := (H − h)Tstart

with Tstart = ⌈ 1
ητ logH⌉ that

∥∥Q⋆
h,τ −Q

(t)
h

∥∥
∞ ≤ (1− ητ)t−ThtH−h; (5.16a)

max
s∈S,µ,ν

(
V µ,ν̄(t)

h,τ (s)− V µ̄(t),ν
h,τ (s)

)
≤ 4(1− ητ)t−Th max

{
8H2

τ
,
1

η

}(8H
τ

+ 6ηtH−h+1
)
. (5.16b)

Theorem 7 implies that the last iterate of Algorithm 7 takes no more than Õ
(
HTstart+

H
ητ log

1
ε

)
=

Õ
(
H
ητ log

1
ε

)
iterations for finding an ε-QRE. Minimizing the bound over the learning rate η, Algo-

rithm 7 is guaranteed to find an ε-QRE in

Õ
(
H2

τ
log

1

ε

)

iterations, which translates into an iteration complexity of Õ
(
H3

ε

)
for finding an ε-NE in terms of

the duality gap, i.e., maxs∈S,h∈[H],µ,ν

(
V µ,ν̄(t)

h (s)−V µ̄(t),ν
h (s)

)
≤ ε, by setting τ = O

(
ε

H(log |A|+log |B|)

)
.
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Algorithm 7: Entropy-regularized OMWU for Episodic Two-player Zero-sum Markov
Game

1 Input: Regularization parameter τ > 0, learning rate for policy update η > 0, learning
rate for value update {αt}∞t=1.

2 Initialization: Set µ(0), µ̄(0), ν(0) and ν̄(0) as uniform policies; set

Q(0) = 0, V (0) = τ(log |A| − log |B|).

for t = 0, 1, · · · do
3 for all h ∈ [H], s ∈ S do in parallel

4 When t ≥ 1, update policy pair ζ
(t)
h (s) as:

{
µ
(t)
h (a|s) ∝ µ(t−1)

h (a|s)1−ητ exp(η[Q
(t)
h (s)ν̄

(t)
h (s)]a)

ν
(t)
h (b|s) ∝ ν(t−1)

h (b|s)1−ητ exp(−η[Q(t)
h (s)⊤µ̄

(t)
h (s)]b)

. (5.14a)

5 Update policy pair ζ̄
(t+1)
h (s) as:

{
µ̄
(t+1)
h (a|s) ∝ µ(t)h (a|s)1−ητ exp(η[Q

(t)
h (s)ν̄

(t)
h (s)]a)

ν̄
(t+1)
h (b|s) ∝ ν(t)h (b|s)1−ητ exp(−η[Q(t)

h (s)⊤µ̄
(t)
h (s)]b)

. (5.14b)

6 Update Q
(t+1)
h (s) and V

(t+1)
h (s) as





Q
(t+1)
h (s, a, b) = rh(s, a, b) + Es′∼Ph(·|s,a,b)

[
V

(t)
h+1(s

′)
]

V
(t+1)
h (s) = (1− αt+1)V

(t)
h (s)

+αt+1

[
µ̄
(t+1)
h (s)⊤Q

(t+1)
h (s)ν̄

(t+1)
h (s) + τH

(
µ̄
(t+1)
h (s)

)
− τH

(
ν̄
(t+1)
h (s)

)]
.

(5.15)

5.3 Discussion

This work develops policy optimization methods for zero-sum Markov games that feature single-
loop and symmetric updates with provable last-iterate convergence guarantees. Our approach
yields better iteration complexities in both infinite-horizon and finite-horizon settings, by adopting
entropy regularization and non-Euclidean policy update. Important future directions include inves-
tigating whether larger learning rates are possible without knowing problem-dependent information
a priori, extending the framework to allow function approximation, and designing sample-efficient
implementations of the proposed method. Last but not least, the introduction of entropy regu-
larization requires each agent to reveal the entropy of their current policy to each other, which
prevents the proposed method from being fully decentralized. Can we bypass this by dropping the
entropy information in value learning? We leave the answers to future work.
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Chapter 6

Multi-player Zero-sum Polymatrix
Games

In this chapter, we formulate the problem of multi-player zero-sum polymatrix game. We present
single-timescale OWMU and two-timescale OMWU methods along with their theoretical guaran-
tees. For more details and entire analysis, please refer to Ao et al. [2023].

6.1 Preliminaries

We start by introducing the formulation of zero-sum polymatrix games as well as the solution
concept of NE and QRE.

Polymatrix games. We start by defining the polymatrix game.

Definition 2 (Polymatrix game). Let G := {(V,E), {Si}i∈V , {Aij}(i,j)∈E} be an n-player polymatrix
game, where each element in the tuple is defined as follows.

• An undirected graph (V,E), with V = [n] denoting the set of players and E the set of edges;

• For each player i ∈ V , Si represents its action set, which is assumed to be finite;

• For each edge (i, j) ∈ E, Aij ∈ R|Si|×|Sj | and Aji ∈ R|Sj |×|Si| represent the payoff matrices
associated with player i and j, i.e., when player i and player j choose si ∈ Si and sj ∈ Sj,
the received payoffs are given by Aij(si, sj), Aji(sj , si), respectively.

Utility function. Given the strategy profile s = (s1, · · · , sn) ∈ S =
∏

i∈V Si taken by all players,
the utility function ui : S → R of player i is given by

ui(s) =
∑

j:(i,j)∈E
Aij(si, sj).

Suppose that player i adopts a mixed/stochastic strategy or policy, πi ∈ ∆(Si), where the probabil-
ity of selecting si ∈ Si is specified by πi(si). With slight abuse of notation, we denote the expected
utility of player i with a mixed strategy profile π = (π1, · · · , πn) ∈ ∆(S) as

ui(π) = E
si∼πi,∀i∈V

[ui(s)] =
∑

j:(i,j)∈E

π⊤i Aijπj . (6.1)
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It turns out to be convenient to treat πi and π as vectors in R|Si| and R
∑

i∈V |Si| without ambiguity,
and concatenate all payoff matrices associated with player i into

Ai = (Ai1, · · · , Ain) ∈ R|Si|×
∑

j∈V |Sj |, (6.2)

where Aij is set to 0 whenever (i, j) /∈ E. In particular, it follows that Aii = 0 for all i ∈ V . With
these notation in place, we can rewrite the expected utility function (6.1) as

ui(π) = π⊤i Aiπ, (6.3)

where Aiπ ∈ R|Si| can be interpreted as the expected utility of the actions in Si for player i. In
addition, we denote the maximum entrywise absolute value of payoff by ∥A∥∞ = maxi,j ∥Aij∥∞ =
maxi ∥Ai∥∞, and the maximum degree of the graph by dmax = maxi∈V degi, where degi is the
degree of player i. Moreover, we denote Smax = maxi |Si| as the maximum size of the action space
over all players.

Zero-sum polymatrix games. The game G is a zero-sum polymatrix game if it holds that

∑
i∈V

ui(s) = 0, ∀ s ∈ S. (6.4)

This also immediately implies that for any strategy profile π ∈ ∆(S), it follows that
∑

i∈V ui(π) = 0.

Nash equilibrium (NE). A mixed strategy profile π⋆ = (π⋆1, · · · , π⋆n) is a Nash equilibrium
(NE) when each player i cannot further increase its own utility function ui by unilateral deviation,
i.e., ui(π

′
i, π

⋆
−i) ≤ ui(π

⋆
i , π

⋆
−i), for all i ∈ V, π′i ∈ ∆(Si), where the existence is guaranteed by the

work [Cai et al., 2016]. Here we denote the mixed strategies of all players other than i by π−i and
write ui(πi, π−i) = ui(π). To measure how close a strategy π ∈ ∆(S) is to an NE, we introduce

NE-Gap(π) = max
i∈V

[
max

π′
i∈∆(Si)

ui(π
′
i, π−i)− ui(π)

]
,

which measures the largest possible gain in the expected utility when players deviate from its
strategy unilaterally. A mixed strategy profile π is called an ε-approximate Nash equilibrium (ε-
NE) when NE-Gap(π) ≤ ε, which ensures that ui(π

′
i, π−i) ≤ ui(πi, π−i)+ε, for all i ∈ V, π′i ∈ ∆(Si).

Quantal response equilibrium (QRE). The quantal response equilibrium (QRE), proposed
by McKelvey and Palfrey [1995], generalizes the classical notion of NE under uncertain payoffs
or bounded rationality, while balancing exploration and exploitation. A mixed strategy profile
π⋆τ = (π⋆1,τ , · · · , π⋆n,τ ) is a QRE when each player assigns its probability of action according to the
expected utility of every action in a Boltzmann fashion, i.e., for all i ∈ V ,

π⋆i,τ (k) =
exp([Aiπ

⋆
τ ]k/τ)∑

k∈Si
exp([Aiπ⋆τ ]k/τ)

, k ∈ Si, (6.5)

where τ > 0 is the regularization parameter or temperature. Equivalently, this amounts to max-
imizing an entropy-regularized utility of each player [Mertikopoulos and Sandholm, 2016], i.e.,
ui,τ (π

′
i, π

⋆
−i,τ ) ≤ ui,τ (π

⋆
i,τ , π

⋆
−i,τ ) for all i ∈ V , π′i ∈ ∆(Si). Here, the entropy-regularized utility

function ui : S → R of player i is given by

ui,τ (π) = ui(π) + τH(πi), (6.6)
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where H(πi) = −π⊤i log πi denotes the Shannon entropy of πi. In Leonardos et al. [2021], it is
shown that a unique QRE exists in a zero-sum polymatrix game. Similarly, we can measure the
proximity of a strategy π to a QRE by

QRE-Gapτ (π) = max
i∈V

[
max

π′
i∈∆(Si)

ui,τ (π
′
i, π−i)− ui,τ (π)

]
. (6.7)

A mixed strategy profile π is called an ε-QRE when QRE-Gapτ (π) ≤ ε. According to the straight-
forward relationship

NE-Gap(π) = max
i∈V

[
max

π′
i∈∆(Si)

ui(π
′
i, π−i)− ui(π)

]

= max
i∈V

[
max

π′
i∈∆(Si)

ui,τ (π
′
i, π−i)− ui,τ (π) + τ(π′i)

⊤ log π′i − τπ⊤i log πi

]

≤ max
i∈V

[
max

π′
i∈∆(Si)

ui,τ (π
′
i, π−i)− ui,τ (π)

]
+ τ logSmax

= QRE-Gapτ (π) + τ logSmax, (6.8)

it follows immediately that we can link an ε/2-QRE to ε-NE by setting τ = ε
2 logSmax

. This facilitates
the translation of convergence to the QRE to one regarding the NE by appropriately setting the
regularization parameter τ .

6.2 Performance guarantees of single-timescale OMWU

In this section, we present and study the entropy-regularized OMWU method [Cen et al., 2021]
for finding the QRE of zero-sum polymatrix games. Whilst the method is originally proposed for
finding QRE in a two-player zero-sum game, the update rule naturally generalizes to the multi-
player setting as

π
(t+1)
i (k) ∝ π(t)i (k)1−ητ exp(η[Aiπ

(t+1)]k), ∀k ∈ Si, (6.9)

where η > 0 is the learning rate and π(t+1) serves as a prediction for π(t+1) via an extrapolation
step

π
(t+1)
i (k) ∝ π(t)i (k)1−ητ exp(η[Aiπ

(t)]k), ∀k ∈ Si. (6.10)

In the asynchronous setting, however, each agent i receives a delayed payoff vector Aiπ
(κ

(t)
i ) instead

of Aiπ
(t) in the t-th iteration, where

κ
(t)
i = max{t− γ(t)i , 0}, (6.11)

with γ
(t)
i ≥ 0 representing the length of delay. The detailed procedure is outlined in Algorithm 8

using the single-timescale rule (6.12) for extrapolation.

6.2.1 Performance guarantees without delays

We first present our theorem concerning the last-iterate convergence of single-timescale OMWU for

finding the QRE in the synchronous setting, i.e. γ
(t)
i = 0 for all i ∈ V and t ≥ 0. For any π, π′ ∈ V ,

let KL (π ∥π′) =∑i∈V KL (πi ∥π′i).
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Algorithm 8: Entropy-regularized OMWU, agent i

1: Initialize π
(0)
i = π

(0)
i as uniform distribution. Learning rates η, and η (optional).

2: for t = 0, 1, 2, . . . do

3: Receive payoff vector Aiπ
(κ

(t)
i ).

4: When t ≥ 1, update πi according to

π
(t)
i (k) ∝ π(t−1)

i (k)1−ητ exp(η[Aiπ
(κ

(t)
i )]k), ∀k ∈ Si.

5: Update πi according to the single-timescale rule

π
(t+1)
i (k) ∝ π(t)i (k)1−ητ exp(η[Aiπ

(κ
(t)
i )]k), ∀k ∈ Si. (6.12)

or the two-timescale rule

π
(t+1)
i (k) ∝ π(t)i (k)1−ητ exp(η[Aiπ

(κ
(t)
i )]k), ∀k ∈ Si. (6.13)

6: end for

Theorem 8 (Last-iterate convergence without delays). Suppose that the learning rate η of single-
timescale OMWU in Algorithm 8 obeys

0 < η ≤ min

{
1

2τ
,

1

4dmax ∥A∥∞

}
, (6.14)

then for any T ≥ 0, the iterates π(T ) and π(T ) converge at a linear rate according to

KL
(
π⋆τ ∥π(T )

)
≤ (1− ητ)TKL

(
π⋆τ ∥π(0)

)
, KL

(
π⋆τ ∥π(T+1)

)
≤ 2(1− ητ)TKL

(
π⋆τ ∥π(0)

)
.

(6.15a)

Furthermore, the QRE-gap also converges linearly according to

QRE-Gapτ (π
(T )) ≤

(
η−1 + 2τ−1d2max∥A∥2∞

)
(1− ητ)T−1KL

(
π⋆τ ∥π(0)

)
. (6.15b)

Theorem 8 demonstrates that as long as the learning rate η is sufficiently small, the last iterate
of single-timescale OMWU converges to the QRE at a linear rate. Compared with prior works for
finding approximate equilibrium for zero-sum polymatrix games, our approach features a closed-
form multiplicative update and a fast linear last-iterate convergence. Some remarks are in order.

• Linear convergence to the QRE. Theorem 8 implies an iteration complexity of Õ
(

1
ητ log

1
ε

)

for finding an ε-QRE in a last-iterate manner, which leads to an iteration complexity of

Õ
((

dmax ∥A∥∞
τ

+ 1

)
log

1

ε

)

by optimizing the learning rate in (6.14). The result is especially appealing as it avoids direct
dependency on the number of agents n as well as the size of action spaces (up to logarithmic
factors), suggesting that learning in competitive multi-agent games can be made quite scalable
as long as the interactions among the agents are sparse (so that the maximum degree of the
graph dmax is much smaller than the number of agents n).
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• Last-iterate convergence to ε-NE. By setting τ appropriately, we end up with an iteration
complexity of

Õ
(
dmax ∥A∥∞

ε

)

for achieving last-iterate convergence to an ε-NE (cf. (6.8)), which outperforms the best
existing last-iterate rate of Õ

(
n ∥A∥∞/ε2

)
from Leonardos et al. [2021] by at least a factor

of n/(dmaxε).

Remark 8. Our results trivially extend to the setting of weighted zero-sum polymatrix games
[Leonardos et al., 2021], which amounts to adopting different learning rates {ηi}i∈V at each player.

In this case, the iteration complexity becomes Õ
(
maxi∈V

1
ηiτ

log 1
ε

)
.

6.2.2 Performance guarantees under random delays

We continue to examine single-timescale OMWU in the more challenging asynchronous setting. In
particularly, we show that the last iterate of single-timescale OMWU continues to converge linearly
to the QRE at a slower rate, as long as the delays satisfy some mild statistical assumptions given
below.

Assumption 4 (Random delays). Assume that for all i ∈ V , t ≥ 0, the delay γ
(t)
i is independently

generated and satisfies

E
γ
(t)
i ≥ℓ

[
γ
(t)
i

]
:= E

[
γ
(t)
i

∣∣ γ(t)i ≥ ℓ
]
≤ E(ℓ), ∀ℓ = 0, 1, . . . . (6.16)

Additionally, there exists some constant ζ > 1, such that L ≜
∑∞

ℓ=0 ζ
ℓE(ℓ) <∞.

We remark that Assumption 4 is a rather mild condition that applies to typical delay distribu-
tions, such as the Poisson distribution [Zhang et al., 2020e], as well as distributions with bounded
support [Recht et al., 2011, Liu et al., 2014, Assran et al., 2020]. Roughly speaking, Assump-
tion 4 implies that the probability of the delay decays exponentially with its length given that
∑∞

ℓ=0 ζ
ℓE

γ
(t)
i ≥ℓ

[
γ
(t)
i

]
= E

[
ζγ

(t)
i

+1−1
ζ−1 γ

(t)
i

]
,1 where ζ−1 approximately indicates the decay rate. We

have the following theorem.

Theorem 9 (Last-iterate convergence with random delays). Under Assumption 4, suppose that
the regulari-zation parameter τ < min{1, dmax ∥A∥∞} and the learning rate η of single-timescale
OMWU in Algorithm 8 obeys

0 < η ≤ min

{
τ

24d2max ∥A∥2∞ (L+ 1)
,
ζ − 1

τζ

}
, (6.17)

then for any T ≥ 1, the iterates π(T ) and π(T ) converges to π⋆τ at the rate

E
[
KL
(
π⋆τ ∥π(T )

)]
≤ (1− ητ)T KL

(
π⋆τ ∥π(0)

)
, E

[
KL
(
π⋆τ ∥π(T )

)]
≤ 2(1−ητ)TKL

(
π⋆τ ∥π(0)

)
.

(6.18a)
Furthermore, the QRE-gap also converges linearly according to

E
[
QRE-Gapτ (π

(T ))
]
≤ 4η−1(1− ητ)TKL

(
π⋆τ ∥π(0)

)
. (6.18b)

1This can be checked by exchanging the order of sum: for l ≥ 0, we have
∑∞

l=0 Eγ
(t)
i ≥l

[
γ
(t)
i

]
=∑∞

l=0

∑∞
k=l ζ

lkP (γ
(t)
i = k) =

∑∞
k=0

∑k
l=0 ζ

lkP (γ
(t)
i = k) =

∑∞
k=0

ζk+1−1
ζ−1

kP (γ
(t)
i = k) = E

[
ζ
γ
(t)
i

+1−1
ζ−1

γ
(t)
i

]
.
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Theorem 9 suggests that the iteration complexity to ε-QRE is no more than

Õ
(
max

{
d2max ∥A∥2∞ (L+ 1),

ζ

ζ − 1

}
1

τ2
log

1

ε

)

after optimizing the learning rate, whose range is more limited compared with the requirement in
(6.14) without delays. In particular, the range of the learning rate is proportional to the regular-
ization parameter τ , an issue we shall try to address by resorting to two-timescale learning rates
in OMWU. To facilitate further understanding, we showcase the iteration complexity for finding
ε-QRE/NE under two typical scenarios: bounded delay and Poisson delay.

• Bounded random delay. When the delays are bounded above by some maximum delay γ,
Assumption 4 is met with ζ = 1 + γ−1 and L = eγ(γ + 1). Plugging into Theorem 9 yields
an iteration complexity of

Õ
(
d2max ∥A∥2∞ (γ + 1)2

τ2
log

1

ε

)

for finding an ε-QRE, or

Õ
(
d2max ∥A∥2∞ (γ + 1)2

ε2

)
(6.19)

for finding an ε-NE, which increases quadratically as the maximum delay increases. Note
that these rates are worse than those without delays (cf. Theorem 8).

• Poisson delay. When the delays follow the Poisson distribution with parameter 1/T , it suffices

to set ζ = 1 + T
−1

and L = eT (1 + T ) Assumption 4. This leads to an iteration complexity
of

Õ
(
d2max ∥A∥2∞ T

2

τ2
log

1

ε

)

for finding an ε-QRE, or

Õ
(
d2max ∥A∥2∞ T

2

ε2

)

for finding an ε-NE, which is similar to the bounded random delay case.

6.3 Performance guarantees of two-timescale OMWU

While Theorem 9 demonstrates provable convergence of single-timescale OMWU with random
delays, it remains unclear whether the update rule can be better motivated in more general asyn-
chronous settings, and whether the convergence can be further ensured under adversarial delays.
Indeed, theoretical insights from previous literature [Mokhtari et al., 2020a, Cen et al., 2021] sug-
gest the critical role of π(t) as a predictive surrogate for π(t) in enabling fast convergence, which no

longer holds when π(t) is replaced by a delayed feedback from π(κ
(t)
i ). To this end, we propose to

replace the extrapolation update (6.12) with one equipped with a different learning rate:

π
(t+1)
i (k) ∝ π(t)i (k)1−ητ exp(η[Aiπ

(κ
(t)
i )]k), ∀k ∈ Si, (6.20)

which adopts a larger learning rate η̄ > η to counteract the delay. Intuitively, a choice of η ≈ (γ
(t)
i +

1)η would allow π(κ
(t)
i ) to approximate π(t) by taking the intermediate updates {π(l) : κ(t)i ≤ l < t}

into consideration. We refer to this update rule as the two-timescale entropy-regularized OMWU,
whose detailed procedure is again outlined in Algorithm 8 using (6.13) for extrapolation.
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6.3.1 Performance guarantees under constant and known delays

To highlight the potential benefit of learning rate separation, we start by studying the convergence
of two-timescale OMWU in the asynchronous setting with constant and known delays, which has
been studied in [Weinberger and Ordentlich, 2002, Flaspohler et al., 2021, Meng et al., 2023]. We
have the following theorem, which reveals a a faster linear convergence to the QRE by using a
delay-aware two-timescale learning rate design.

Theorem 10 (Last-iterate convergence with fixed delays). Suppose that the delays γ
(t)
i = γ are

fixed and known. Suppose that the learning rate η of two-timescale OMWU in Algorithm 8 satisfies

η ≤ min

{
1

2τ(γ + 1)
,

1

5dmax ∥A∥∞ (γ + 1)2

}

and η is determined by 1 − ητ = (1 − ητ)(γ+1), then the last iterate π(T ) and π(T ) converge to the
QRE at a linear rate: for T ≥ γ,

max
{
KL
(
π⋆τ ∥π(T+1)

)
,
1

2
KL
(
π⋆τ ∥π(T−γ+1)

)}
≤(1− ητ)T+1KL

(
π⋆τ ∥π(0)

)
+ (1− ητ)T+1−γ .

In addition, the QRE-gap converges linearly according to

QRE-Gapτ (π
(T−γ+1)) ≤2max

{d2max ∥A∥2∞
τ

,
1

η

}(
(1− ητ)T+1KL

(
π⋆τ ∥π(0)

)
+ (1− ητ)T+1−γ

)
.

By optimizing the learning rate η, Theorem 10 implies that two-timescale OMWU takes at most

Õ
(
dmax ∥A∥∞ (γ + 1)2

τ
log

1

ε

)

iterations to find an ε-QRE in a last-iterate manner, which translates to an iteration complexity of

Õ
(
dmax ∥A∥∞ (γ + 1)2

ε

)

for finding an ε-NE. This significantly improves over the iteration complexity of Õ
(
d2max ∥A∥2∞ (γ + 1)2/ε2

)

(cf. (6.19)) for single-timescale OMWU, verifying the positive role of adopting two-timescale learn-
ing rate in enabling faster convergence.

6.3.2 Performance guarantees with permuted bounded delays

The above result requires the exact information of the delay, which may not always be available.
Motivated by the need to address arbitrary or even adversarial delays, we consider a more real-
istic scenario, where the payoff sequence arrives in a permuted order [Agarwal and Duchi, 2011]
constrained by a maximum bounded delay [McMahan and Streeter, 2014, Wan et al., 2022].

Assumption 5 (Bounded delay). For any i ∈ V and t > 0, it holds that γ
(t)
i ≤ γ.

Assumption 6 (Permuted feedback). For any t > 0, the payoff vector at the t-th iteration is
received by agent i only once. The payoff at the 0-th iteration can be used multiple times.

The following theorem unveils the convergence of two-timescale OMWU to the QRE in an
average sense under permutated bounded delays.
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Theorem 11 (Average-iterate convergence under permutated delays). Under Assumption 5 and
6, suppose that the learning rate η of two-timescale OMWU in Algorithm 8 satisfies

η ≤ min
{ 1

2τ(γ + 1)
,

1

28dmax ∥A∥∞ (γ + 1)5/2

}
,

and η is determined by 1− ητ = (1− ητ)(γ+1), then for T > 2γ, it holds that

1

T − 2γ
max

{ T−1∑

t=2γ

KL
(
π⋆τ ∥π(t+1)

)
,
1

3

T−1∑

t=2γ

KL
(
π⋆τ ∥π(t−γ+1)

)}

≤ 1

ητ(T − 2γ)

(
KL
(
π⋆i,τ ∥π(0)i

)
+ n

)
+

24nγ logSmax

T − 2γ
. (6.21)

Furthermore, the average QRE-gap can be bounded by

1

T − 2γ

T−1∑

t=2γ

QRE-Gapτ (π
(t+1))

≤ max
{3d2max ∥A∥2∞

2τ
, τ
}( 1

ητ(T − 2γ)
(KL

(
π⋆i,τ ∥π(0)i

)
+ n) +

36nγ logSmax

T − 2γ

)
.

Theorem 11 guarantees that the best iterate among {π(t)}2γ<t≤T is an ε-QRE as long as T is
on the order of

Õ
(
nd3max ∥A∥3∞ (γ + 1)5/2

τ2ε

)
,

which translates to an iteration complexity of

Õ
(
nd3max ∥A∥3∞ (γ + 1)5/2

ε3

)

for finding an ε-NE. While the rate seems slower than the previous theorems, Theorem 11 holds
under arguably the weakest delay assumptions, where it can be even adversarially bounded. We
remark that the result in (6.21) also guarantees the convergence of the last iterate π(t) to the QRE
asymptotically, although without a finite-time rate. This is in sharp contrast to typical average-
iterate analysis that only applies to 1

T

∑T
t=1 π

(t) without implications on the convergence of the last

iterate π(t).

6.4 Discussion

This work studies asynchronous gradient play in zero-sum polymatrix games, by investigating the
convergence behaviors of entropy-regularized OMWU with delayed feedbacks under two different
schedules of the learning rates. We demonstrate that the single-timescale OMWU enjoys a linear
last-iterate convergence to the QRE even under mild statistical delays, thus enables robust learning
of gradient play. However, the presence of the delay limits the allowable range of learning rates and
slows down the convergence. To mitigate the impact, we further show that the method benefits
from adopting a two-timescale learning rate, by achieving a faster convergence when the delay is
fixed and known and provable convergence in a more general setting with permuted feedback and
bounded delay. This work leaves open a number of interesting questions:
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• Can we further tighten the convergence analysis in terms of dependencies on salient parame-
ters?

• Can we establish the last-iterate convergence of two-timescale OMWU under bounded delay?
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Chapter 7

Multi-player Potential Games

In this chapter, we formulate the problem of multi-player potential game. We present independent
NPG method along with its theoretical guarantees. For more details and entire analysis, please
refer to Cen et al. [2022a].

7.1 Potential games with entropy regularization

In this section, we introduce the basics of potential games, as well as the incorporation of entropy
regularization into its formulation.

7.1.1 Potential games

A strategic game G = {N,A, {ui}i∈[N ]} consists of N agents each with an individual utility or
payoff function

ui : AN → [0, 1], i ∈ [N ],

where A is, without loss of generality, a finite action space shared by all agents. The policy or
mixed strategy of agent i is denoted by πi ∈ ∆(A), which is a distribution over the action space A.
By an abuse of notation, let ui(π) denote agent i’s expected utility function under the joint policy
π = π1 × · · · × πN ∈ ∆(A)N , i.e.,

ui(π) = Eai∼πi,∀i∈[N ] [ui(a)] ,

where we denote the action profile (a1, · · · , aN ) of all agents by a ∈ AN . We shall often instead
write a = (ai, a−i) where a−i = {aj}j ̸=i collects the actions of all agents but i; similarly, we write
π = (πi, π−i), where π−i = {πj}j ̸=i collects the policies of all agents but i.

The game G is said to be a potential game if there exists a potential function Φ : AN → R such
that

ui(ai, a−i)− ui(a′i, a−i) = Φ(ai, a−i)− Φ(a′i, a−i)

for any ai, a
′
i ∈ A, a−i ∈ AN−1 and i ∈ [N ]. We assume that

0 ≤ Φ(a) ≤ Φmax, ∀a ∈ AN , (7.1)

where Φmax upper bounds the potential function. An important special case of the potential game is
when all the agents share the same utility function, known as the identical-interest game Monderer
and Shapley [1996a]. It is straightforward to see that for an identical-interest game, we can set
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Φ = ui for all i ∈ [N ], and therefore Φmax = 1 due to the fact that the individual payoff is bounded
in [0, 1].

By linearity of expectation, we have

ui(πi, π−i)− ui(π′i, π−i) = Φ(πi, π−i)− Φ(π′i, π−i),

where, again with slight abuse of notation, we denote

Φ(π) = Ea∼π [Φ(a)] = Eai∼πi,∀i∈[N ] [Φ(a)] ,

for any πi, π
′
i ∈ ∆(A), π−i ∈ ∆(A)N−1 and i ∈ [N ].

Nash equilibrium. We now introduce the important notion of Nash equilibrium in a potential
game.

Definition 3 (Nash equilibrium). A joint policy π⋆ is called a Nash equilibrium (NE) when it holds
that

ui(πi, π−i) ≥ ui(π′i, π−i), ∀π′i ∈ ∆(A), ∀i ∈ [N ].

In other words, every agent cannot improve its utility function by deviating from the current
policy. It is known that there exists at least one NE in a strategic game with finite agents and
actions Nash [1951]. It follows immediately that the policy or strategy profile maximizing Φ in a
potential game is an NE.

Marginalized utility. Before continuing, let us introduce an important quantity called the
marginalized utility rπi : A → R:

rπi (a) = Ea−i∼π−i [ui(a, a−i)] , (7.2)

which can be viewed as the “single-agent” payoff or reward function when the policies of other
agents are fixed. It is immediate to see that the utility function ui can be written as

ui(π) = Ea∼π [ui(a)] = Ea∼πi [r
π
i (a)] = ⟨rπi , πi⟩.

Here and throughout this thesis, we shall often abuse the notation to treat π, πi and r
(t)
i as vectors.

7.1.2 Entropy-regularized potential games

The quantal response equilibrium (QRE) is proposed by McKelvey and Palfrey McKelvey and
Palfrey [1995] as a seminal extension to the Nash equilibrium, which enables players to combat
randomness in payoffs. A QRE or logit equilibrium π⋆τ = π⋆τ,1 × · · · × π⋆τ,N necessitates every agent
to maximize its own utility function with entropy regularization Mertikopoulos and Sandholm
[2016], i.e.,

ui,τ (π
⋆
τ,i, π

⋆
τ,−i) ≥ ui,τ (π′i, π⋆τ,−i), ∀π′i ∈ ∆(A),

where the entropy-regularized individual utility function is given by

ui,τ (π) = ui(π) + τH(πi).

Here, π = π1×· · ·×πN , τ > 0 is the regularization parameter, andH(πi) = −
∑

a∈A πi(a|s) log πi(a|s)
is the Shannon entropy of the policy π employed by agent i. By introducing the regularized potential
function

Φτ (π) = Φ(π) + τH(π) := Φ(π) + τ
∑

i∈[N ]

H(πi),
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it is easy to verify

ui,τ (πi, π−i)− ui,τ (π′i, π−i) = Φτ (πi, π−i)− Φτ (π
′
i, π−i).

for any πi, π
′
i ∈ ∆(A), π−i ∈ ∆(A)N−1 and i ∈ [N ], as long as the unregularized game is a potential

game.

Fixed-point characterization of QRE. An equivalent interpretation of QRE is to let each
agent assign the probability mass in its policy according to every action’s utility in a bounded
rationality fashion Selten [1989]:

π⋆τ,i(a) ∝ exp
(
r
π⋆
τ

i (a)/τ
)
, ∀i ∈ [N ], (7.3)

where r
π⋆
τ

i is the marginalized utility of π⋆τ defined in (7.2). Note that the above relation defines a
fixed-point equation of π⋆τ .

7.2 Finite-time global convergence of independent natural policy
gradient methods

A popular approach in the game theory literature to find an NE of a potential game is for each
agent to switch to the best or better response policy, one at a time, and is generally referred to
as best-response dynamics. This approach converges to an NE in finite iterations Monderer and
Shapley [1996b] and underlies the algorithm design of a considerable number of works on, e.g., cut
games Christodoulou et al. [2006], congestion games Chien and Sinclair [2011], weakly acyclic games
Young [2004], and, more recently, their extensions in the Markovian setting Song et al. [2022], Arslan
and Yüksel [2016]. It is noted, however, that this approach isolates itself from the independent
learning paradigm as the update sequence needs to be scheduled in a centralized manner that is
not often possible. Therefore, it is greatly desirable to design independent update rules, where each
agent updates simultaneously without observing the payoffs of other agents, that achieves faster
convergence. In this section, we answer this call by developing the independent natural policy
gradient method to solve (entropy-regularized) potential games with finite-time global convergence
guarantees.

7.2.1 Independent natural policy gradient method

We consider the standard softmax parameterization, where every agent i generates its own policy
πθi parameterized with θi ∈ R|A| through the softmax transform:

πθi(a) =
exp(θi(a))∑
a∈A exp(θi(a))

.

Every agent i evaluates and updates its policy independently using the natural policy gradient
(NPG) method Kakade [2001]:

θi ← θi + η(Fθi)†∇θiui,τ (π), (7.4)

where (Fθi)† denotes the Moore-Penrose pseudo-inverse of the Fisher information matrix Fθi , which
is defined as

Fθi = Ea∼πθi
(·)

[
(∇θi log πθi(a))(∇θi log πθi(a))

⊤
]
,
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and η > 0 is the learning rate. Moreover, the gradient ∇θiui,τ (π) can be expressed as

∇θiui,τ (π) = rπi − τ log πi − τ1.

It turns out that with some algebra, the NPG update rule (7.4) can be equivalently rewritten with
respect to the policies in use Cen et al. [2022b]:

π
(t+1)
i (a) ∝ π(t)i (a)1−ητ exp(ηr

(t)
i (a)), (7.5)

where π
(t)
i denotes agent i’s policy in the t-th iteration, and r

(t)
i := rπ

(t)

i denotes the marginalized
utility of π(t) (cf. (7.2)). The complete procedure is summarized in Algorithm 9.

Algorithm 9: Independent NPG for Entropy-regularized Potential Games

1 Input: Regularization parameter τ > 0, step size for policy update η > 0.

2 Initialization: Set π
(0)
i as uniform policy for all i ∈ [N ].

3 for t = 0, 1, · · · do
4 for all agent i ∈ [N ] do in parallel

5 Observe agent i’s marginalized utility r
(t)
i .

6 Perform policy update

π
(t+1)
i (a) ∝ π(t)i (a)1−ητ exp(ηr

(t)
i (a)).

To better understand the update rule (7.5) as well as prepare for follow-up analysis, we introduce

π
⋆(t)
i to denote agent i’s best-response policy in the t-th iteration, which is the policy that obeys

ui,τ (π
⋆(t)
i , π

(t)
−i) = max

π′
i

ui,τ (π
′
i, π

(t)
−i). (7.6)

It is easily seen that

π
⋆(t)
i (a) ∝ exp(r

(t)
i (a)/τ). (7.7)

Therefore, the updated policy in (7.5) can be regarded as a multiplicative combination of the current

policy π
(t)
i and the best-response policy π

⋆(t)
i , where the weight is controlled by the learning rate

η. Note that the unregularized counterpart of the method is equivalent to Multiplicative Weights
Update method (MWU) Littlestone and Warmuth [1994], Arora et al. [2012] or Hedge Freund and
Schapire [1999].

7.2.2 Finite-time global convergence

We are now ready to present our main theorem concerning the finite-time global convergence of
independent NPG for solving entropy-regularized potential games. We introduce

NE-gap(π) = max
i∈[N ],π′

i∈∆(A)

[
ui(π

′
i, π−i)− ui(πi, π−i)

]

and

QRE-gapτ (π) = max
i∈[N ],π′

i∈∆(A)

[
ui,τ (π

′
i, π−i)− ui,τ (πi, π−i)

]
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to characterize how close the joint policy π is to an equilibrium. A joint policy π is said to be an
ε-QRE (resp. ε-NE) when QRE-gap(π) ≤ ε (resp. NE-gap(π) ≤ ε). For notational simplicity, we
denote

Φ(t)
τ := Φτ (π

(t)), QRE-gap(t)τ := QRE-gapτ (π
(t)), and NE-gap(t) := NE-gap(π(t)).

Our main theorem is as follows.

Theorem 12. Suppose that the learning rate η satisfies η ≤ 1
2(min{

√
N,2Φmax}+τ)

, then for indepen-

dent NPG updates (7.5), it holds that

1

T

T∑

t=1

QRE-gap(t)τ ≤
2

ητT

(
τ
∥∥∥log π(0) − log π⋆(0)

∥∥∥
∞

+

√
2ηT (Φ

(T )
τ − Φ

(0)
τ )
)
.

Theorem 12 suggests that the average iterate of independent NPG converges to an ε-QRE at a
sublinear rate when we initialize it via uniform policies, as indicated in the following corollary.

Corollary 1. Assume the independent NPG method is initialized with uniform policies at all agents.
Setting the learning rate η = 1/(2(min{

√
N, 2Φmax} + τ)) and τ = O(1), then independent NPG

updates ensure that 1
T

∑T
t=1 QRE-gap

(t)
τ ≤ ε with at most

T = O
(
min{

√
N,Φmax}Φmax

τ2ε2

)

iterations.

Finding approximate NEs. It is possible to leverage the entropy-regularized potential game
to find an approximate NE by setting the regularization parameter sufficiently small. Note that

NE-gap(π) = max
i∈[N ],π′

i∈∆(A)

[
ui(π

′
i, π−i)− ui(πi, π−i)

]

≤ max
i∈[N ],π′

i∈∆(A)

[
ui,τ (π

′
i, π−i)− ui,τ (πi, π−i)

]
+ max

i∈[N ],π′
i∈∆(A)

[
−τH(π′i) + τH(πi)

]

≤ QRE-gapτ (π) + τ log |A|.

Therefore, by setting the entropy regularization at

τ =
ε

2 log |A| ,

with at most

T = Õ
(
min{

√
N,Φmax}Φmax

ε4

)

iterations, we can ensure 1
T

∑T
t=1 NE-gap

(t) ≤ ε.
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Comparisons with prior art. Importantly, our iteration complexities do not depend on the
size of the action space (up to logarithmic factors), which is in sharp contrast to existing analyses
of potential games using other policy gradient approaches, such as direct PG [Zhang et al., 2024a,
Leonardos et al., 2022, Ding et al., 2022, Mao et al., 2022] and NPG with log-barrier regularization
[Zhang et al., 2022b], where the iteration complexity scales as Õ

(
N |A|Φmax/ε

2
)
to find an ε-

approximate NE. In comparison, while our rate Õ
(
min{

√
N,Φmax}Φmax/ε

4
)
is worse in terms of

ε, it is almost independent of the size |A| of the action space, as well as exhibits only a sublinear
dependency with the number of agents N , thus can be beneficial for problems with large action
spaces and a large number of agents. Furthermore, for the special case of identical-interest games
[Monderer and Shapley, 1996a] where Φmax = 1, the convergence rate of our method simplifies to

Õ
(

1

ε4

)
,

which leads to the first method that achieves a dimension-free iteration complexity (up to a loga-
rithmic factor) for finding an ε-NE without imposing any isolation assumptions.

7.3 Discussion

This work studies independent NPG methods for entropy-regularized potential games and develops
a sublinear rate of convergence to quantal response equilibrium, which is independent of the size of
the action spaces up to logarithmic factors and grows only sublinearly with respect to the number of
agents. In addition, the method achieves the first dimension-free convergence rate for the important
special case of identical-interest games, where the rate is independent of both the size of the action
space and the number of agents. The approach can also be used as a smoothing technique to
find Nash equilibria by setting the regularization parameter sufficiently small, without imposing
the isolation assumption as often required in prior works. This thesis leaves open a number of
interesting questions:

• Can we tighten the convergence rate in terms of the dependencies on ε?

• Can we extend the analysis to establish finite-time global convergence for Markov potential
games?

We leave the answers to future work.
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Part III

Principled AI alignment
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Chapter 8

Reinforcement Learning from Human
Feedback

In this chapter, we formulate the problem of reinforcement learning from human feedback (RLHF).
We present principled learning algorithms for both online and offline settings along with theoretical
guarantees. For more details and entire analysis, please refer to Cen et al. [2024].

8.1 Preliminaries

In RLHF, a language model is described by a policy π, which generates an answer y ∈ Y given
prompt x ∈ X according to the conditional probability distribution π(·|x). The standard RLHF
process consists of four stages: supervised fine-tuning (SFT), preference data generation, reward
modeling, and RL fine-tuning. In the SFT stage, a language model πsft is obtained by fine-tuning
a pre-trained LLM with supervised learning. The remaining stages continue training by leveraging
the preference data, which we elaborate below.

Reward modeling from preference data. An oracle (e.g., a human labeler or a scoring model)
evaluates the quality of two answers y1 and y2 given prompt x and reveals its preference. A widely
used approach for modelling the probability of pairwise preferences is the Bradley–Terry model
[Bradley and Terry, 1952]:

P(y1 ≻ y2|x) =
exp(r⋆(x, y1))

exp(r⋆(x, y1)) + exp(r⋆(x, y2))
= σ(r⋆(x, y1)− r⋆(x, y2)), (8.1)

where y1 ≻ y2 indicates that y1 is preferred over y2, r
⋆ : X × Y → R is the ground truth reward

function, and σ : R→ (0, 1) is the logistic function. A preference data sample is denoted by a tuple
(x, y+, y−), where y+ (resp. y−) is the preferred (resp. unpreferred) answer in the comparison.

Given a preference dataset D = {(xi, yi+, yi−)} composed of independent samples, the reward
function r can be estimated by maximum likelihood estimation (MLE):

rMLE = argmin
r

ℓ(r,D), (8.2)

where ℓ(r,D) is the negative log-likelihood of D, given as

ℓ(r,D) := −
∑

(xi,yi+,yi−)∈D

log σ(r(xi, yi+)− r(xi, yi−)). (8.3)
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RL fine-tuning. Given a reward model r, we seek to fine-tune the policy π to achieve an ideal
balance between the expected reward and its distance from an initial policy πref, which is typically
the same as πsft. This is achieved by maximizing the KL-regularized value function J(r, π), defined
as

J(r, π) = E
x∼ρ,y∼π(·|x)

[r(x, y)]− β E
x∼ρ

[KL (π(·|x) ∥πref(·|x))] , (8.4)

where KL (π1 ∥π2) is the KL divergence from π1 to π2, and β > 0 is a regularization parameter.
Consequently, the RL fine-tuned policy πr with respect to the reward r satisfies

πr := argmax
π

J(r, π), (8.5)

which admits a closed-form solution [Rafailov et al., 2023], i.e.,

∀(x× y) ∈ X × Y : πr(y|x) =
πref(y|x) exp(r(x, y)/β)

Z(r, x)
. (8.6)

Here, Z(r, x) is a normalization factor given by

Z(r, x) =
∑

y′∈Y
πref(y

′|x) exp(r(x, y′)/β). (8.7)

Direct preference optimization. The closed-form solution (8.6) allows us to write the reward
function r in turn as

r(x, y) = β(log πr(y|x)− log πref(y|x) + logZ(r, x)). (8.8)

Plugging the above equation into the reward MLE (8.2), we obtain the seminal formulation of direct
preference optimization (DPO) over the policy space [Rafailov et al., 2023],

πDPO = argmin
π
−

∑

(xi,yi+,yi−)∈D

log σ

(
β

(
log

π(yi+|x)
πref(y

i
+|x)

− log
π(yi−|x)
πref(y

i
−|x)

))
, (8.9)

which avoids explicitly learning the reward model.

8.2 Value-incentivized preference optimization

A major caveat of the standard RLHF framework concerns the lack of accounting for reward
uncertainty, which is known to be indispensable in the success of standard RL paradigms in both
online and offline settings [Cesa-Bianchi et al., 2017, Rashidinejad et al., 2022]. This motivates
us to investigate a principled mechanism that be easily integrated into the RLHF pipeline, while
bypassing the difficulties of explicit uncertainty estimation in LLMs.

8.2.1 General framework

In view of the sub-optimality of naive MLE for reward estimation [Cesa-Bianchi et al., 2017,
Rashidinejad et al., 2022], and motivated by the effectiveness of reward-biased MLE in online RL
[Kumar and Becker, 1982, Liu et al., 2020a, 2024a], we propose to regularize the reward estimate
via

J⋆(r) = max
π

J(r, π), (8.10)
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which measures the resulting value function for the given reward if one acts according to its optimal
policy. However, in RLHF, by the definition (8.1), the reward function r⋆ is only identifiable up to a
prompt-dependent global shift. Specifically, letting r1(x, y) = r2(x, y)+c(x) be two reward functions
that only differ by a prompt-dependent shift c(x), we have r1(x, y1)−r1(x, y2) = r2(x, y1)−r2(x, y2),
which leads to J⋆(r1) = J⋆(r2) + Ex∼ρ[c(x)]. To resolve this challenge, we introduce the following
equivalent class of reward functions for the Bradley-Terry model to eliminate the shift ambiguity,
which also has the calibration effect of centering the reward function while offering a regularization
mechanism to incorporate additional policy preferences.

Assumption 7. We assume that r⋆ ∈ R, where

R =

{
r : E

x∼ρ,y∼πcal(·|x)
[r(x, y)] = 0.

}
. (8.11)

Here, ρ is the prompt distribution and πcal is a fixed calibration distribution independent of the
algorithm.

The proposed regularized MLE of the Bradley-Terry model (8.2) appends a bias term to the
negative likelihood

rVPO = argmin
r∈R
{ℓ(r,D)− sign · α · J⋆(r)}, (8.12)

incentivizing the algorithm to favor (resp. avoid) reward models with higher value J⋆(r) in the
online (resp. offline) setting. Here, α > 0 is a constant controlling the strength of regularization,
and sign is set to 1 in the online setting and −1 in the offline setting.

At first glance, the objective function for VPO (8.12) does not immediately imply a computationally-
efficient algorithm due to the presence of J⋆(r). However, by exploiting the same closed-form solu-
tion for the optimal policy given the reward in (8.6), and the reward representation inferred from
the policy via (8.8), we can explicitly express J⋆(r) as

J⋆(r) = E
x∼ρ,y∼πr(·|x)

[r(x, y)− β(log πr(y|x)− log πref(y|x))]

= E
x∼ρ,y∼πr(·|x)

[logZ(r, x)]

= E
x∼ρ,y∼πcal(·|x)

[logZ(r, x)]

= E
x∼ρ,y∼πcal(·|x)

[r(x, y)− β(log πr(y|x)− log πref(y|x))]

= −β E
x∼ρ,y∼πcal(·|x)

[log πr(y|x)− log πref(y|x)] , (8.13)

where the second step follows because the bracketed term is independent of y (c.f. (8.6)) and the
last step follows from (8.11) whenever r ∈ R. Given this key ingredient, we can then rewrite (8.12)
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to directly optimize the LLM policy, in a flavor similar to DPO, as

πVPO

= argmin
πr: r∈R

{ℓ(r,D)− sign · α · J⋆(r)}

= argmin
πr: r∈R

{
−

∑

(xi,yi+,yi−)∈D

log σ
(
β log

πr(y
i
+|xi)

πref(y
i
+|xi)

− β log πr(y
i
−|xi)

πref(y
i
−|xi)

)

+ sign · αβ E
x∼ρ,y∼πcal(·|x)

[log πr(y|x)− log πref(y|x)]
}

= argmin
π

{
−

∑

(xi,yi+,yi−)∈D

log σ
(
β log

π(yi+|xi)
πref(y

i
+|xi)

− β log π(yi−|xi)
πref(y

i
−|xi)

)

+ sign · αβ E
x∼ρ,y∼πcal(·|x)

[log π(y|x)− log πref(y|x)]
}
, (8.14)

where we drop the constraint on r ∈ R, since for any policy π there exists r ∈ R such that π = πr.

Observing that the reference policy πref(y|x) in the last term of (8.14) E
x∼ρ,y∼πcal(·|x)

[log π(y|x)− log πref(y|x)]

does not impact the optimization solution, we can change it to E
x∼ρ,y∼πcal(·|x)

[log π(y|x)− log πcal(y|x)]
}
=

− E
x∼ρ

[KL (πcal(·|x) ∥π(·|x))], which amounts to adding a KL regularization to the original DPO, and

offers an interesting interpretation as pushing π against/towards πcal in the online/offline settings
respectively, unveiling the role of reward calibration in RLHF.

In what follows, we elaborate the development of VPO in both the online and offline settings
with corresponding theoretical guarantees under linear function approximation.

8.2.2 Online RLHF: algorithm and theory

The online RLHF procedure extends training by performing reward learning and policy learning
iteratively, with a growing preference dataset collected by using the current policy. We use π(t) to
denote the policy used in the t-th iteration, where the superscript (t) indicates iteration t in the
online setting. The t-th iteration of VPO for online RLHF consists of the following steps:

1. New preference data generation. We sample a new prompt x(t) ∼ ρ and two answers

y
(t)
1 , y

(t)
2 ∼ π(t)(·|x(t)), query the preference oracle and append (x(t), y

(t)
+ , y

(t)
− ) to the preference

dataset.

2. Reward learning. We train a reward model with preference dataD(t) := {(x(s), y(s)+ , y
(s)
− )}ts=1

by minimizing the regularized negative log-likelihood, i.e.,

r(t+1) = argmin
r∈R
{ℓ(r,D(t))− α · J⋆(r)}. (8.15)

3. Policy learning. This step trains the policy by solving the RL fine-tuning problem:

π(t+1) = argmax
π

J(r(t+1), π). (8.16)

We summarize the detailed procedure in Algorithm 10.
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Algorithm 10: VPO for online RLHF

1 initialization: π(0).
2 for t = 0, 1, 2, · · · do
3 Sample x(t) ∼ ρ, y(t)1 , y

(t)
2 ∼ π(t)(·|x(t)).

4 Obtain the preference between (x(t), y
(t)
1 ) and (x(t), y

(t)
2 ) from some oracle. Denote the

comparison outcome by (x(t), y
(t)
+ , y

(t)
− ).

5 Update policy π as

π(t+1) = argmin
π

{
−

t∑

s=1

log σ
(
β log

π(y
(s)
+ |x(s))

πref(y
(s)
+ |x(s))

− β log π(y
(s)
− |x(s))

πref(y
(s)
− |x(s))

)

+ αβ E
x∼ρ,y∼πcal(·|x)

[log π(y|x)− log πref(y|x)]
}
. (8.17)

Theoretical analysis. Encouragingly, VPO admits appealing theoretical guarantees under func-
tion approximation. For simplicity, we restrict attention to linear approximation of the reward
model.

Assumption 8 (Linear Reward). We parameterize the reward model by

rθ(x, y) = ⟨ϕ(x, y), θ⟩ , ∀(x, y) ∈ X × Y, (8.18)

where ϕ : X × Y → Rd is a fixed feature mapping and θ ∈ Rd is the parameters. We assume that
∥ϕ(x, y)∥2 ≤ 1 for all (x, y) ∈ X × Y, and that r⋆(x, y) = ⟨ϕ(x, y), θ⋆⟩ for some θ⋆.

Under Assumption 7 and 8, it is sufficient to focus on θ ∈ Θ where

Θ =
{
θ ∈ Rd : E

x∼ρ,y∼πcal(·|x)
[⟨ϕ(x, y), θ⟩] = 0

}
. (8.19)

The next theorem demonstrates that Algorithm 10 achieves Õ(
√
T ) cumulative regret under

mild assumptions. The proof is provided in Appendix G.1. The proof logic follows from that of
[Liu et al., 2024a].

Theorem 13. Under Assumptions 7 and 8, let rθ(t) ∈ Θ denote the corresponding reward model
for π(t). Assume that ∥θ⋆∥2 ≤ C and ∥θ(t)∥2 ≤ C,∀t ≥ 0 for some C > 0. Then with probability
1− δ we have

Regret :=
T∑

t=1

[
J⋆(r⋆)− J(r⋆, π(t))

]
≤ Õ(exp(2C + C/β)

√
κdT ),

with α =
1

exp(2C + C/β)

√
T

κmin{d log T, T} and κ = supx,y
πcal(y|x)
πref(y|x)

.

Theorem 13 shows that VPO achieves the same Õ(
√
T ) regret for online RLHF as its counter-

parts in standard contextual bandits with scalar rewards and using UCB for exploration [Lattimore
and Szepesvári, 2020].
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Algorithm 11: VPO for offline RLHF

1 input: offline preference data D of size N .
2 Get policy π̂ by optimizing

π̂ = argmin
π

{
−

N∑

i=1

log σ
(
β log

π(yi+|xi)
πref(y

i
+|xi)

− β log π(yi−|xi)
πref(y

i
−|xi)

)

− αβ E
x∼ρ,y∼πcal(·|x)

[log π(y|x)− log πref(y|x)]
}
.

Remark 9. The boundedness condition on {θ(t)}t≥0 can be potentially mitigated by incoporating
into the algorithm a norm regularization term on θ. Further investigation is needed to determine
its precise algorithmic form in (8.17).

Remark 10. The analysis naturally extends to allowing mini-batch samples of size M in every
iteration, yielding an improved regret bound scaled by 1/

√
M and α scaled by

√
M .

8.2.3 Offline RLHF: algorithm and theory

In offline RLHF, a fixed offline preference dataset is collected D := {xi, yi+, yi−}Ni=1, where x
i ∼ ρ,

yi ∼ πb(·|x) are sampled from a behavior policy πb, such as πsft from SFT. The proposed VPO for
offline RLHF consists of one pass through the reward and policy learning phases, i.e.,

r̂ = argmin
r∈R
{ℓ(r,D) + α · J⋆(r)} and π̂ = argmax

π
J(r̂, π), (8.20)

which discourages over-optimization of the reward function given the limited offline preference data.
In the same vein as deriving (8.17), and by leveraging (8.13), we obtain the direct policy update
rule:

π̂ = argmin
π

{
−

N∑

i=1

log σ
(
β log

π(yi+|xi)
πref(y

i
+|xi)

− β log π(yi−|xi)
πref(y

i
−|xi)

)

− αβ E
x∼ρ,y∼πcal(·|x)

[log π(y|x)− log πref(y|x)]
}
. (8.21)

We summarize the detailed procedure in Algorithm 11. When πcal is set to πref, the regularization
term becomes the KL divergence between π and πref, which is reminiscent of a popular choice in
offline RL practice [Kumar et al., 2020]. Another heuristic choice is to set πcal to the marginalized
positive answer distribution from the dataset, i.e., (x, y+) ∼ D, which leads to a similar objective
in [Pal et al., 2024].

Saddle-point characterization and pessimism. We first illustrate that VPO indeed executes
the principle of pessimism in a complementary manner to the standard approach of pessimism,
which finds a policy that maximizes the worst-case value function over a confidence set. In partic-
ular, this strategy [Uehara and Sun, 2022] obtains a policy by solving

π̂LCB = argmax
π

min
r∈Rδ

J(r, π) (8.22)
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where the confidence set Rδ is typically set to {r : ℓ(r,D) ≤ ℓ(rMLE,D)+δ} or {r : dist(r, rMLE) ≤ δ}
for some δ > 0 and s distance measure dist. Turning to VPO, note that by (8.20) we have

r̂ = argmin
r

{
ℓ(r,D) + αJ⋆(r)

}
= argmin

r
max
π

{
ℓ(r,D) + αJ(r, π)

}
. (8.23)

Since ℓ(r,D) + αJ(r, π) is strongly concave over π, and convex over r, it allows us to formulate
(r̂, π̂) as a saddle point in the following lemma. The proof is given in Appendix G.2.1.

Lemma 2. (r̂, π̂) is a saddle point of the objective ℓ(r,D) +αJ(r, π), i.e., for any (r′, π′), we have

{
ℓ(r̂,D) + αJ(r̂, π̂) ≤ ℓ(r′,D) + αJ(r′, π̂)

ℓ(r̂,D) + αJ(r̂, π̂) ≥ ℓ(r̂,D) + αJ(r̂, π′)
.

As such, the policy obtained by VPO can be equivalently written as

π̂ ∈ argmax
π

min
r

{
J(r, π) +

1

α
ℓ(r,D)

}
= argmax

π
min

r∈Rδ(π,α)

J(r, π), (8.24)

where Rδ(π,α) is the constraint set {r : ℓ(r,D) ≤ ℓ(rMLE,D) + δ(π, α)} such that the constrained
optimization problem minr∈Rδ(π,α)

J(r, π) is equivalent to the regularized problem minr
{
J(r, π) +

1
αℓ(r,D)

}
. In view of the similarity between the formulations (8.22) and (8.24), we conclude that

VPO implements the pessimism principle (8.22) in an oblivious manner without explicitly esti-
mating the uncertainty level, justifying popular practice as a valid approach to pessimism [Kumar
et al., 2020].

Theoretical analysis. The next theorem establishes the sub-optimality gap of VPO with linear
function approximation under mild assumptions. The proof is given in Appendix G.2.

Theorem 14. Under Assumptions 7 and 8, let θ̂ ∈ Θ denote the corresponding reward model for
π̂. Assume that ∥θ⋆∥2 ≤ C and ∥θ̂∥2 ≤ C for some C > 0. Let α =

√
N and δ ∈ (0, 1). With

probability 1− δ, we have

J⋆(r⋆)− J(r⋆, π̂) ≤ O
(
C1√
N
·
∥∥∥ E

x∼ρ,
y∼π⋆(·|x)

[ϕ(x, y)]
∥∥∥
(ΣD+λI)−1

+
C2√
N

)
,

where ΣD = 1
N

∑N
i=1(ϕ(x

i, yi+)−ϕ(xi, yi−))(ϕ(xi, yi+)−ϕ(xi, yi−))⊤ is the feature sample covariance

matrix, λ = 1/N , C1 = exp(C)
(√

d+ log(1/δ) + κD

)
+ C and C2 = exp(C)κ2D + CκD + 1. Here,

κD =
∥∥∥ E

x∼ρ,
y∼π̂(·|x)

[ϕ(x, y)]− E
x∼ρ,

y∼πcal(·|x)

[ϕ(x, y)]
∥∥∥
(ΣD+λI)−1

≤ 4(λmin(ΣD) + λ)−1.

Theorem 14 establishes that VPO achieves the same rate of Õ(1/
√
N) as standard offline RL, as

long as the offline dataset D has sufficient coverage. We remark that
∥∥∥ E

x∼ρ,
y∼π⋆(·|x)

[ϕ(x, y)]
∥∥∥
(ΣD+λI)−1

is

reminiscent of the standard single-policy concentratability coefficient in offline RL, which measures
the distribution shift between the offline dataset and the optimal policy [Zhu et al., 2023].
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8.3 Experiments

In this section, we evaluate the proposed VPO on synthetic multi-armed bandit (MAB) in online
and offline settings.

8.3.1 Synthetic multi-armed bandits

We evaluate the proposed methods on a synthetic dataset of size |X | = 1 and |Y| = 10. We set
πref = πb = πcal, where πref = softmax(θref) with θref(x, y) sampled i.i.d. from N (0, 1). The ground
truth reward r⋆ is randomly generated i.i.d. according to r⋆(x, y) ∼ U([0, 1]). We approximately
solve the optimization problems by performing 20 AdamW optimization steps with learning rate
0.01 and weight decay rate 0.01 in every iteration for the online setting and 1000 steps for the
offline setting.

We plot the average results over 10 independent runs in Figure 8.1. As demonstrated in the left
panel of Figure 8.1, an appropriate choice of α allows our method to outperform the model-based
MAB with MLE baseline in the long-term performance of cumulative regret, at the cost of slightly
increased cumulative regret in the first 100 iterations. This highlights the effectiveness of the VPO
in achieving more principled exploration-exploitation trade-off. For the offline setting, the right
panel of Figure 8.1 demonstrates that the performance of both MLE-MAB and VPO improves as
the number of offline data increases. However, VPO achieves a consistently lower sub-optimality
gap compared with that of MLE-MAB.
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Figure 8.1: The cumulative regret v.s. number of iterations plot (left panel) and sub-optimality gap v.s.
number of data plot (right panel) of VPO and MLE-MAB methods in the online and offline settings, respec-
tively.

8.4 Discussion

In this work, we develop a unified approach to achieving principled optimism and pessimism in on-
line and offline RLHF, which enables a practical computation scheme by incorporating uncertainty
estimation implicitly within reward-biased maximum likelihood estimation. Theoretical analysis
indicates that the proposed methods mirror the guarantees of their standard RL counterparts,
which is furthermore corroborated by numerical results. Important future directions include inves-
tigating adaptive rules for selecting α without prior information and more refined analysis on the
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choice of πcal. This work also hints at a general methodology of designing practical algorithms with
principled optimism/pessimism under more general RL setups.
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Appendix A

Proofs for Chapter 2

A.1 Analysis

A.1.1 Main pillars for the convergence analysis

Before proceeding, we isolate a few ingredients that provide the main pillars for our theoretical
development.

Performance improvement and monotonicity. This lemma is a sort of ascent lemma, which
quantifies the progress made over each iteration — measured in terms of the soft value function.

Lemma 3 (Performance improvement). Suppose that 0 < η ≤ (1 − γ)/τ . For any distribution ρ,
one has

V (t+1)
τ (ρ)− V (t)

τ (ρ) = E
s∼d

(t+1)
ρ

[(
1

η
− τ

1− γ

)
KL
(
π(t+1)(·|s) ∥π(t)(·|s)

)
+

1

η
KL
(
π(t)(·|s) ∥π(t+1)(·|s)

)]
.

(A.1)

Proof. See Appendix A.3.1.

In a nutshell, Lemma 3 asserts that each iteration of the entropy-regularized NPG method is
guaranteed to improve the estimates of the soft value function, with the improvement depending
on the KL divergence between the current policy π(t) and the updated one π(t+1). In fact, the
arbitrary choice of ρ readily reveals a sort of pointwise monotoncity for the above range of learning

rates, in the sense that V
(t+1)
τ (s) ≥ V

(t)
τ (s) for all s ∈ S. Indeed, this lemma can be viewed

as the counterpart of the performance difference lemma in Kakade and Langford [2002] for the
unregularized form. Lemma 3 also implies the monotonicity of the soft Q-function in t, since for
any (s, a) ∈ S ×A one has

Q(t+1)
τ (s, a) = r(s, a) + γ E

s′∼P (·|s,a)

[
V (t+1)
τ (s′)

]
≥ r(s, a) + γ E

s′∼P (·|s,a)

[
V (t)
τ (s′)

]
= Q(t)

τ (s, a),

(A.2)

where the equalities follow from the definition (2.10a), and the inequality follows since V
(t+1)
τ (s) ≥

V
(t)
τ (s) for all s ∈ S — a consequence of Lemma 3 and the non-negativity of the KL divergence.
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A key contraction operator: the soft Bellman optimality operator. An operator that
plays a pivotal role in the theory of dynamic programming [Bellman, 1952] is the renowned Bellman
optimality operator T : R|S||A| → R|S||A|, defined as follows

∀(s, a) ∈ S ×A : T (Q)(s, a) := r(s, a) + γ E
s′∼P (·|s,a)

[
max
a′

Q(s′, a′)

]
. (A.3)

In order to facilitate analysis for entropy-regularized MDPs, we find it particularly fruitful to
introduce a “soft” Bellman optimality operator Tτ : R|S||A| → R|S||A| as follows

∀(s, a) ∈ S×A : Tτ (Q)(s, a) := r(s, a)+γ E
s′∼P (·|s,a)

[
max

π(·|s′)∈∆(A)
E

a′∼π(·|s′)

[
Q(s′, a′)− τ log π(a′|s′)

]]
,

(A.4)
which reduces to T when τ = 0. To see this, observe that

T0(Q)(s, a) = r(s, a) + γ E
s′∼P (·|s,a)

[
max

π(·|s′)∈∆(A)
E

a′∼π(·|s′)

[
Q(s′, a′)

]
]

= r(s, a) + γ E
s′∼P (·|s,a)

[
max
a′

Q(s′, a′)

]
= T (Q)(s, a),

where the last line follows since the optimal policy is exactly the greedy policy w.r.t. Q [Puterman,
2014]. The operator Tτ plays a similar role as does the Bellman optimality operator for the un-
regularized case, whose key properties are summarized below. Similar results have been derived in
Dai et al. [2018, Section 3.1].

Lemma 4 (Soft Bellman optimality operator). The operator Tτ defined in (A.4) satisfies the
properties below.

• Tτ admits the following closed-form expression:

Tτ (Q)(s, a) = r(s, a) + γ E
s′∼P (·|s,a)

[
τ log

(∥∥exp
(
Q(()s′, ·)/τ

)∥∥
1

)]
. (A.5)

• The optimal soft Q-function Q⋆
τ is a fixed point of Tτ , namely,

Tτ
(
Q⋆

τ

)
= Q⋆

τ . (A.6)

• Tτ is a γ-contraction in the ℓ∞ norm, namely, for any Q1, Q2 ∈ R|S||A| one has

∥∥Tτ (Q1)− Tτ (Q2)
∥∥
∞ ≤ γ

∥∥Q1 −Q2

∥∥
∞. (A.7)

Proof. See Appendix A.3.2.

For those familiar with dynamic programming, it should become evident that Tτ inherits many
appealing features of the original Bellman optimality operator T . For example, as an immediate
application of the γ-contraction property (A.7) and the fixed-point property (A.6), the following
soft Q-value iteration

Q
(t+1)
svi = Tτ

(
Q

(t)
svi

)
, t ≥ 0

is guaranteed to converge linearly to the optimal Q⋆
τ with a contraction rate γ — a simple obser-

vation consistent with the behavior of value iteration designed for unregularized MDPs.
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A.1.2 Analysis of exact entropy-regularized NPG methods

The SPI case (i.e. η = (1− γ)/τ)
With the help of the soft Bellman optimality operator, we have

Q(t+1)
τ (s, a)

(i)
= r(s, a) + γ E

s′∼P (·|s,a)

[
V (t+1)
τ (s′)

]

(ii)
= r(s, a) + γ E

s′∼P (·|s,a),
a′∼π(t+1)(·|s′)

[
−τ log π(t+1)(a′|s′) +Q(t+1)

τ (s′, a′)
]

(iii)

≥ r(s, a) + γ E
s′∼P (·|s,a),

a′∼π(t+1)(·|s′)

[
−τ log π(t+1)(a′|s′) +Q(t)

τ (s′, a′)
]

(iv)
= r(s, a) + γ E

s′∼P (·|s,a)

[
τ log

(∥∥exp
(
Q(t)(s′, ·)/τ

)∥∥
1

)]

(v)
= Tτ

(
Q(t)

τ

)
(s, a). (A.8)

Here, (i) comes from the definition (2.10a) of the soft Q-function, (ii) follows from the relation
(2.10b), (iii) relies on the monotonicity of the soft Q-function (see (A.2)), (iv) uses the form of
π(t+1) in (2.16), whereas (v) makes use of the expression (A.5). The inequality (A.8) further leads

to 0 ≤ Q⋆
τ −Q(t+1)

τ ≤ Q⋆
τ − Tτ

(
Q

(t+1)
τ ), and hence

∥∥Q⋆
τ −Q(t+1)

τ

∥∥
∞ ≤

∥∥Q⋆
τ − Tτ

(
Q(t)

τ

)∥∥
∞ =

∥∥Tτ
(
Q⋆

τ

)
− Tτ

(
Q(t)

τ

)∥∥
∞ ≤ γ

∥∥Q⋆
τ −Q(t)

τ

∥∥
∞ (A.9)

≤ γt+1
∥∥Q⋆

τ −Q(0)
τ

∥∥
∞,

where the first equality follows from the fixed-point property (A.6), and the second inequality is

due to the contraction property (A.7). We have thus established linear convergence of Q
(t)
τ in ∥ ·∥∞

for this case.
Turning to the log policies, recall that

π(t+1)(·|s) ∝ exp
(
Q(t)

τ (s, ·)/τ
)

and π⋆τ (·|s) ∝ exp
(
Q⋆

τ (s, ·)/τ
)
,

where the second relation comes from Nachum et al. [2017, Eqn. (12)]. It then follows from an
elementary property of the softmax function (see (A.34) in Appendix A.2.2) that

∥∥ log π(t+1) − log π⋆τ
∥∥
∞ ≤

2

τ

∥∥Q(t)
τ −Q⋆

τ

∥∥
∞ ≤

2

τ
γt
∥∥Q⋆

τ −Q(0)
τ

∥∥
∞,

thus concluding the proof for this case.

The case with general learning rates

We now move to the case with a general learning rate. For the sake of brevity, we shall denote

α := 1− ητ

1− γ . (A.10)

Additionally, it is helpful to introduce an auxiliary sequence {ξ(t) ∈ R|S||A|} constructed recursively
by

ξ(0)(s, a) :=
∥∥exp

(
Q⋆

τ (s, ·)/τ
)∥∥

1
· π(0)(a|s), (A.11a)

ξ(t+1)(s, a) :=
[
ξ(t)(s, a)

]α
exp

(
(1− α) Q

(t)
τ (s, a)

τ

)
, ∀ (s, a) ∈ S ×A, t ≥ 0. (A.11b)
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It is easily seen from the construction (A.11b) that

Q⋆
τ − τ log ξ(t+1) = Q⋆

τ − τα log ξ(t) − (1− α)Q(t)
τ

= α
(
Q⋆

τ − τ log ξ(t)
)
+ (1− α)

(
Q⋆

τ −Q(t)
τ

)
(A.12)

and, consequently,

∥∥Q⋆
τ − τ log ξ(t+1)

∥∥
∞ ≤ α

∥∥Q⋆
τ − τ log ξ(t)

∥∥
∞ + (1− α)

∥∥Q⋆
τ −Q(t)

τ

∥∥
∞. (A.13)

Step 1: a linear system that describes the error recursions. In the case with general

learning rates, the estimation error
∥∥Q⋆

τ − Q(t)
τ

∥∥
∞ does not contract in the same form as that of

soft policy iteration; instead, it is more succinctly controlled with the aid of an auxiliary quantity∥∥Q⋆
τ − τ log ξ(t)

∥∥
∞. In what follows, we leverage a simple yet powerful technique by describing

the dynamics concerning
∥∥Q⋆

τ −Q(t)
τ

∥∥
∞ and

∥∥Q⋆
τ − τ log ξ(t)

∥∥
∞ via a linear system, whose spectral

properties dictate the convergence rate. Towards this, we start with the following key observation,
whose proof is deferred to Appendix A.3.3.

Lemma 5. For any learning rate 0 < η ≤ (1 − γ)/τ , the entropy-regularized NPG updates (2.17)
satisfy

∥∥Q⋆
τ −Q(t+1)

τ

∥∥
∞ ≤ γ

∥∥Q⋆
τ − τ log ξ(t+1)

∥∥
∞ + γαt+1

∥∥Q(0)
τ − τ log ξ(0)

∥∥
∞, (A.14)

where α is defined in (A.10).

If we substitute (A.12) into (A.14), it is straightforwardly seen that Lemma 5 is a generalization
of the contraction property (A.9) of soft policy iteration (the case corresponding to α = 0). Given
that Lemma 5 involves the interaction of more than one quantities, it is convenient to combine
(A.13) and (A.14) into the following linear system

xt+1 ≤ Axt + γαt+1y, (A.15)

where

A :=

[
γ(1− α) γα
1− α α

]
, xt :=

[ ∥∥Q⋆
τ −Q(t)

τ

∥∥
∞∥∥Q⋆

τ − τ log ξ(t)
∥∥
∞

]
and y :=

[∥∥Q(0)
τ − τ log ξ(0)

∥∥
∞

0

]
. (A.16)

We shall make note of the following appealing features of the rank-1 system matrix A:

A =

[
γ
1

] [
1− α, α

]
, and At = (1− ητ)t−1A ∀t ≥ 0, (A.17)

which relies on the identity (1− α)γ + α = 1− ητ (according to the definition (A.10) of α).

Remark 11. By left multiplying both sides of (A.15) by [1− α, α], we obtain

L(t+1) ≤ (1− ητ)L(t) + γ(1− α)αt+1
∥∥Q(0)

τ − τ log ξ(0)
∥∥
∞,

where L(t) := (1 − α)
∥∥Q⋆

τ −Q(t)
τ

∥∥
∞ + α

∥∥Q⋆
τ − τ log ξ(t)

∥∥
∞ can be viewed as a sort of Lyapunov

function. This hints at the intimate connection between our proof and the Lyapunov-type analysis
used in system theory.
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Step 2: characterizing the contraction rate from the linear system. In view of the
recursion formula (A.15) and the non-negativity of (A, xt, y), it is immediate to deduce that

xt+1 ≤ A(Axt−1 + γαty) + γαt+1y

≤ At+1x0 + γ
(
αt+1I + αtA+ · · ·+ αAt

)
y

= At+1x0 + γ
(
At+1 − αt+1I

) (
α−1A− I

)−1
y. (A.18)

Here, the last line follows from the elementary relation
(
αt+1I + αtA+ · · ·+ αAt

) (
α−1A− I

)
= At+1 − αt+1I

and the invertibility of α−1A − I (since α−1A is a rank-1 matrix whose non-zero singular value is
larger than 1). In addition, the Woodbury matrix inversion formula together with the decomposition
(A.17) yields

γ
(
α−1A− I

)−1
y = γ

{[
1 α

1−α
1
γ

α
(1−α)γ

]
− I
}
y =

[
0 γα

1−α

1 γα+α−γ
1−α

]
y =

[
0∥∥Q(0)

τ − τ log ξ(0)
∥∥
∞

]
,

(A.19)

which is a non-negative vector. Consequently, this taken together with (A.18) gives

xt+1 ≤ At+1
[
x0 + γ

(
α−1A− I

)−1
y
]
− αt+1

{
γ
(
α−1A− I

)−1
y
}

≤ At+1
[
x0 + γ

(
α−1A− I

)−1
y
]

= (1− ητ)t
([
γ
1

] [
1− α, α

])
[ ∥∥Q⋆

τ −Q(0)
τ

∥∥
∞∥∥Q⋆

τ − τ log ξ(0)
∥∥
∞ +

∥∥Q(0)
τ − τ log ξ(0)

∥∥
∞

]

= (1− ητ)t
{
(1− α)

∥∥Q⋆
τ −Q(0)

τ

∥∥
∞ + α

(∥∥Q⋆
τ − τ log ξ(0)

∥∥
∞ +

∥∥Q(0)
τ − τ log ξ(0)

∥∥
∞

)}[γ
1

]
,

(A.20)

where the third line follows from (A.17), (A.19) and the definition of xt. Further, observe that
∥∥Q⋆

τ − τ log ξ(0)
∥∥
∞ +

∥∥Q(0)
τ − τ log ξ(0)

∥∥
∞ −

∥∥Q⋆
τ −Q(0)

τ

∥∥
∞

≤ 2
∥∥Q⋆

τ − τ log ξ(0)
∥∥
∞ = 2τ

∥∥log π⋆τ − log π(0)
∥∥
∞, (A.21)

where the inequality comes from the triangle inequality, and the last identity follows from (A.11a).
Substituting this back into (A.20), we obtain

xt+1 ≤ (1− ητ)t
{∥∥Q⋆

τ −Q(0)
τ

∥∥
∞ + 2ατ

∥∥log π⋆τ − log π(0)
∥∥
∞

}[γ
1

]
. (A.22)

To finish up, recall that π(t) is related to ξ(t) as follows

∀s ∈ S : π(t)(·|s) = 1

∥ξ(t)(s, ·)∥1
ξ(t)(s, ·), (A.23)

which can be seen by comparing (A.11) with (2.17). Therefore, invoking the elementary property
of the softmax function (see (A.34) in Appendix A.2.2), we arrive at

∥∥log π⋆τ − log π(t+1)
∥∥
∞ ≤ 2

∥∥Q⋆
τ/τ − log ξ(t+1)

∥∥
∞.

This combined with (A.22) as well as the definition (A.16) of xt+1 immediately establishes Theo-
rem 1.
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A.1.3 Analysis of approximate entropy-regularized NPG methods

We now turn to the convergence properties of approximate entropy-regularized NPG methods —

as claimed in Theorem 2 — when only inexact policy evaluation Q̂
(t)
τ is available (in the sense of

(2.22)).

Step 1: performance difference accounting for inexact policy evaluation. We first bound

the quality of the policy updates (2.22) by examining the difference between V
(t+1)
τ and V

(t)
τ and

how it is impacted by the imperfectness of policy evaluation. This is made precise by the following
lemma.

Lemma 6 (Performance difference of approximate entropy-regularized NPG). Suppose that 0 <
η ≤ (1− γ)/τ . For any state s0 ∈ S, one has

V (t)
τ (s0) ≤ V (t+1)

τ (s0) +
2

1− γ
∥∥Q̂(t)

τ −Q(t)
τ

∥∥
∞. (A.24)

Proof. See Appendix A.3.4.

The careful reader might already realize that the above lemma is a relaxation of Lemma 3; in
particular, the last term of (A.24) quantifies the effect of the approximation error (i.e. the difference

between Q̂
(t)
τ and Q

(t)
τ ) upon performance improvement. Under the assumption

∥∥Q̂(t)
τ −Q(t)

τ

∥∥
∞ ≤ δ,

repeating the argument of (A.2) reveals that the soft Q-function estimates are not far from being
monotone in t, in the sense that

∀(s, a) ∈ S ×A : Q(t)
τ (s, a)−Q(t+1)

τ (s, a) = γ E
s′∼P (·|s,a)

[
V (t)
τ (s′)− V (t+1)

τ (s′)
]
≤ 2γδ

1− γ .

(A.25)

Step 2: a linear system accounting for inexact policy evaluation. With the assistance of
(A.25), it is possible to construct a linear system — similar to the one built in Section A.1.2 —
that takes into account inexact policy evaluation. Towards this end, we adopt a similar approach

as in (A.11) by introducing the following auxiliary sequence ξ̂(t) defined recursively using Q̂
(t)
τ :

ξ̂(0)(s, a) :=
∥∥exp

(
Q⋆

τ (s, ·)/τ
)∥∥

1
· π(0)(s, a), (A.26a)

ξ̂(t+1)(s, a) :=
[
ξ̂(t)(s, a)

]α
exp

(
(1− α) Q̂

(t)
τ (s, a)

τ

)
, ∀ (s, a) ∈ S ×A, t ≥ 0, (A.26b)

where α := 1− ητ
1−γ as before.

We claim that the following linear system tracks the error dynamics of the policy updates:

zt+1 ≤ Bzt + b, (A.27)

where

B :=



γ(1− α) γα γα
1− α α 0
0 0 α


 , zt :=




∥∥Q⋆
τ −Q(t)

τ

∥∥
∞∥∥Q⋆

τ − τ log ξ̂(t)
∥∥
∞

−mins,a
(
Q

(t)
τ (s, a)− τ log ξ̂(t)(s, a)

)


 ,

b := (1− α)δ



γ
(
2 + 2γ

ητ

)

1

1 + 2γ
ητ


 . (A.28)
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Here, the system matrix B (in particular its eigenvalues) governs the contraction rate, while the
term b captures the error introduced by inexact policy evaluation. Theorem 2 then follows by
carrying out a similar analysis argument as in Section A.1.2 to characterize the error dynamics.
Details are postponed to Appendix A.4.

A.2 Preliminaries

A.2.1 Derivation of entropy-regularized NPG methods

This subsection establishes the equivalence between the update rules (2.14) and (2.17). Such deriva-
tions are inherently similar to the ones for the NPG update rule (without entropy regularization)
(see, e.g., Agarwal et al. [2019]); we provide the proof here for pedagogical reasons.

First of all, let us follow the convention to introduce the advantage function Aπ
τ : S ×A → R of

a policy π w.r.t. the entropy-regularized value function:

∀(s, a) ∈ S ×A : Aπ
τ (s, a) := Qπ

τ (s, a)− τ log π(a|s)− V π
τ (s) (A.29)

with Qπ
τ defined in (2.10a), which reflects the gain one can harvest by executing action a instead

of following the policy π in state s. This advantage function plays a crucial role in the calculation
of policy gradients, due to the following fundamental relation (see Appendix A.3.5 for the proof):

Lemma 7. Under softmax parameterization (2.6), the gradient of the regularized value function
satisfies

∂V πθ
τ (ρ)

∂θ(s, a)
=

1

1− γ d
πθ
ρ (s) · πθ(a|s) ·Aπθ

τ (s, a); (A.30a)

[(
Fθ
ρ

)†∇θV
πθ
τ (ρ)

]
(s, a) =

1

1− γA
πθ
τ (s, a) + c(s) (A.30b)

for any (s, a) ∈ S ×A, where c(s) :=∑a πθ(a|s)ws,a is some function depending only on s.

It is worth highlighting that the search direction of NPG, given in (A.30b), is invariant to the
choice of ρ. With the above calculations in place, it is seen that for any s ∈ S, the regularized NPG
update rule (2.14) results in a policy update as follows

π(t+1)(a|s) (i)∝ exp
(
θ(t+1)(s, a)

)
(ii)
= exp

(
θ(t)(s, a) + η

[(
Fθ(t)

ρ

)†∇θV
(t)
τ (ρ)

]
(s, a)

)

(iii)∝ exp

(
θ(t)(s, a) +

η

1− γA
(t)
τ (s, a)

)

(iv)∝ π(t)(a|s) exp
(

η

1− γQ
(t)
τ (s, a)− ητ

1− γ log π(t)(a|s)
)

=
(
π(t)(a|s)

)1− ητ
1−γ

exp

(
η

1− γQ
(t)
τ (s, a)

)
.

where we use A
(t)
τ to abbreviate Aπ(t)

τ . Here, (i) uses the definition of the softmax policy, (ii) comes
from the update rule (2.14), (iii) is a consequence of (A.30b) (since c(·) does not depend on a),
whereas (iv) results from the definition (A.29) and the fact that V π

τ (·) is not dependent on a. This
validates the equivalence between (2.14) and (2.17).
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A.2.2 Basic facts about the function log(∥exp(θ)∥1)
In the current paper, we often encounter the function log

(
∥exp(θ)∥1

)
:= log

(∑
1≤a≤|A| exp(θa)

)

for any vector θ = [θa]1≤a≤|A| ∈ R|A|. To facilitate analysis, we single out several basic properties
concerning this function, which will be used multiple times when establishing our main results. For
notational convenience, we denote by πθ ∈ R|A| the softmax transform of θ such that

πθ(a) =
exp(θa)∑

1≤j≤|A| exp(θj)
, 1 ≤ a ≤ |A|. (A.31)

By straightforward calculations, the gradient of the function log
(
∥exp(θ)∥1

)
is given by

∇θ log
(
∥exp(θ)∥1

)
=

1

∥exp(θ)∥1
exp(θ) = πθ; . (A.32)

Difference of log policies. In the analysis, we often need to control the difference of two policies,
towards which the following bounds prove useful. To begin with, the mean value theorem reveals
a Lipschitz continuity property (w.r.t. the ℓ∞ norm): for any θ1, θ2 ∈ R|A|,

∣∣log
(
∥ exp(θ1)∥1

)
− log

(
∥ exp(θ2)∥1

)∣∣
=
∣∣〈θ1 − θ2,∇θ log

(
∥exp(θ)∥1

)
|θ=θc

〉∣∣
≤ ∥θ1 − θ2∥∞ ∥∇θ log

(
∥exp(θ)∥1

)
|θ=θc∥1 = ∥θ1 − θ2∥∞ , (A.33)

where θc is a certain convex combination of θ1 and θ2, and the second line relies on (A.32). In
addition, for any two vectors πθ1 and πθ2 defined w.r.t. θ1, θ2 ∈ R|A| (see (A.31)), one has

∥log πθ1 − log πθ2∥∞ ≤ 2 ∥θ1 − θ2∥∞ , (A.34)

where log(·) denotes entrywise operation. To justify (A.34), we observe from the definition (A.31)
that

∥log πθ1 − log πθ2∥∞ ≤ ∥θ1 − θ2∥∞ +
∣∣∣ log

(
∥ exp(θ1)∥1

)
− log

(
∥ exp(θ2)∥1

)∣∣∣ ≤ 2 ∥θ1 − θ2∥∞ ,

where the last inequality is a consequence of (A.33).

A.3 Proof for key lemmas

A.3.1 Proof of Lemma 3

To begin with, the regularized NPG update rule (see (2.17) in Algorithm 1) indicates that

log π(t+1)(a|s) =
(
1− ητ

1− γ

)
log π(t)(a|s) + η

1− γQ
(t)
τ (s, a)− logZ(t)(s), (A.35)

where Z(t) is some quantity depending only on the state s (but not the action a). Rearranging
terms gives

−τ log π(t)(a|s) +Q(t)
τ (s, a) =

1− γ
η

(
log π(t+1)(a|s)− log π(t)(a|s)

)
+

1− γ
η

logZ(t)(s). (A.36)
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This in turn allows us to express V
(t)
τ (s0) for any s0 ∈ S as follows

V (t)
τ (s0) = E

a0∼π(t)(·|s0)

[
−τ log π(t)(a0|s0) +Q(t)

τ (s0, a0)
]

= E
a0∼π(t)(·|s0)

[
1− γ
η

logZ(t)(s0)

]
+ E

a0∼π(t)(·|s0)

[
1− γ
η

(
log π(t+1)(a0|s0)− log π(t)(a0|s0)

)]

=
1− γ
η

logZ(t)(s0)−
1− γ
η

KL
(
π(t)(·|s0) ∥π(t+1)(·|s0)

)

= E
a0∼π(t+1)(·|s0)

[
1− γ
η

logZ(t)(s0)

]
− 1− γ

η
KL
(
π(t)(·|s0) ∥π(t+1)(·|s0)

)
, (A.37)

where the first identity makes use of the definitions (2.7) and (2.10a), the second line follows from
(A.36), the third line relies on the definition of the KL divergence, and the last line follows since
Z(t)(s) does not depend on a. Invoking (A.36) again to rewrite logZ(t)(s0) appearing in the first
term of (A.37), we reach

V (t)
τ (s0)

= E
a0∼π(t+1)(·|s0)

[
−τ log π(t+1)(a0|s0) +Q(t)

τ (s0, a0) +

(
τ − 1− γ

η

)(
log π(t+1)(a0|s0)− log π(t)(a0|s0)

)]

− 1− γ
η

KL
(
π(t)(·|s0) ∥π(t+1)(·|s0)

)

= E
a0∼π(t+1)(·|s0)

[
−τ log π(t+1)(a0|s0) +Q(t)

τ (s0, a0)
]
+

(
τ − 1− γ

η

)
KL
(
π(t+1)(·|s0) ∥π(t)(·|s0)

)

− 1− γ
η

KL
(
π(t)(·|s0) ∥π(t+1)(·|s0)

)

= E
a0∼π(t+1)(·|s0),
s1∼P (·|s0,a0)

[
−τ log π(t+1)(a0|s0) + r(s0, a0) + γV (t)

τ (s1)
]

−
(
1− γ
η
− τ
)
KL
(
π(t+1)(·|s0) ∥π(t)(·|s0)

)
− 1− γ

η
KL
(
π(t)(·|s0) ∥π(t+1)(·|s0)

)
, (A.38)

where the second line uses the definition of the KL divergence, and the third line expands Q
(t)
τ

using the definition (2.10a).

To finish up, applying the above relation (A.38) recursively to expand V
(t)
τ (si) (i ≥ 1), we arrive

at

V (t)
τ (s0) = E

ai∼π(t+1)(·|si),
si+1∼P (·|si,ai),∀i≥0

[ ∞∑

i=0

γi
{
r(si, ai)− τ log π(t+1)(ai|si)

}

−
∞∑

i=0

γi
{(

1− γ
η
− τ
)
KL
(
π(t+1)(·|si) ∥π(t)(·|si)

)
+

1− γ
η

KL
(
π(t)(·|si) ∥π(t+1)(·|si)

)}]

= V (t+1)
τ (s0)− E

s∼d
(t+1)
s0

[(
1

η
− τ

1− γ

)
KL
(
π(t+1)(·|s) ∥π(t)(·|s)

)
+

1

η
KL
(
π(t)(·|s) ∥π(t+1)(·|s)

)]
,

(A.39)

where the second line follows since the regularized value function V
(t+1)
τ can be viewed as the value

function of π(t+1) with adjusted rewards r
(t+1)
τ (s, a) := r(s, a) − τ log π(t+1)(a|s). Averaging the

initial state s0 over the distribution ρ concludes the proof.
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A.3.2 Proof of Lemma 4

In the sequel, we prove each claim in Lemma 4 in order.

Proof of Eqn. (A.5). Jensen’s inequality tells us that: for any s ∈ S one has

E
a∼π(·|s)

[
Q(s, a)− τ log π(a|s)

]
= τ

∑

a

π(a|s) log
(
exp

(
Q(s, a)/τ

)

π(a|s)

)

≤ τ log
(∑

a

π(a|s)exp
(
Q(s, a)/τ

)

π(a|s)

)

= τ log

(∑

a

exp
(
Q(s, a)/τ

)
)

= τ log
(∥∥exp

(
Q(s, ·)/τ

)∥∥
1

)
, (A.40)

where in the second line, equality is attained if π(·|s) ∝ exp(Q(()s, ·)/τ). This immediately gives
rise to

Tτ (Q)(s, a) = r(s, a) + γ E
s′∼P (·|s,a)

[
max

π(·|s′)∈∆(A)
E

a′∼π(·|s′)

[
Q(s′, a′)− τ log π(a′|s′)

]]

= r(s, a) + γ E
s′∼P (·|s,a)

[
τ log

(∥∥exp
(
Q(()s′, ·)/τ

)∥∥
1

)]
.

Proof of Eqn. (A.6). Recall the characterization of π⋆τ and V ⋆
τ established in Nachum et al.

[2017]:

π⋆τ (a|s) = exp

(
Q⋆

τ (s, a)− V ⋆
τ (s)

τ

)
, (A.41a)

V ⋆
τ (s) = τ log

(∥∥exp
(
Q⋆

τ (s, ·)/τ
)∥∥

1

)
. (A.41b)

Substitution into the expression (A.5) tells us that for any (s, a) ∈ S ×A,

Tτ
(
Q⋆

τ

)
(s, a) = r(s, a) + γ E

s′∼P (·|s,a)

[
τ log

(∥∥exp
(
Q⋆

τ (s
′, ·)/τ

)∥∥
1

)]

= r(s, a) + γ E
s′∼P (·|s,a)

[
V ⋆
τ (s

′)
]

= Q⋆
τ (s, a),

where the second line results from (A.41b), and the last line follows from the definition of the soft
Q-function.

Proof of Eqn. (A.7). Invoking again the expression (A.5), we can demonstrate that for any Q1

and Q2,∣∣∣Tτ (Q1)(s, a)− Tτ (Q2)(s, a)
∣∣∣

=

∣∣∣∣∣γ E
s′∼P (·|s,a)

[
τ log

(∥∥exp
(
Q1(s

′, ·)/τ
)∥∥

1

)]
− γ E

s′∼P (·|s,a)

[
τ log

(∥∥exp
(
Q2(s

′, ·)/τ
)∥∥

1

)]
∣∣∣∣∣

= γτ

∣∣∣∣∣ E
s′∼P (·|s,a)

[
log
(∥∥exp

(
Q1(s

′, ·)/τ
)∥∥

1

)
− log

(∥∥exp
(
Q2(s

′, ·)/τ
)∥∥

1

)]
∣∣∣∣∣

≤ γτ ∥Q1/τ −Q2/τ∥∞ = γ ∥Q1 −Q2∥∞
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holds for all (s, a) ∈ S ×A, where the inequality follows from the Lipschitz property (A.33).

A.3.3 Proof of Lemma 5

For any state-action pair (s, a) ∈ S ×A, we observe that

Q⋆
τ (s, a)−Q(t+1)

τ (s, a)

= r(s, a) + γ E
s′∼P (·|s,a)

[
V ⋆
τ (s

′)
]
−
(
r(s, a) + γ E

s′∼P (·|s,a)

[
V (t+1)
τ (s′)

])

= γ E
s′∼P (·|s,a)

[
τ log

(∥∥∥∥exp
(
Q⋆

τ (s
′, ·)

τ

)∥∥∥∥
1

)]
− γ E

s′∼P (·|s,a),
a′∼π(t+1)(·|s′)

[
Q(t+1)

τ (s′, a′)− τ log π(t+1)(a′|s′)
]
,

(A.42)

where the first step invokes the definition (2.10a) of Qτ , and the second step is due to the expression
(A.41b) of V ⋆

τ . To continue, recall that π(t) is related to ξ(t) as

∀s ∈ S : π(t)(·|s) = 1

∥ξ(t)(s, ·)∥1
ξ(t)(s, ·) (A.43)

which can be seen by comparing (A.11) with (2.17). This in turn leads to

log π(t+1)(a|s) = log ξ(t+1)(s, a)− log
(∥∥ξ(t+1)(s, ·)

∥∥
1

)

= α log ξ(t)(s, a) + (1− α)Q
(t)
τ (s, a)

τ
− log

(∥∥ξ(t+1)(s, ·)
∥∥
1

)
, (A.44)

where the second line comes from (A.11b). By plugging (A.44) into (A.42) we obtain

Q⋆
τ (s, a)−Q(t+1)

τ (s, a)

= γ E
s′∼P (·|s,a)

[
τ log

(∥∥exp
(
Q⋆

τ (s
′, ·)/τ

)∥∥
1

)
− τ log

(∥∥ξ(t+1)(s′, ·)
∥∥
1

)]

− γ E
s′∼P (·|s,a),

a′∼π(t+1)(·|s′)

[
Q(t+1)

τ (s′, a′)− τ
(
α log ξ(t)(s′, a′) + (1− α)Q

(t)
τ (s′, a′)

τ

)

︸ ︷︷ ︸
= log ξ(t+1)(s′,a′)

]
(A.45)

for any (s, a) ∈ S×A. In the sequel, we bound each term on the right-hand side of (A.45) separately.

• In view of the property (A.33), the first term on the right-hand side of (A.45) can be bounded
by

τ log
(∥∥exp

(
Q⋆

τ (s
′, ·)/τ

)∥∥
1

)
− τ log

(∥∥ξ(t+1)(s′, ·)
∥∥
1

)
≤
∥∥Q⋆

τ − τ log ξ(t+1)
∥∥
∞.
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• Regarding the second term, the monotonicity (A.2) of the soft Q-function allows us to derive

Q(t+1)
τ (s, a)− τ

(
α log ξ(t)(s, a) + (1− α)Q(t)

τ (s, a)/τ
)

≥ Q(t)
τ (s, a)− τ

(
α log ξ(t)(s, a) + (1− α)Q(t)

τ (s, a)/τ
)

= α
(
Q(t)

τ (s, a)− τ log ξ(t)(s, a)
)

(i)
= α

(
α
(
Q(t−1)

τ (s, a)− τ log ξ(t−1)(s, a)
)
+Q(t)

τ (s, a)−Q(t−1)
τ (s, a)

)

(ii)

≥ α2
(
Q(t−1)

τ (s, a)− τ log ξ(t−1)(s, a)
)

(iii)

≥ αt+1
(
Q(0)

τ (s, a)− τ log ξ(0)(s, a)
)

(iv)

≥ −αt+1
∥∥Q(0)

τ − τ log ξ(0)
∥∥
∞

for any (s, a) ∈ S×A. Here, (i) follows by construction (A.11b), (ii) invokes the monotonicity

property (A.2) (so that Q
(t)
τ ≥ Q

(t−1)
τ ), and (iii) follows by repeating the arguments (i) and

(ii) recursively.

Combining the preceding two bounds with the expression (A.45), we conclude that

0 ≤ Q⋆
τ (s, a)−Q(t+1)

τ (s, a) ≤ γ
∥∥Q⋆

τ − τ log ξ(t+1)
∥∥
∞ + γαt+1

∥∥Q(0)
τ − τ log ξ(0)

∥∥
∞ (A.46)

for any (s, a) ∈ S ×A, thus concluding the proof.

A.3.4 Proof of Lemma 6

Recall that, in this scenario, the policies are updated using inexact policy evaluation via (2.22),
namely,

∀(s, a) ∈ S ×A, π(t+1)(a|s) =
(
π(t)(a|s)

)1− ητ
1−γ exp

( η
1−γ Q̂

(t)
τ (s, a)

)

Ẑ(t)(s)
, (A.47)

where Ẑ(t)(s) :=
∑

a′ π
(t)(a′|s)1−

ητ
1−γ exp

( η
1−γ Q̂

(t)
τ (s, a′)

)
. To facilitate analysis, we further intro-

duce another auxiliary policy sequence {π̆(t)}, which corresponds to the policy update as if we had
access to exact soft Q-function of π(t) in the t-th iteration; this is defined as

∀(s, a) ∈ S ×A, π̆(t+1)(a|s) =
(
π(t)(a|s)

)1− ητ
1−γ exp

( η
1−γQ

(t)
τ (s, a)

)

Z(t)(s)
, (A.48)

where we abuse the notation by letting Z(t)(s) :=
∑

a′ π
(t)(a′|s)1−

ητ
1−γ exp

( η
1−γQ

(t)
τ (s, a′)

)
. It is

worth emphasizing that π̆(t+1) is produced on the basis of π(t) as opposed to π̆(t); it should be
viewed as a one-step perfect update from a given policy π(t).

We first make note of the following fact: for any step size 0 < η ≤ (1 − γ)/τ , it follows from
(A.34) — together with the construction (A.47) and (A.48) — that
∥∥log π(t+1) − log π̆(t+1)

∥∥
∞

≤ 2

∥∥∥∥log
(
π(t)(a|s)1−ητ/(1−γ) exp

( η

1− γ Q̂
(t)
τ (s, a)

))
− log

(
π(t)(a|s)1−ητ/(1−γ) exp

( η

1− γQ
(t)
τ (s, a)

))∥∥∥∥
∞

=
2η

1− γ
∥∥Q̂(t)

τ −Q(t)
τ

∥∥
∞. (A.49)
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Next, let us recall the inequality (A.37) in the proof of Lemma 3 under exact policy evaluation
π̆(t+1)(·|s); when applied to the current setting, it essentially indicates that

V (t)
τ (s0) = E

a0∼π̆(t+1)(·|s0)

[
1− γ
η

logZ(t)(s0)

]
− 1− γ

η
KL
(
π(t)(·|s0) ∥ π̆(t+1)(·|s0)

)

= E
a0∼π(t+1)(·|s0)

[
1− γ
η

logZ(t)(s0)

]
− 1− γ

η
KL
(
π(t)(·|s0) ∥ π̆(t+1)(·|s0)

)
, (A.50)

where the last step follows since the quantity Z(t)(s) does not depend on a at all. In order to
control the first term of (A.50), we invoke the definition of π̆(t+1)(·|s) to show that

E
a0∼π(t+1)(·|s0)

[
1− γ
η

logZ(t)(s0)

]

(i)
= E

a0∼π(t+1)(·|s0)

[
−τ log π̆(t+1)(a0|s0) +Q(t)

τ (s0, a0) +

(
τ − 1− γ

η

)(
log π̆(t+1)(a0|s0)− log π(t)(a0|s0)

)]

= E
a0∼π(t+1)(·|s0)

[
−τ log π(t+1)(a0|s0) +Q(t)

τ (s0, a0)
]
+

(
τ − 1− γ

η

)
KL
(
π(t+1)(·|s0) ∥π(t)(·|s0)

)

− 1− γ
η

E
a0∼π(t+1)(·|s0)

[
log π̆(t+1)(a0|s0)− log π(t)(a0|s0)

]

≤ E
a0∼π(t+1)(·|s0)

[
−τ log π(t+1)(a0|s0) +Q(t)

τ (s0, a0)
]
+

(
τ − 1− γ

η

)
KL
(
π(t+1)(·|s0) ∥π(t)(·|s0)

)

+ 2
∥∥Q̂(t)

τ −Q(t)
τ

∥∥
∞, (A.51)

where the final step results from (A.49). Putting the above bound together with (A.50) guarantees
that

V (t)
τ (s0) ≤ E

a0∼π(t+1)(·|s0)

[
−τ log π(t+1)(a0|s0) +Q(t)

τ (s0, a0)
]
− 1− γ

η
KL
(
π(t)(·|s0) ∥ π̆(t+1)(·|s0)

)

−
(
1− γ
η
− τ
)
KL
(
π(t+1)(·|s0) ∥π(t)(·|s0)

)
+ 2
∥∥Q̂(t)

τ −Q(t)
τ

∥∥
∞

≤ E
a0∼π(t+1)(·|s0)

[
−τ log π(t+1)(a0|s0) +Q(t)

τ (s0, a0)
]
+ 2
∥∥Q̂(t)

τ −Q(t)
τ

∥∥
∞

≤ E
a0∼π(t+1)(·|s0)

[
−τ log π(t+1)(a0|s0) + r(s0, a0) + γ E

s1∼P (·|s0,a0)

[
V (t)
τ (s1)

]
]
+ 2
∥∥Q̂(t)

τ −Q(t)
τ

∥∥
∞.

where the last identity makes use of the relation Q
(t)
τ (s0, a0) = r(s0, a0) + γEs1∼P (·|s0,a0)

[
V

(t)
τ (s1)

]
.

Invoking the above inequality recursively as in the expression (A.39) (see Lemma 3), we can expand
it to establish

V (t)
τ (s0) ≤ V (t+1)

τ (s0) + 2
∥∥Q̂(t)

τ −Q(t)
τ

∥∥
∞

∞∑

i=0

γi = V (t+1)
τ (s0) +

2

1− γ
∥∥Q̂(t)

τ −Q(t)
τ

∥∥
∞.

A.3.5 Proof of Lemma 7

The results of this lemma, or some similar versions, have appeared in prior work (e.g. Mei et al.
[2020b, Lemma 10] and Agarwal et al. [2020b, Lemma 5.6]). We include the proof here primarily
for the sake of self-completeness.
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Proof of Eqn. (A.30a). The policy gradient of the unregularized value function V πθ(s0) is well-
known as the policy gradient theorem [Sutton et al., 2000]. Here, we deal with a slightly different
variant – an entropy-regularized value function V πθ

τ (s0) in the expression (2.1) with the softmax
policy parameterization in (2.6). Invoking the Bellman equation and recognizing that V πθ

τ (s0) can
be viewed as an unregularized value function with instantaneous rewards r(s, a)− τ log πθ(a|s) for
any (s, a), we obtain

∇θV
πθ
τ (s0)

= ∇θ

[∑

a0

πθ(a0|s0)
(
r(s0, a0)− τ log πθ(a0|s0) + γ E

s′∼P (·|s0,a0)

[
V πθ
τ (s′)

])
]

(i)
= ∇θ

[∑

a0

πθ(a0|s0)
(
Qπθ

τ (s0, a0)− τ log πθ(a0|s0)
)]

=
∑

a0

(
∇θπθ(a0|s0)

)(
Qπθ

τ (s0, a0)− τ log πθ(a0|s0)
)
+
∑

a0

πθ(a0|s0)∇θ

(
Qπθ

τ (s0, a0)− τ log πθ(a0|s0)
)

(ii)
=
∑

a0

(
πθ(a0|s0)∇θ log πθ(a0|s0)

)(
Qπθ

τ (s0, a0)− τ log πθ(a0|s0)
)

+
∑

a0

πθ(a0|s0)∇θ

(
r(s0, a0) + γ

∑

s1

P (s1|s0, a0)V πθ
τ (s1)− τ log πθ(a0|s0)

)
,

where (i) relies on the definition (2.10a) of Qπθ
τ , and (ii) makes use of the identity

∇θπθ(a0|s0) = πθ(a0|s0)∇θ log πθ(a0|s0)
as well as the definition (2.10a) of Qπθ

τ . Given that
∑

a0

πθ(a0|s0)∇θ log πθ(a0|s0) =
∑

a0

∇θπθ(a0|s0) = ∇θ

(∑

a0

πθ(a0|s0)
)
= ∇θ1 = 0 (A.52)

and that r(s, a) is independent of θ, one can continue the above derivative to reach

∇θV
πθ
τ (s0) =

∑

a0

(
πθ(a0|s0)∇θ log πθ(a0|s0)

)(
Qπθ

τ (s0, a0)− τ log πθ(a0|s0)
)

+ γ
∑

a0

πθ(a0|s0)
∑

s1

P (s1|s0, a0)∇θV
πθ
τ (s1)

= E
ai∼πθ(·|si),

si+1∼P (·|si,ai),∀i≥0

[(
∇θ log πθ(a0|s0)

)(
Qπθ

τ (s0, a0)− τ log πθ(a0|s0)
)
+ γ∇θV

πθ
τ (s1)

]
.

Repeating the above calculations recursively, we arrive at

∇θV
πθ
τ (s0) = E

ai∼πθ(·|si),
si+1∼P (·|si,ai),∀i≥0

[ ∞∑

t=0

γt
(
∇θ log πθ(at|st)

)(
Qπθ

τ (st, at)− τ log πθ(at|st)
)]

=
1

1− γ E
s∼d

πθ
s0

E
a∼πθ(·|s)

[(
∇θ log πθ(a|s)

)(
Qπθ

τ (s, a)− τ log πθ(a|s)
)]

=
1

1− γ E
s∼d

πθ
s0

E
a∼πθ(·|s)

[(
∇θ log πθ(a|s)

)(
Aπθ

τ (s, a) + V πθ
τ (s)

)]

=
1

1− γ E
s∼d

πθ
s0

E
a∼πθ(·|s)

[(
∇θ log πθ(a|s)

)
Aπθ

τ (s, a)
]
, (A.53)
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where the second line follows by aggregating the terms corresponding to the same state-action pair,
and the third line invokes the definition (A.29) of Aπθ

τ . To see why the last line holds, invoke (A.52)
to reach

Ea∼πθ(·|s)

[
V πθ
τ (s)∇θ log πθ(a|s)

]
=
∑

a

V πθ
τ (s)πθ(a|s)∇θ log πθ(a|s)

= V πθ
τ (s)

∑

a

πθ(a|s)∇θ log πθ(a|s) = 0.

Further, it is easily seen that under the softmax parametrization in (2.6),

∂ log πθ(a
′|s′)

∂θ(s, a)
= 1[s′ = s]

(
1[a′ = a]− πθ(a|s)

)
(A.54)

for any (s, a), (s′, a′) ∈ S ×A. Combining with (A.53), it further implies that

∂V πθ
τ (s0)

∂θ(s, a)
=

1

1− γEs′∼d
πθ
s0
Ea′∼πθ(·|s′)

[
∂ log πθ(a

′|s′)
∂θ(s, a)

Aπθ
τ (s′, a′)

]

=
1

1− γEs′∼d
πθ
s0
Ea′∼πθ(·|s′)

[(
1[s′ = s]

(
1[a′ = a]− πθ(a|s)

))
Aπθ

τ (s′, a′)

]

(i)
=

1

1− γEs′∼d
πθ
s0
Ea′∼πθ(·|s′)

[
1
[
(s′, a′) = (s, a)

]
Aπθ

τ (s′, a′)
]

=
1

1− γ d
πθ
s0 (s)πθ(a|s)Aπθ

τ (s, a).

where (i) follows from Ea′∼πθ(·|s′)A
πθ
τ (s′, a′) =

∑
a′ πθ(a

′|s′)Aπθ
τ (s′, a′) = 0 due to the definition

(A.29). The proof regarding V πθ
τ (ρ) can be obtained by averaging the initial state s0 over the

distribution ρ.

Proof of Eqn. (A.30b). In order to establish (A.30b), a crucial observation is that wθ :=(
Fθ
ρ

)†∇θV
πθ
τ (ρ) is exactly the solution to the following least-squares problem

minimizew∈R|S||A|
∥∥Fθ

ρw −∇θV
πθ
τ (ρ)

∥∥2
2
. (A.55)

From the definition (2.13) of the Fisher information matrix, we have

Fθ
ρw = Es∼d

πθ
ρ
Ea∼πθ(·|s)

[(
∇θ log πθ(a|s)

)(
∇θ log πθ(a|s)

)⊤
w
]
.
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for any fixed vector w = [ws,a](s,a)∈S×A. As a result, for any (s, a) ∈ S ×A one has

(
Fθ
ρw
)
s,a

= Es′∼d
πθ
ρ
Ea′∼πθ(·|s′)

[
∂ log πθ(a

′|s′)
∂θ(s, a)

(∑

s̃,ã

∂ log πθ(a
′|s′)

∂θ(s̃, ã)
ws̃,ã

)]

(i)
= Es′∼d

πθ
ρ
Ea′∼πθ(·|s′)

[
1[s′ = s]

(
1[a′ = a]− πθ(a|s)

)(∑

s̃,ã

1[s̃ = s′]
(
1[ã = a′]− πθ(ã|s̃)

)
ws̃,ã

)]

= Es′∼d
πθ
ρ
Ea′∼πθ(·|s′)

[
1[s′ = s]

(
1[a′ = a]− πθ(a|s)

)(
ws′,a′ −

∑

ã

πθ(ã|s′)ws′,ã

)]

= dπθ
ρ (s)Ea′∼πθ(·|s′)

[(
1[a′ = a]− πθ(a|s)

)(
ws,a′ − c(s)

)]

= dπθ
ρ (s)Ea′∼πθ(·|s′)

[
1[a′ = a]ws,a′ − πθ(a|s)ws,a′ − 1[a′ = a]c(s) + πθ(a|s)c(s)

]

= dπθ
ρ (s)

[
πθ(a|s)ws,a − πθ(a|s)c(s)− πθ(a|s)c(s) + πθ(a|s)c(s)

]

= dπθ
ρ (s)πθ(a|s)

[
ws,a − c(s)

]
,

where (i) makes use of the derivative calculation (A.54), and we define c(s) :=
∑

a πθ(a|s)ws,a.
Consequently, the objective function of (A.55) can be written as

∥∥Fθ
ρw −∇θV

πθ
τ (ρ)

∥∥2
2
=
∑

s,a

(
dπθ
ρ (s)πθ(a|s) [ws,a − c(s)]−

1

1− γ d
πθ
ρ (s)πθ(a|s)Aπθ

τ (s, a)

)2

=
∑

s,a

(
dπθ
ρ (s)πθ(a|s)

(
ws,a − c(s)−

1

1− γA
πθ
τ (s, a)

))2

,

which is minimized by choosing ws,a = 1
1−γA

πθ
τ (s, a) + c(s) for all (s, a) ∈ S × A. This concludes

the proof.

A.4 Proof for approximate entropy-regularized NPG (Theorem 2)

In this section, we complete the proofs of Theorem 2 in Section A.1.3, which consists of (i) estab-
lishing the linear system in (A.27) and (ii) extracting the convergence rate from (A.27).

Step 1: establishing the linear system (A.27). In what follows, we shall justify the linear
system relation by checking each row separately.

(1) Bounding ∥Q⋆
τ − τ log ξ̂(t+1)∥∞. From the construction (A.26b) of ξ̂(t+1), we have

Q⋆
τ − τ log ξ̂(t+1) = α

(
Q⋆

τ − τ log ξ̂(t)
)
+ (1− α)

(
Q⋆

τ −Q(t)
τ

)
+ (1− α)

(
Q(t)

τ − Q̂(t)
τ

)
.

Taken together with the triangle inequality and the assumption
∥∥Q(t)

τ − Q̂(t)
τ

∥∥
∞ ≤ δ, this gives

∥∥Q⋆
τ − τ log ξ̂(t+1)

∥∥
∞ ≤ α

∥∥Q⋆
τ − τ log ξ̂(t)

∥∥
∞ + (1− α)

∥∥Q⋆
τ −Q(t)

τ

∥∥
∞ + (1− α) δ. (A.56)
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(2) Bounding −mins,a
(
Q

(t+1)
τ (s, a)− τ log ξ̂(t+1)(s, a)

)
. Invoking the definition (A.26b) of ξ̂(t+1)

again implies that for any (s, a) ∈ S ×A,

−
(
Q(t+1)

τ (s, a)− τ log ξ̂(t+1)(s, a)
)

= −
(
Q(t+1)

τ (s, a)− τ
(
α log ξ̂(t)(s, a) + (1− α)Q̂(t)

τ (s, a)/τ
))

= −α
(
Q(t)

τ (s, a)− τ log ξ̂(t)(s, a)
)
+ (1− α)

(
Q̂(t)

τ (s, a)−Q(t)
τ (s, a)

)
+
(
Q(t)

τ (s, a)−Q(t+1)
τ (s, a)

)

≤ −α
(
Q(t)

τ (s, a)− τ log ξ̂(t)(s, a)
)
+ (1− α) δ + 2γδ

1− γ ,

where the last inequality follows from
∥∥Q(t)

τ − Q̂(t)
τ

∥∥
∞ ≤ δ and (A.25). Taking the maximum over

(s, a) ∈ S ×A on both sides and using the definition α = 1− ητ
1−γ yield

−min
s,a

(
Q(t+1)

τ (s, a)− τ log ξ̂(t+1)(s, a)
)
≤ −αmin

s,a

(
Q(t)

τ (s, a)− τ log ξ̂(t)(s, a)
)
+ (1− α) δ

(
1 +

2γ

ητ

)
.

(A.57)

(3) Bounding
∥∥Q⋆

τ −Q(t+1)
τ

∥∥
∞. Following the same arguments as for (A.45), we obtain

Q⋆
τ (s, a)−Q(t+1)

τ (s, a) = γ E
s′∼P (·|s,a)

[
τ log

(∥∥exp
(
Q⋆

τ (s
′, ·)/τ

)∥∥
1

)
− τ log

(∥∥ξ̂(t+1)(s′, ·)
∥∥
1

)]

− γ E
s′∼P (·|s,a),

a′∼π(t+1)(·|s′)

[
Q(t+1)

τ (s′, a′)− τ log ξ̂(t+1)(s′, a′)
]

≤ γ
∥∥Q⋆

τ − τ log ξ̂(t+1)
∥∥
∞ − γmin

s,a

(
Q(t+1)

τ (s, a)− τ log ξ̂(t+1)(s, a)
)
,

where the last line follows from (A.33). By plugging (A.56) and (A.57) into the above inequality,
we arrive at the claimed bound regarding this term.

Step 2: deducing convergence guarantees from the linear system (A.27). We start by
pinning down the eigenvalues and eigenvectors of the matrix B. Specifically, the three eigenvalues
can be calculated as

λ1 = α+ γ(1− α) = 1− ητ, λ2 = α and λ3 = 0, (A.58)

whose corresponding eigenvectors are given respectively by

v1 =



γ
1
0


 , v2 =




0
−1
1


 , and v3 =




α
α− 1
0


 . (A.59)
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With some elementary computation, one can show that z0 and b introduced in (A.28) can be related
to the eigenvectors of B in the following way:

z0 ≤




∥∥Q⋆
τ −Q(0)

τ

∥∥
∞∥∥Q⋆

τ − τ log ξ̂(0)
∥∥
∞∥∥Q(0)

τ − τ log ξ̂(0)
∥∥
∞




=
1

1− ητ
[
(1− α)

∥∥Q⋆
τ −Q(0)

τ

∥∥
∞ + α

(∥∥Q⋆
τ − τ log ξ̂(0)

∥∥
∞ +

∥∥Q(0)
τ − τ log ξ̂(0)

∥∥
∞

)]
v1

+
∥∥Q(0)

τ − τ log ξ̂(0)
∥∥
∞v2 + czv3

≤ 1

1− ητ
(∥∥Q⋆

τ −Q(0)
τ

∥∥
∞ + 2ατ

∥∥log π⋆τ − log π(0)
∥∥
∞

)
v1 +

∥∥Q(0)
τ − τ log ξ̂(0)

∥∥
∞v2 + czv3,

(A.60)

where cz is some scalar whose value is immaterial since the eigenvalue corresponding to v3 is λ3 = 0,
and the last line follows from the same reasoning for (A.21). Another userful identity is:

b = (1− α)δ



γ
(
2 + 2γ

ητ

)

1

1 + 2γ
ητ


 = (1− α)δ

[(
2 +

2γ

ητ

)
v1 +

(
1 +

2γ

ητ

)
v2

]
. (A.61)

With these preparations in place, we can now invoke the recursion relationship (A.27) and the
non-negativity of B to obtain

zt+1 ≤ Bt+1z0 +
t∑

s=0

Bt−sb

≤ Bt+1

[
1

1− ητ
(∥∥Q⋆

τ −Q(0)
τ

∥∥
∞ + 2ατ

∥∥log π⋆τ − log π(0)
∥∥
∞

)
v1 +

∥∥Q(0)
τ − τ log ξ̂(0)

∥∥
∞v2 + czv3

]

+ (1− α)δ
t∑

s=0

Bt−s

[(
2 +

2γ

ητ

)
v1 +

(
1 +

2γ

ητ

)
v2

]

=

[
λt1

(∥∥Q⋆
τ −Q(0)

τ

∥∥
∞ + 2ατ

∥∥log π⋆τ − log π(0)
∥∥
∞

)
+ (1− α)δ

(
2 +

2γ

ητ

)
1− λt+1

1

1− λ1

]
v1

+

[
λt+1
2

∥∥Q(0)
τ − τ log ξ̂(0)

∥∥
∞ + (1− α)δ

(
1 +

2γ

ητ

)
1− λt+1

2

1− λ2

]
v2,

where the eigenvalues and eigenvectors of B are given in (A.58) and (A.59), respectively, and the
second inequality relies on (A.60) and (A.61). Note that we are only interested in the first two
entries of the vector zt. Since the first two entries of the eigenvector v2 are non-positive, we can
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safely drop the term involving v2 in the above inequality to obtain

[ ∥∥Q⋆
τ −Q(t+1)

τ

∥∥
∞∥∥Q⋆

τ − τ log ξ̂(t+1)
∥∥
∞

]

≤
{
λt1

(∥∥Q⋆
τ −Q(0)

τ

∥∥
∞ + 2ατ

∥∥log π⋆τ − log π(0)
∥∥
∞

)
+ (1− α)δ

(
2 +

2γ

ητ

)
1− λt+1

1

1− λ1

}[
γ
1

]

≤
{
(1− ητ)t

(∥∥Q⋆
τ −Q(0)

τ

∥∥
∞ + 2

(
1− ητ

1− γ

)
τ
∥∥log π⋆τ − log π(0)

∥∥
∞

)
+

2δ

1− γ

(
1 +

γ

ητ

)}[
γ
1

]
.

(A.62)

When it comes to the log policies, we recall again the fact that π(t) is related to ξ̂(t) as

∀s ∈ S : π(t)(·|s) = 1∥∥ξ̂(t)(s, ·)
∥∥
1

ξ̂(t)(s, ·). (A.63)

Invoking the elementary property (A.34), we reach

∥∥log π⋆τ − log π(t+1)
∥∥
∞ ≤ 2

∥∥Q⋆
τ/τ − log ξ̂(t+1)

∥∥
∞.

This together with the bound on
∥∥Q⋆

τ − τ log ξ̂(t+1)
∥∥
∞ in (A.62) establishes our claim for

∥∥log π⋆τ − log π(t+1)
∥∥
∞.
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Appendix B

Proofs for Chapter 3

B.1 Analysis for exact GPMD (Theorem 3)

In this section, we present the analysis for our main result in Theorem 3, which follows a different
framework from Lan [2023]. Here and throughout, we shall often employ the following shorthand
notation when it is clear from the context:

π(k)(s) := π(k)(· | s) ∈ ∆(A), Qπ(s) := Qπ(s, ·) ∈ R|A|,

ξ(k)(s) := ξ(k)(s, ·) ∈ R|A|, Qπ
τ (s) := Qπ

τ (s, ·) ∈ R|A|,
(B.1)

in addition to those already defined in (3.7).

B.1.1 Preparation: basic facts

In this subsection, we single out a few basic results that underlie the proof of our main theorems.

Performance improvement. To begin with, we demonstrate that GPMD enjoys a sort of mono-
tonic improvements concerning the updates of both the value function and the Q-function, as stated
in the following lemma. This lemma can be viewed as a generalization of the well-established policy
improvement lemma in the analysis of NPG [Agarwal et al., 2020b, Cen et al., 2022b] as well as
PMD [Lan, 2023].

Lemma 8 (Pointwise monotonicity). For any (s, a) ∈ S ×A and any k ≥ 0, Algorithm 2 achieves

V (k+1)
τ (s) ≥ V (k)

τ (s) and Q(k+1)
τ (s, a) ≥ Q(k)

τ (s, a). (B.2)

Proof. See Appendix B.2.2.

Interestingly, the above monotonicity holds simultaneously for all state-action pairs, and hence
can be understood as a kind of pointwise monotonicity.

Generalized Bellman operator. Another key ingredient of our proof lies in the use of a gen-
eralized Bellman operator Tτ,h : R|S||A| → R|S||A| associated with the regularizer h = {hs}s∈S .
Specifically, for any state-action pair (s, a) and any vector Q ∈ R|S||A|, we define

Tτ,h(Q)(s, a) = r(s, a) + γ E
s′∼P (·|s,a)

[
max

p∈∆(A)

{〈
Q(s′), p

〉
− τhs′(p)

}]
. (B.3)
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It is worth noting that this definition shares similarity with the regularized Bellman operator
proposed in Geist et al. [2019], where the operator defined there is targeted at Vτ , while ours is
defined w.r.t. Qτ .

The importance of this generalized Bellman operator is two-fold: it enjoys a desired contrac-
tion property, and its fixed point corresponds to the optimal regularized Q-function. These are
generalizations of the properties for the classical Bellman operator, and are formally stated in the
following lemma. The proof is deferred to Appendix B.2.3.

Lemma 9 (Properties of the generalized Bellman operator). For any τ > 0, the operator Tτ,h
defined in (B.3) satisfies the following properties:

• Tτ,h is a contraction operator w.r.t. the ℓ∞ norm, namely, for any Q1, Q2 ∈ R|S||A|, one has
∥∥Tτ,h(Q1)− Tτ,h(Q2)

∥∥
∞ ≤ γ∥Q1 −Q2∥∞. (B.4)

• The optimal regularized Q-function Q⋆
τ is a fixed point of Tτ,h, that is,
Tτ,h(Q⋆

τ ) = Q⋆
τ . (B.5)

B.1.2 Proof of Theorem 3

Similar to the proofs for NPG in Appendix A, our proof consists of (i) characterizing the dynamics
of ℓ∞ errors and establishing a connection to a useful linear system with two variables, and (ii)
analyzing the dynamics of this linear system directly. In what follows, we elaborate on each of
these steps.

Step 1: error contraction and its connection to a linear system. With the assistance of
the above preparations, we are ready to elucidate how to characterize the convergence behavior of

∥Q⋆
τ −Q(k+1)

τ ∥∞. Recalling the update rule of ξ(k+1) (cf. (3.14c)), we can deduce that

Q⋆
τ − τξ(k+1) = α

(
Q⋆

τ − τξ(k)
)
+ (1− α)

(
Q⋆

τ −Q(k)
τ

)

with α = 1
1+ητ , thus indicating that

∥∥Q⋆
τ − τξ(k+1)

∥∥
∞ ≤ α

∥∥Q⋆
τ − τξ(k)

∥∥
∞ + (1− α)

∥∥Q⋆
τ −Q(k)

τ

∥∥
∞. (B.6)

Interestingly, there exists an intimate connection between ∥Q⋆
τ−Q(k+1)

τ ∥∞ and ∥Q⋆
τ−τξ(k+1)∥∞

that allows us to bound the former term by the latter. This is stated in the following lemma, with
the proof postponed to Appendix B.2.4.

Lemma 10. Set α = 1
1+ητ . The iterates of Algorithm 2 satisfy

∥∥Q⋆
τ −Q(k+1)

τ

∥∥
∞ ≤ γ

∥∥Q⋆
τ − τξ(k+1)

∥∥
∞ + γαk+1

∥∥Q(0)
τ − τξ(0)

∥∥
∞. (B.7)

The above inequalities (B.6) and (B.7) can be succinctly described via a useful linear system

with two variables ∥Q⋆
τ −Q(k)

τ ∥∞ and ∥Q⋆
τ − τξ(k)∥∞, that is,

xk+1 ≤ Axk + γαk+1y, (B.8)

where

A :=

[
γ(1− α) γα
1− α α

]
, xk :=

[
∥Q⋆

τ −Q(k)
τ ∥∞

∥Q⋆
τ − τξ(k)∥∞

]
and y :=

[
∥Q(0)

τ − τξ(0)∥∞
0

]
. (B.9)

This forms the basis for proving Theorem 3.
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Step 2: analyzing the dynamics of the linear system (B.8). Before proceeding, we note
that a linear system similar to (B.8) has been analyzed in Cen et al. [2022b, Section 4.2.2]. We
intend to apply the following properties that have been derived therein:

xk+1 ≤ Ak+1
[
x0 + γ(α−1A− I)−1y

]
, (B.10a)

γ(α−1A− I)−1y =

[
0

∥Q(0)
τ − τξ(0)∥∞

]
, (B.10b)

Ak+1 =
(
(1− α)γ + α

)k
[
γ
1

] [
1− α α

]
. (B.10c)

Substituting (B.10c) and (B.10b) into (B.10a) and rearranging terms, we reach

xk+1 ≤
(
(1− α)γ + α

)k (
(1− α)

∥∥Q⋆
τ −Q(0)

τ

∥∥
∞ + α

∥∥Q⋆
τ − τξ(0)

∥∥
∞ + α

∥∥Q(0)
τ − τξ(0)

∥∥
∞

)[γ
1

]

≤
(
(1− α)γ + α

)k (∥∥Q⋆
τ −Q(0)

τ

∥∥
∞ + 2α

∥∥Q⋆
τ − τξ(0)

∥∥
∞

)[γ
1

]
, (B.11)

which taken together with the definition of xk+1 gives

∥∥Q⋆
τ −Q(k+1)

τ

∥∥
∞ ≤ γ

(
(1− α)γ + α

)k (∥∥Q⋆
τ −Q(0)

τ

∥∥
∞ + 2α

∥∥Q⋆
τ − τξ(0)

∥∥
∞

)
, (B.12a)

∥∥Q⋆
τ − τξ(k+1)

∥∥
∞ ≤

(
(1− α)γ + α

)k (∥∥Q⋆
τ −Q(0)

τ

∥∥
∞ + 2α

∥∥Q⋆
τ − τξ(0)

∥∥
∞

)
. (B.12b)

Step 3: controlling
∥∥π⋆τ (s)−π(k+1)(s)

∥∥
1
and

∥∥V ⋆
τ −V (k+1)

τ

∥∥
∞. It remains to convert this result

to an upper bound on
∥∥π⋆τ (s) − π(k+1)(s)

∥∥
1
and

∥∥V ⋆
τ − V (k+1)

τ

∥∥
∞. By virtue of Lemma 1, there

exist two vectors g⋆τ (s) ∈ ∂hs
(
π⋆τ (s)

)
, g(k+1)(s) ∈ ∂hs

(
π(k+1)(s)

)
and two scalars c⋆s, c

(k+1)
s ∈ R that

satisfy {
τ−1Q⋆

τ (s)− c⋆s1 = g⋆τ (s)

ξ(k+1)(s, ·)− c(k+1)
s 1 = g(k+1)(s)

.

It holds for all s ∈ S that

V ⋆
τ (s)− V (k+1)

τ (s)

=
〈
Q⋆

τ (s), π
⋆
τ (s)

〉
− τhs(π⋆τ (s))−

〈
Q(k+1)

τ (s), π(k+1)
τ (s)

〉
+ τhs(π

(k+1)
τ (s))

=
〈
Q⋆

τ (s)−Q(k+1)
τ (s), π(k+1)

τ (s)
〉
+
[
τ(hs(π

(k+1)
τ (s))− hs(π⋆τ (s)))−

〈
Q⋆

τ (s), π
(k+1)
τ (s)− π⋆τ (s)

〉]

(i)

≤
〈
Q⋆

τ (s)−Q(k+1)
τ (s), π(k+1)

τ (s)
〉
+
〈
τg(k+1)(s)−Q⋆

τ (s), π
(k+1)
τ (s)− π⋆τ (s))

〉

=
〈
Q⋆

τ (s)−Q(k+1)
τ (s), π(k+1)

τ (s)
〉
+
〈
τξ(k+1)(s)−Q⋆

τ (s), π
(k+1)
τ (s)− π⋆τ (s))

〉

≤
∥∥Q⋆

τ (s)−Q(k+1)
τ (s)

∥∥
∞ + 2

∥∥Q⋆
τ (s)− τξ(k+1)(s)

∥∥
∞, (B.13)

where (i) results from hs(π
(k+1)
τ (s)) − hs(π⋆τ (s)) ≤

〈
g(k+1)(s), π

(k+1)
τ (s) − π⋆τ (s)

〉
. Plugging (B.12)

into (B.13) completes the proof for (3.15b).
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When hs is 1-strongly convex w.r.t. the ℓ1 norm, we can invoke the strong monotonicity property
of a strongly convex function [Beck, 2017, Theorem 5.24] to obtain

∥∥π⋆τ (s)− π(k+1)(s)
∥∥2
1
≤
〈
π⋆τ (s)− π(k+1)(s), g⋆τ (s)− g(k+1)(s)

〉

=
〈
π⋆τ (s)− π(k+1)(s), g⋆τ (s) + c⋆s1− g(k+1)(s)− c(k+1)

s 1
〉

≤
∥∥π⋆τ (s)− π(k+1)(s)

∥∥
1

∥∥g⋆τ (s) + c⋆s1− g(k+1)(s)− c(k+1)
s 1

∥∥
∞

= τ−1
∥∥π⋆τ (s)− π(k+1)(s)

∥∥
1

∥∥Q⋆
τ (s)− τξ(k+1)(s)

∥∥
∞, (B.14)

where the second line is valid since ⟨π⋆τ (s), 1⟩ = ⟨π(k+1)(s), 1⟩ = 1. This taken together with (B.12)
gives rise to the advertised bound

∥∥π⋆τ (s)− π(k+1)(s)
∥∥
1
≤ τ−1

∥∥Q⋆
τ (s)− τξ(k+1)(s)

∥∥
∞

≤ τ−1
(
(1− α)γ + α

)k (∥∥Q⋆
τ −Q(0)

τ

∥∥
∞ + 2α

∥∥Q⋆
τ − τξ(0)

∥∥
∞

)
.

B.2 Proof of key lemmas

In this section, we collect the proof of several key lemmas. Here and throughout, we use Eπ[·] to
denote the expectation over the randomness of the MDP induced by policy π. We shall follow the
notation convention in (B.1) throughout. In addition, to further simplify notation, we shall abuse
the notation by letting

Dhs(π̃, π; ξ) := Dhs

(
π̃(· | s), π(· | s); ξ(s, ·)

)
(B.15a)

Dhs(p, π; ξ) := Dhs

(
p, π(· | s); ξ(s, ·)

)
(B.15b)

Dhs(π, p; ξ) := Dhs

(
π(· | s), p; ξ(s, ·)

)
(B.15c)

for any policy π and π̃ and any p ∈ ∆(A), whenever it is clear from the context.

B.2.1 Proof of Lemma 1

We start by relaxing the probability simplex constraint (i.e., p ∈ ∆(A)) in (3.14a) with a simpler
linear constraint

∑
a∈A p(a) = 1 as follows

minimizep∈R|A| −η
〈
Q

(k)
τ (s), p

〉
+ ητhs(p) +Dhs

(
p, π(k); ξ(k)

)

subject to
∑

a∈A p(a) = 1.
(B.16)

To justify the validity of dropping the non-negative constraint, we note that for any p obeying
p(a) < 0 for some a ∈ A, our assumption on hs (see Assumption 1) leads to hs(p) = ∞, which
cannot possibly be the optimal solution. This confirms the equivalence between (3.14a) and (B.16).

Observe that the Lagrangian w.r.t. (B.16) is given by

Ls
(
p, λ(k)s

)

= −η
〈
Q(k)

τ (s), p
〉
+ ητhs(p) + hs(p)− hs

(
π(k)(s)

)
−
〈
p− π(k)(s), ξ(k)(s)

〉
+ λ(k)s

(∑

a∈A
p(a)− 1

)
,

where λ
(k)
s ∈ R denotes the Lagrange multiplier associated with the constraint

∑
a∈A p(a) = 1.

Given that π(k+1)(s) is the solution to (3.14a) and hence (B.16), the optimality condition requires
that

0 ∈ ∂pLs
(
p, λ(k)s

) ∣∣∣ p=π(k+1)(s) = −ηQ(k)
τ (s) + (1 + ητ)∂hs

(
π(k+1)(s)

)
− ξ(k)(s) + λ(k)s 1.
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Rearranging terms and making use of the construction (3.11), we are left with

ξ(k+1)(s)− λ
(k)
s

1 + ητ
1 =

1

1 + ητ

[
ηQ(k)

τ (s) + ξ(k)(s)− λ(k)s 1
]
∈ ∂hs

(
π(k+1)(s)

)
,

thus concluding the proof of the first claim (3.12).
We now turn to the second claim (3.13). In view of the property (B.5), we have

π⋆τ (s) = arg min
p∈∆(A)

−
〈
Q⋆

τ (s), p
〉
+ τhs(p).

This optimization problem is equivalent to

minimizep∈R|A| −
〈
Q⋆

τ (s), p
〉
+ τhs(p),

subject to
∑

a∈A p(a) = 1,
(B.17)

which can be verified by repeating a similar argument for (B.16). The Lagrangian associated with
(B.17) is

Ls
(
p, λ⋆s

)
= −

〈
Q⋆

τ (s), p
〉
+ τhs(p) + λ⋆s

(∑

a∈A
p(a)− 1

)
,

where λ⋆s ∈ R denotes the Lagrange multiplier. Therefore, the first-order optimality condition
requires that

0 ∈ ∂pLs
(
p, λ⋆s

) ∣∣∣ p=π⋆
τ (s)

= −Q⋆
τ (s) + τ∂hs

(
π⋆τ (s)

)
+ λ⋆s1,

which immediately finishes the proof.

B.2.2 Proof of Lemma 8

We start by introducing the performance difference lemma that has previously been derived in
Lan [2023, Lemma 2]. For the sake of self-containedness, we include a proof of this lemma in
Appendix B.2.2.

Lemma 11 (Performance difference). For any two policies π and π′, we have

V π′
τ (s)− V π

τ (s) =
1

1− γ E
s′∼dπ′

s

[〈
Qπ

τ (s
′), π′(s′)− π(s′)

〉
− τhs′

(
π′(s′)

)
+ τhs′

(
π(s′)

)]
, (B.18)

where dπs has been defined in (2.4).

Armed with Lemma 11, one can readily rewrite the difference V
(k+1)
τ (s)− V (k)

τ (s) between two
consecutive iterates as follows

V (k+1)
τ (s)− V (k)

τ (s)

=
1

1− γ E
s′∼d

(k+1)
s

[〈
Q(k)

τ (s′), π(k+1)(s′)− π(k)(s′)
〉
− τhs′

(
π(k+1)(s′)

)
+ τhs′

(
π(k)(s′)

)]
.

(B.19)

It then comes down to studying the right-hand side of the relation (B.19), which can be accomplished
via the following “three-point” lemma. The proof of this lemma can be found in Appendix B.2.2.
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Lemma 12. For any s ∈ S and any vector p ∈ ∆(A), we have

(1 + ητ)Dhs

(
p, π(k+1); ξ(k+1)

)
+Dhs

(
π(k+1), π(k); ξ(k)

)
−Dhs

(
p, π(k); ξ(k)

)

= η
[〈
Q(k)

τ (s), π(k+1)(s)− p
〉
+ τhs(p)− τhs

(
π(k+1)(s)

)]
.

Taking p = π(k)(s) in Lemma 12 and combining it with (B.19), we arrive at

V (k+1)
τ (s)− V (k)

τ (s)

=
1

(1− γ)η E
s′∼d

(k+1)
s

[
(1 + ητ)Dhs′

(
π(k), π(k+1); ξ(k+1)

)
+Dhs′

(
π(k+1), π(k); ξ(k)

)]
≥ 0

for any s ∈ S, thus establishing the advertised pointwise monotonicity w.r.t. the regularized value
function.

When it comes to the regularized Q-function, it is readily seen from the definition (3.3a) that

Q(k+1)
τ (s, a) = r(s, a) + γ E

s′∼P (·|s,a)

[
V (k+1)
τ (s′)

]

≥ r(s, a) + γ E
s′∼P (·|s,a)

[
V (k)
τ (s′)

]
= Q(k)

τ (s, a)

for any (s, a) ∈ S ×A, where the last line is valid since V
(k+1)
τ ≥ V (k)

τ . This concludes the proof.

Proof of Lemma 11

For any two policies π′ and π, it follows from the definition (3.1) of V π
τ (s) that

V π′
τ (s)− V π

τ (s) = Eπ′

[ ∞∑

t=0

γt
[
r(st, at)− τhst

(
π′(st)

)] ∣∣∣ s0 = s

]
− V π

τ (s)

= Eπ′

[ ∞∑

t=0

γt
[
r(st, at)− τhst

(
π′(st)

)
+ V π

τ (st)− V π
τ (st)

] ∣∣∣ s0 = s

]
− V π

τ (s)

= Eπ′

[ ∞∑

t=0

γt
[
r(st, at)− τhst

(
π′(st)

)
+ γV π

τ (st+1)− V π
τ (st)

] ∣∣∣ s0 = s

]
+ Eπ′

[
V π
τ (s0)

∣∣∣ s0 = s
]
− V π

τ (s)

= Eπ′

[ ∞∑

t=0

γt
[
r(st, at)− τhst

(
π′(st)

)
+ γV π

τ (st+1)− V π
τ (st)

] ∣∣∣ s0 = s

]

= Eπ′

[ ∞∑

t=0

γt
[
r(st, at)− τhst

(
π(st)

)
+ γV π

τ (st+1)− V π
τ (st)− τhst

(
π′(st)

)
+ τhst

(
π(st)

)] ∣∣∣ s0 = s

]

= Eπ′

[ ∞∑

t=0

γt
[
Qπ

τ (st, at)− τhst
(
π(st)

)
− V π

τ (st)− τhst
(
π′(st)

)
+ τhst

(
π(st)

)] ∣∣∣ s0 = s

]

=
1

1− γ E
s′∼dπ′

s

[〈
Qπ

τ (s
′), π′(s′)− π(s′)

〉
− τhs′

(
π′(s′)

)
+ τhs′

(
π(s′)

)]
, (B.20)
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where the penultimate line comes from the definition (3.3a). To see why the last line of (B.20) is
valid, we make note of the following identity

E
at∼π′(st)

[
Qπ

τ (st, at)− τhst
(
π(st)

)
− V π

τ (st)
]

= E
at∼π′(st)

[
Qπ

τ (st, at)− τhst
(
π(st)

)]
− E

at∼π(st)

[
Qπ

τ (st, at)− τhst
(
π(st)

)]

=
〈
Qπ

τ (st)− τhst
(
π(st)

)
· 1, π′(st)− π(st)

〉

=
〈
Qπ

τ (st), π
′(st)− π(st)

〉
, (B.21)

where the first identity results from the relation (3.3b), and the last relation holds since 1⊤π′(st) =
1⊤π(st) = 1. The last line of (B.20) then follows immediately from the relation (B.21) and the
definition (2.4) of dπs .

Proof of Lemma 12

For any state s ∈ S, we make the observation that

Dhs

(
p, π(k); ξ(k)

)
= hs(p)− hs

(
π(k)(s)

)
−
〈
p− π(k)(s), ξ(k)(s)

〉

= hs(p)− hs
(
π(k+1)(s)

)
−
〈
p− π(k+1)(s), ξ(k)(s)

〉

+ hs
(
π(k+1)(s)

)
− hs

(
π(k)(s)

)
−
〈
π(k+1)(s)− π(k)(s), ξ(k)(s)

〉

= hs(p)− hs
(
π(k+1)(s)

)
−
〈
p− π(k+1)(s), ξ(k+1)(s)

〉

+ hs
(
π(k+1)(s)

)
− hs

(
π(k)(s)

)
−
〈
π(k+1)(s)− π(k)(s), ξ(k)(s)

〉

+
〈
p− π(k+1)(s), ξ(k+1)(s)− ξ(k)(s)

〉〉

= Dhs

(
p, π(k+1); ξ(k+1)

)
+Dhs

(
π(k+1), π(k); ξ(k)

)
+
〈
p− π(k+1)(s), ξ(k+1)(s)− ξ(k)(s)

〉

= Dhs

(
p, π(k+1); ξ(k+1)

)
+Dhs

(
π(k+1), π(k); ξ(k)

)
+
〈
p− π(k+1)(s), ηQ(k)

τ (s)− ητξ(k+1)(s)
〉
,

where the first and the fourth steps invoke the definition (3.9) of the generalized Bregman divergence
and the last line results from the update rule (3.14c). Rearranging terms, we are left with

η
〈
Q(k)

τ (s), π(k+1)(s)− p
〉

=
{
Dhs

(
p, π(k+1); ξ(k+1)

)
+Dhs

(
π(k+1), π(k); ξ(k)

)
−Dhs

(
p, π(k); ξ(k)

)}

+ ητ
〈
ξ(k+1)(s), π(k+1)(s)− p

〉
.

Adding the term ητ
{
hs(p)− hs

(
π(k+1)(s)

)}
to both sides of this identity leads to

η
[〈
Q(k)

τ (s), π(k+1)(s)− p
〉
+ τhs(p)− τhs

(
π(k+1)(s)

)]

=
{
Dhs

(
p, π(k+1); ξ(k+1)

)
+Dhs

(
π(k+1), π(k); ξ(k)

)
−Dhs

(
p, π(k); ξ(k)

)}

+ ητ
(
hs(p)− hs

(
π(k+1)(s)

)
−
〈
ξ(k+1)(s), p− π(k+1)(s)

〉)

= (1 + ητ)Dhs

(
p, π(k+1); ξ(k+1)

)
+Dhs

(
π(k+1), π(k); ξ(k)

)
−Dhs

(
p, π(k); ξ(k)

)

as claimed, where the last line makes use of the definition (3.9).
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B.2.3 Proof of Lemma 9

In the sequel, we shall prove each claim in Lemma 9 separately.

Proof of the contraction property (B.4). For any Q1, Q2 ∈ R|S||A|, the definition (B.3) of the
generalized Bellman operator obeys

Tτ,h(Q1)− Tτ,h(Q2) = γ E
s′∼P (·|s,a)

[
max

p∈∆(A)

{
⟨Q1(s

′), p⟩ − τhs′(p)
}
− max

p∈∆(A)

{
⟨Q2(s

′), p⟩ − τhs′(p)
}]

(a)

≤ γ E
s′∼P (·|s,a)

[
max

p∈∆(A)

〈
Q1(s

′)−Q2(s
′), p

〉]

≤ γ E
s′∼P (·|s,a)

[
max

p:∥p∥1=1
∥Q1 −Q2∥∞∥p∥1

]

= γ∥Q1 −Q2∥∞,

where (a) arises from the elementary fact maxx f(x)−maxx g(x) ≤ maxx
(
f(x)− g(x)

)
.

Proof of the fixed point property (B.5). Towards this, let us first define

π†(s) := arg max
ps∈∆(A)

E
a∼ps

[
Q⋆

τ (s, a)− τhs
(
p(s)

)]
. (B.22)

Then it can be easily verified that

Q⋆
τ (s, a) = r(s, a) + γ E

s1∼P (·|s,a)

[
E

a1∼π⋆(s1)

[
Q⋆

τ (s1, a1)− τhs1
(
π⋆(s1)

)]
]

≤ r(s, a) + γ E
s1∼P (·|s,a)

[
E

a1∼π†(s1)

[
Q⋆

τ (s1, a1)− τhs1
(
π†(s1)

)]
]
, (B.23)

where the first identity results from (3.3), and the second line arises from the maximizing property
of π† (see (B.22)).

Note that the right-hand side of (B.23) involves the term Q⋆
τ (s1, a1), which can be further upper

bounded via the same argument for (B.23). Successively repeating this upper bound argument (and
the expansion) eventually allows one to obtain

Q⋆
τ (s, a) ≤ r(s, a) + γEπ†

[ ∞∑

t=1

γt−1
{
r(st, at)− τhst

(
π†(st)

)} ∣∣∣ s0 = s, a0 = a

]
= Qπ†

τ (s, a).

However, the fact that π⋆ is the optimal policy necessarily implies the following reverse inequality:

Q⋆
τ (s, a) ≥ Qπ†

τ (s, a).

Therefore, one must have

Q⋆
τ (s, a) = Qπ†

τ (s, a). (B.24)
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To finish up, it suffices to show that Qπ†
τ = Tτ,h(Q⋆

τ ). To this end, it is observed that

Qπ†
τ (s, a) = r(s, a) + γ E

s1∼P (·|s,a)

[
E

a1∼π†(s1)

[
Qπ†

τ (s1, a1)− τhs1
(
π†(s1)

)]
]

(b)
= r(s, a) + γ E

s1∼P (·|s,a)

[
E

a1∼π†(s1)

[
Q⋆

τ (s1, a1)− τhs1
(
π†(s1)

)]
]

(c)
= r(s, a) + γ E

s1∼P (·|s,a)

[
max

p∈∆(A)

〈
Q⋆

τ (s1, a1), p
〉
− τhs1(p)

]]

= Tτ,h(Q⋆
τ )(s, a),

where (b) utilizes the fact (B.24), (c) follows from the definition (B.22) of π†, and the last identity
is a consequence of the definition (B.3) of Tτ,h. The above results taken collectively demonstrate
that Q⋆

τ = Tτ,h(Q⋆
τ ) as claimed.

B.2.4 Proof of Lemma 10

Recall that Q
(k+1)
τ = Qπ(k+1)

τ . In view of the relation (3.3), one obtains

Q(k+1)
τ (s, a) = r(s, a) + γ E

s′∼P (·|s,a)

[
V (k+1)
τ (s′)

]

= r(s, a) + γ E
s′∼P (·|s,a)

[
E

a′∼π(k+1)(s′)

[
Q(k+1)

τ (s′, a′)− τhs′
(
π(k+1)(s′)

)]
]

= r(s, a) + γ E
s′∼P (·|s,a)

[〈
Q(k+1)

τ (s′), π(k+1)(s′)
〉
− τhs′

(
π(k+1)(s′)

)]
.

This combined with the fixed-point condition (B.5) allows us to derive

Q⋆
τ (s, a)−Q(k+1)

τ (s, a)

= Tτ,h(Q⋆
τ )(s, a)−

{
r(s, a) + γ E

s′∼P (·|s,a)

[〈
Q(k+1)

τ (s′), π(k+1)(s′)
〉
− τhs′

(
π(k+1)(s′)

)]
}

= Tτ,h(Q⋆
τ )(s, a)−

{
r(s, a) + γ E

s′∼P (·|s,a)

[〈
τξ(k+1)(s′), π(k+1)(s′)

〉
− τhs′

(
π(k+1)(s′)

)]
}

− γ E
s′∼P (·|s,a),a′∼π(k+1)(s′)

[
Q(k+1)

τ (s′, a′)− τξ(k+1)(s′, a′)
]
. (B.25)

In what follows, we control each term on the right-hand side of (B.25) separately.

Step 1: bounding the 1st term on the right-hand side of (B.25). Lemma 1 tells us that

ξ(k+1)(s)− c(k+1)
s 1 ∈ ∂hs(π(k+1)(s))

for some scalar c
(k+1)
s ∈ R. This important property allows one to derive

0 ∈ −ξ(k+1)(s) + c(k+1)
s 1 + ∂hs

(
π(k+1)(s)

)
= ∂Lk+1,s

(
π(k+1)(s); c(k+1)

s

)
(B.26)

where
Lk+1,s(p;λ) := −

〈
ξ(k+1)(s), p

〉
+ hs

(
p
)

︸ ︷︷ ︸
=: fk+1,s(p)

+ λ 1⊤p.
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Recognizing that the function fk+1,s(·) is convex in p, we can view Lk+1,s(p;λ) as the Lagrangian
of the following constrained convex problem with Lagrangian multiplier λ ∈ R:

minimize
p:1⊤p=1

fk+1,s(p) = −
〈
ξ(k+1)(s), p

〉
+ hs

(
p
)
. (B.27)

The condition (B.26) can then be interpreted as the optimality condition w.r.t. the program (B.27)
and π(k+1)(s), meaning that

fk+1,s

(
π(k+1)(s)

)
= min

p:1⊤p=1
fk+1,s(p),

or equivalently,
〈
ξ(k+1)(s), π(k+1)(s)

〉
− hs

(
π(k+1)(s)

)
= max

p:1⊤p=1

〈
ξ(k+1)(s), p

〉
− hs(p). (B.28)

In addition, for any vector p that does not obey p ≥ 0, Assumption 1 implies that hs(p) =∞,
and hence p cannot possibly be the optimal solution to maxp∈∆(A)

〈
ξ(k+1)(s), p

〉
− hs(p). This

together with (B.28) essentially implies that
〈
ξ(k+1)(s), π(k+1)(s)

〉
− hs

(
π(k+1)(s)

)
= max

p∈∆(A)

〈
ξ(k+1)(s), p

〉
− hs(p). (B.29)

As a consequence, we arrive at

Tτ,h(Q⋆
τ )(s, a)−

{
r(s, a) + γ E

s′∼P (·|s,a)

[〈
τξ(k+1)(s′), π(k+1)(s′)

〉
− τhs′

(
π(k+1)(s′)

)]
}

= Tτ,h(Q⋆
τ )(s, a)−

{
r(s, a) + γ E

s′∼P (·|s,a)

[
max

p∈∆(A)

{〈
τξ(k+1)(s′), p

〉
− τhs′(p)

}]}

= Tτ,h(Q⋆
τ )(s, a)− Tτ,h(τξ(k+1))(s, a)

≤ γ
∥∥Q⋆

τ − τξ(k+1)
∥∥
∞, (B.30)

where the last step results from the contraction property (B.4) in Lemma 9.

Step 2: bounding the 2nd term on the right-hand side of (B.25). Recall that α = 1
1+ητ .

Invoking the monotonicity property in Lemma 8 and the update rule (3.14c), we obtain

Q(k+1)
τ (s, a)− τξ(k+1)(s, a) = α

{
Q(k+1)

τ (s, a)− τξ(k)(s, a)
}
+ (1− α)

{
Q(k+1)

τ (s, a)−Q(k)
τ (s, a)

}

≥ α
{
Q(k)

τ (s, a)− τξ(k)(s, a)
}
.

Repeating this lower bound argument then yields

Q(k+1)
τ (s, a)− τξ(k+1)(s, a) ≥ αk+1

{
Q(0)

τ (s, a)− τξ(0)(s, a)
}

≥ −αk+1
∥∥Q(0)

τ − τξ(0)
∥∥
∞,

thus revealing that

− E
s′∼P (·|s,a),a′∼πk+1(s′)

[
Q(k+1)

τ (s′, a′)− τξ(k+1)(s′, a′)
]
≤ αk+1

∥∥Q(0)
τ − τξ(0)

∥∥
∞. (B.31)

Step 3: putting all this together. Substituting (B.30) and (B.31) into (B.25) gives

0 ≤ Q⋆
τ (s, a)−Q(k+1)

τ (s, a) ≤ γ
∥∥Q⋆

τ − τξ(k+1)
∥∥
∞ + αk+1

∥∥Q(0)
τ − τξ(0)

∥∥
∞ (B.32)

for all (s, a) ∈ S ×A, thus concluding the proof.
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Appendix C

Proofs for Chapter 4

C.1 Analysis for entropy-regularized matrix games

Before embarking on the main proof, it is useful to first consider the update rule (4.6) that underlies
both PU and OMWU, which is reproduced below for convenience:




µ(t+1)(a) ∝ µ(t)(a)1−ητ

exp(η[Az2]a), for all a ∈ A,

ν(t+1)(b) ∝ ν(t)(b)1−ητ
exp(−η[A⊤z1]b), for all b ∈ B,

(C.1)

where z1 ∈ ∆(A) and z2 ∈ ∆(B). These updates satisfy the following property, whose proof is
provided in Appendix C.2.1.

Lemma 13. Denote ζ(t) = (µ(t), ν(t)) and ζ(z) = (z1, z2). The update rule (C.1) satisfies:
〈
logµ(t+1) − (1− ητ) logµ(t) − ητ logµ⋆τ , z1 − µ⋆τ

〉
= η(µ⋆τ − z1)⊤A(ν⋆τ − z2), (C.2a)

〈
log ν(t+1) − (1− ητ) log ν(t) − ητ log ν⋆τ , z2 − ν⋆τ

〉
= −η(ν⋆τ − z1)⊤A(ν⋆τ − z2), (C.2b)

and 〈
log ζ(t+1) − (1− ητ) log ζ(t) − ητ log ζ⋆τ , ζ(z)− ζ⋆τ

〉
= 0. (C.3)

As we shall see, the above lemma plays a crucial role in establishing the claimed convergence
results. The next lemma gives some basic decompositions related to the game values that are
helpful.

Lemma 14. For every (µ, ν) ∈ ∆(A)×∆(B), the following relations hold

fτ (µ
⋆
τ , ν)− fτ (µ, ν⋆τ ) = τKL (ζ ∥ ζ⋆τ ) , (C.4a)

fτ (µ, ν)− fτ (µ⋆τ , ν⋆τ ) = (µ⋆τ − µ)⊤A(ν⋆τ − ν) + τKL (ν ∥ ν⋆τ )− τKL (µ ∥µ⋆τ ) . (C.4b)

In addition, we also make record of the following elementary lemma that is used frequently.

Lemma 15 ([Mei et al., 2020b, Lemma 27]). For any µ1, µ2 ∈ ∆(A) satisfying
µ1(a) ∝ exp(x1(a)) and µ2(a) ∝ exp(x2(a))

for some x1, x2 ∈ R|A|, we have

KL (µ1 ∥µ2) ≤
1

2
∥x1 − x2 − c · 1∥2∞ ,

for all c ∈ R.
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C.1.1 Proof of Proposition 1

Setting ζ(z) = ζ(t+1) in Lemma 13, we have

〈
log ζ(t+1) − (1− ητ) log ζ(t) − ητ log ζ⋆τ , ζ(t+1) − ζ⋆τ

〉
= 0. (C.5)

By the definition of the KL divergence, one has

−
〈
log ζ(t+1) − (1− ητ) log ζ(t) − ητ log ζ⋆τ , ζ⋆τ

〉

= −(1− ητ)
〈
log ζ⋆τ − log ζ(t), ζ⋆τ

〉
+
〈
log ζ⋆τ − log ζ(t+1), ζ⋆τ

〉

= −(1− ητ)KL
(
ζ⋆τ ∥ ζ(t)

)
+ KL

(
ζ⋆τ ∥ ζ(t+1)

)
, (C.6)

and similarly,

〈
log ζ(t+1) − (1− ητ) log ζ(t) − ητ log ζ⋆τ , ζ(t+1)

〉

= (1− ητ)
〈
log ζ(t+1) − log ζ(t), ζ(t+1)

〉
+ ητ

〈
log ζ(t+1) − log ζ⋆τ , ζ

(t+1)
〉

= (1− ητ)KL
(
ζ(t+1) ∥ ζ(t)

)
+ ητKL

(
ζ(t+1) ∥ ζ⋆τ

)
.

Combining the above two equalities with (C.5), we arrive at

KL
(
ζ⋆τ ∥ ζ(t+1)

)
+ ητKL

(
ζ(t+1) ∥ ζ⋆τ

)
+ (1− ητ)KL

(
ζ(t+1) ∥ ζ(t)

)
= (1− ητ)KL

(
ζ⋆τ ∥ ζ(t)

)
. (C.7)

This immediately leads to KL
(
ζ⋆τ ∥ ζ(t+1)

)
≤ (1− ητ)KL

(
ζ⋆τ ∥ ζ(t)

)
by the nonnegativity of the KL

divergence, as long as 1− ητ ≥ 0. Therefore

KL
(
ζ⋆τ ∥ ζ(t)

)
≤ (1− ητ)tKL

(
ζ⋆τ ∥ ζ(0)

)
for all t ≥ 0.

C.1.2 Proof of Theorem 5

Proof of policy convergence in KL divergence (4.9a)

First noticing that both PU and OMWU share the same update rule for µ(t+1) and ν(t+1), which
takes the form

{
µ(t+1)(a) ∝ µ(t)(a)1−ητ

exp(η[Aν̄(t+1)]a),

ν(t+1)(b) ∝ ν(t)(b)1−ητ
exp(−η[A⊤µ̄(t+1)]b).

Regarding this sequence, Lemma 13 (cf. (C.3)) gives

〈
log ζ(t+1) − (1− ητ) log ζ(t) − ητ log ζ⋆τ , ζ̄(t+1) − ζ⋆τ

〉
= 0. (C.8)

In view of the similarity of (C.5) and (C.8), we can expect similar convergence guarantees to that
of the implicit updates established in Proposition 1 with the optimism that ζ̄(t+1) approximates
ζ(t+1) well. Following the same argument as (C.6), we have

−
〈
log ζ(t+1) − (1− ητ) log ζ(t) − ητ log ζ⋆τ , ζ⋆τ

〉
= −(1−ητ)KL

(
ζ⋆τ ∥ ζ(t)

)
+KL

(
ζ⋆τ ∥ ζ(t+1)

)
. (C.9)
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On the other hand, it is easily seen that

〈
log ζ(t+1) − (1− ητ) log ζ(t) − ητ log ζ⋆τ , ζ̄(t+1)

〉

=
〈
log ζ̄(t+1) − (1− ητ) log ζ(t) − ητ log ζ⋆τ , ζ̄(t+1)

〉
−
〈
log ζ̄(t+1) − log ζ(t+1), ζ(t+1)

〉

−
〈
log ζ̄(t+1) − log ζ(t+1), ζ̄(t+1) − ζ(t+1)

〉

= (1− ητ)KL
(
ζ̄(t+1) ∥ ζ(t)

)
+ ητKL

(
ζ̄(t+1) ∥ ζ⋆τ

)
+ KL

(
ζ(t+1) ∥ ζ̄(t+1)

)

−
〈
log ζ̄(t+1) − log ζ(t+1), ζ̄(t+1) − ζ(t+1)

〉
. (C.10)

Combining equalities (C.9), (C.10) with (C.8), we are left with the following relation pertaining to
bounding KL

(
ζ⋆τ ∥ ζ(t)

)
:

(1− ητ)KL
(
ζ⋆τ ∥ ζ(t)

)
= (1− ητ)KL

(
ζ̄(t+1) ∥ ζ(t)

)
+ ητKL

(
ζ̄(t+1) ∥ ζ⋆τ

)
+ KL

(
ζ(t+1) ∥ ζ̄(t+1)

)

−
〈
log ζ̄(t+1) − log ζ(t+1), ζ̄(t+1) − ζ(t+1)

〉
+ KL

(
ζ⋆τ ∥ ζ(t+1)

)
. (C.11)

In addition, to bound KL
(
ζ⋆τ ∥ ζ̄(t+1)

)
, we will resort to the following three-point equality, which

reads

KL
(
ζ⋆τ ∥ ζ̄(t+1)

)
= KL

(
ζ⋆τ ∥ ζ(t+1)

)
−
〈
ζ⋆τ , log ζ̄

(t+1) − log ζ(t+1)
〉

= KL
(
ζ⋆τ ∥ ζ(t+1)

)
− KL

(
ζ̄(t+1) ∥ ζ(t+1)

)
−
〈
ζ⋆τ − ζ̄(t+1), log ζ̄(t+1) − log ζ(t+1)

〉
,

(C.12)

which can be checked directly using the definition of the KL divergence.

To proceed, we need to control
〈
log ζ̄(t+1) − log ζ(t+1), ζ̄(t+1) − ζ(t+1)

〉
on the right-hand side

of inequality (C.11), and
〈
ζ⋆τ − ζ̄(t+1), log ζ̄(t+1) − log ζ(t+1)

〉
on the right-hand side of inequality

(C.12), for which we continue the proofs for PU and OMWU separately as follows.

Bounding KL
(
ζ⋆τ ∥ ζ(t)

)
for PU. Following the update rule of ζ̄(t+1) = (µ̄(t+1), ν̄(t+1)) in PU, we

have

log µ̄(t+1) − logµ(t+1) = ηA(ν(t) − ν̄(t+1)) + c · 1 (C.13)

for some normalization constant c. With this relation in place, one has

〈
log µ̄(t+1) − logµ(t+1), µ̄(t+1) − µ(t+1)

〉
= η(µ̄(t+1) − µ(t+1))⊤A(ν(t) − ν̄(t+1))

≤ η ∥A∥∞
∥∥∥µ̄(t+1) − µ(t+1)

∥∥∥
1

∥∥∥ν̄(t+1) − ν(t)
∥∥∥
1
.

Combined with Pinsker’s inequality, it is therefore clear that

〈
log µ̄(t+1) − logµ(t+1), µ̄(t+1) − µ(t+1)

〉
≤ 1

2
η ∥A∥∞

(∥∥∥µ̄(t+1) − µ(t+1)
∥∥∥
2

1
+
∥∥∥ν̄(t+1) − ν(t)

∥∥∥
2

1

)

≤ η ∥A∥∞
(
KL
(
µ(t+1) ∥ µ̄(t+1)

)
+ KL

(
ν̄(t+1) ∥ ν(t)

))
.

(C.14)
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Analogously, one can achieve the same bound regarding the quantity
〈
log ν̄(t+1) − log ν(t+1), ν̄(t+1) − ν(t+1)

〉
.

Summing up these two inequalities, we end up with

〈
log ζ̄(t+1) − log ζ(t+1), ζ̄(t+1) − ζ(t+1)

〉
≤ η ∥A∥∞

(
KL
(
ζ(t+1) ∥ ζ̄(t+1)

)
+ KL

(
ζ̄(t+1) ∥ ζ(t)

))
.

Plugging the above inequality into inequality (C.11) leads to

KL
(
ζ⋆τ ∥ ζ(t+1)

)
≤ (1− ητ)KL

(
ζ⋆τ ∥ ζ(t)

)
−
(
1− ητ − η ∥A∥∞

)
KL
(
ζ̄(t+1) ∥ ζ(t)

)
− ητKL

(
ζ̄(t+1) ∥ ζ⋆τ

)

− (1− η ∥A∥∞)KL
(
ζ(t+1) ∥ ζ̄(t+1)

)
. (C.15)

Therefore, as long as the learning rate η satisfies η ≤ 1
τ+∥A∥∞

, we are ensured that

KL
(
ζ⋆τ ∥ ζ(t+1)

)
≤ (1− ητ)KL

(
ζ⋆τ ∥ ζ(t)

)
,

which further implies inequality (4.9a) when applied recursively.

Bounding KL
(
ζ⋆τ ∥ ζ̄(t+1)

)
for PU. By similar tricks of arriving at (C.14), we have

−
〈
µ⋆τ − µ̄(t+1), log µ̄(t+1) − logµ(t+1)

〉
= −η(µ⋆τ − µ̄(t+1))⊤A(ν(t) − ν̄(t+1))

≤ 1

2
η ∥A∥∞

(∥∥∥µ⋆τ − µ̄(t+1)
∥∥∥
2

1
+
∥∥∥ν(t) − ν̄(t+1)

∥∥∥
2

1

)

≤ η ∥A∥∞
(
KL
(
µ⋆τ ∥ µ̄(t+1)

)
+ KL

(
ν̄(t+1) ∥ ν(t)

))
,

following from (C.13) and Pinsker’s inequality. A similar inequality for−
〈
ν⋆τ − ν̄(t+1), log ν̄(t+1) − log ν(t+1)

〉

can be obtained by symmetry, and summing together the two leads to

−
〈
ζ⋆τ − ζ̄(t+1), log ζ̄(t+1) − log ζ(t+1)

〉
≤ η ∥A∥∞

(
KL
(
ζ⋆τ ∥ ζ̄(t+1)

)
+ KL

(
ζ̄(t+1) ∥ ζ(t)

))
.

Plugging the above inequality into (C.12) and rearranging terms, we reach at

(1− η ∥A∥∞)KL
(
ζ⋆τ ∥ ζ̄(t+1)

)
≤ KL

(
ζ⋆τ ∥ ζ(t+1)

)
+ η ∥A∥∞ KL

(
ζ̄(t+1) ∥ ζ(t)

)
.

Along with (C.15), we have

(1− η ∥A∥∞)KL
(
ζ⋆τ ∥ ζ̄(t+1)

)
≤ (1− ητ)KL

(
ζ⋆τ ∥ ζ(t)

)
− (1− ητ − 2η ∥A∥∞)KL

(
ζ̄(t+1) ∥ ζ(t)

)

− ητKL
(
ζ̄(t+1) ∥ ζ⋆

)
− (1− η ∥A∥∞)KL

(
ζ(t+1) ∥ ζ̄(t+1)

)
.

(C.16)

Therefore, with η ≤ 1/(τ + 2 ∥A∥∞) we have

KL
(
ζ⋆τ ∥ ζ̄(t+1)

)
≤ 2KL

(
ζ⋆τ ∥ ζ(t)

)
≤ 2(1− ητ)tKL

(
ζ⋆τ ∥ ζ(0)

)
.
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Bounding KL
(
ζ⋆τ ∥ ζ(t)

)
for OMWU. Following the update rule of ζ̄(t+1) = (µ̄(t+1), ν̄(t+1)) for

OMWU, we have

log µ̄(t+1) − logµ(t+1) = ηA(ν̄(t) − ν̄(t+1)) + c · 1
= ηA(ν̄(t) − ν(t)) + ηA(ν(t) − ν̄(t+1)) + c · 1, (C.17)

where c is some normalization constant. Similar to the proof of relation (C.14), it can be easily
demonstrated that

〈
log µ̄(t+1) − logµ(t+1), µ̄(t+1) − µ(t+1)

〉

= η(µ̄(t+1) − µ(t+1))⊤A(ν̄(t) − ν(t)) + η(µ̄(t+1) − µ(t+1))⊤A(ν(t) − ν̄(t+1))

≤ η ∥A∥∞
(
KL
(
ν(t) ∥ ν̄(t)

)
+ KL

(
ν̄(t+1) ∥ ν(t)

)
+ 2KL

(
µ(t+1) ∥ µ̄(t+1)

))
. (C.18)

By symmetry, we can also establish a similar inequality for
〈
log ν̄(t+1) − log ν(t+1), ν̄(t+1) − ν(t+1)

〉
,

which in turns yields
〈
log ζ̄(t+1) − log ζ(t+1), ζ̄(t+1) − ζ(t+1)

〉

≤ η ∥A∥∞
(
KL
(
ζ(t) ∥ ζ̄(t)

)
+ KL

(
ζ̄(t+1) ∥ ζ(t)

)
+ 2KL

(
ζ(t+1) ∥ ζ̄(t+1)

))
.

Plugging the above inequality into equation (C.11) and re-organizing terms, we arrive at

KL
(
ζ⋆τ ∥ ζ(t+1)

)
≤ (1− ητ)KL

(
ζ⋆τ ∥ ζ(t)

)
− (1− ητ − η ∥A∥∞)KL

(
ζ̄(t+1) ∥ ζ(t)

)
− ητKL

(
ζ̄(t+1) ∥ ζ⋆τ

)

− (1− 2η ∥A∥∞)KL
(
ζ(t+1) ∥ ζ̄(t+1)

)
+ η ∥A∥∞ KL

(
ζ(t) ∥ ζ̄(t)

)
. (C.19)

With the choice of the learning rate η ≤ min{ 1
2∥A∥∞+2τ ,

1
4∥A∥∞

}, it obeys

(1− ητ)(1− 2η ∥A∥∞) ≥ η ∥A∥∞ .

Combining the above inequality with (C.19) gives

KL
(
ζ⋆τ ∥ ζ(t+1)

)
+ (1− 2η ∥A∥∞)KL

(
ζ(t+1) ∥ ζ̄(t+1)

)

≤ (1− ητ)KL
(
ζ⋆τ ∥ ζ(t)

)
+ η ∥A∥∞ KL

(
ζ(t) ∥ ζ̄(t)

)
− ητKL

(
ζ̄(t+1) ∥ ζ⋆τ

)
.

≤ (1− ητ)
[
KL
(
ζ⋆τ ∥ ζ(t)

)
+ (1− 2η ∥A∥∞)KL

(
ζ(t) ∥ ζ̄(t)

)]
− ητKL

(
ζ̄(t+1) ∥ ζ⋆τ

)
.

For conciseness, let us introduce the shorthand notation

L(t) := KL
(
ζ⋆τ ∥ ζ(t)

)
+ (1− 2η ∥A∥∞)KL

(
ζ(t) ∥ ζ̄(t)

)
. (C.20)

As a result, the above inequality can be restated as

L(t+1) ≤ (1− ητ)L(t) − ητKL
(
ζ̄(t+1) ∥ ζ⋆τ

)
. (C.21)

Since we initialize OMWU with ζ̄(0) = ζ(0), therefore L(0) = KL
(
ζ⋆τ ∥ ζ(0)

)
, which in turn gives

KL
(
ζ⋆τ ∥ ζ(t)

)
≤ L(t) ≤ (1− ητ)tL(0) = (1− ητ)tKL

(
ζ⋆τ ∥ ζ(0)

)
.

We complete the proof of inequality (4.9a) for OMWU.
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Bounding KL
(
ζ⋆τ ∥ ζ̄(t+1)

)
for OMWU. By similar tricks of arriving at (C.18), we have

−
〈
µ⋆τ − µ̄(t+1), log µ̄(t+1) − logµ(t+1)

〉

= η(µ̄(t+1) − µ⋆τ )⊤A(ν̄(t) − ν(t)) + η(µ̄(t+1) − µ⋆τ )⊤A(ν(t) − ν̄(t+1))

≤ η ∥A∥∞
(
KL
(
ν(t) ∥ ν̄(t)

)
+ KL

(
ν̄(t+1) ∥ ν(t)

)
+ 2KL

(
µ⋆τ ∥ µ̄(t+1)

))
,

where the first line follows from (C.17). A similar inequality also holds for−
〈
ν⋆τ − ν̄(t+1), log ν̄(t+1) − log ν(t+1)

〉
.

Summing the two inequalities leads to

−
〈
ζ⋆τ − ζ̄(t+1), log ζ̄(t+1) − log ζ(t+1)

〉
≤ η ∥A∥∞

(
KL
(
ζ(t) ∥ ζ̄(t)

)
+ KL

(
ζ̄(t+1) ∥ ζ(t)

)
+ 2KL

(
ζ⋆τ ∥ ζ̄(t+1)

))
.

Plugging the above inequality into (C.12) and rearranging terms, we reach at

(1− 2η ∥A∥∞)KL
(
ζ⋆τ ∥ ζ̄(t+1)

)
≤ KL

(
ζ⋆τ ∥ ζ(t+1)

)
+ η ∥A∥∞

(
KL
(
ζ(t) ∥ ζ̄(t)

)
+ KL

(
ζ̄(t+1) ∥ ζ(t)

))
.

Along with (C.19), we have

(1− 2η ∥A∥∞)KL
(
ζ⋆τ ∥ ζ̄(t+1)

)

≤ (1− ητ)KL
(
ζ⋆τ ∥ ζ(t)

)
− (1− ητ − 2η ∥A∥∞)KL

(
ζ̄(t+1) ∥ ζ(t)

)
− ητKL

(
ζ̄(t+1) ∥ ζ⋆τ

)

− (1− 2η ∥A∥∞)KL
(
ζ(t+1) ∥ ζ̄(t+1)

)
+ 2η ∥A∥∞ KL

(
ζ(t) ∥ ζ̄(t)

)

≤ (1− ητ)KL
(
ζ⋆τ ∥ ζ(t)

)
+ 2η ∥A∥∞ KL

(
ζ(t) ∥ ζ̄(t)

)

≤ KL
(
ζ⋆τ ∥ ζ(t)

)
+ (1− 2η ∥A∥∞)KL

(
ζ(t) ∥ ζ̄(t)

)
=: L(t),

where we recall the shorthand notation L(t) in (C.20). As the learning rate of OMWU satisfies

0 < η < min
{

1
2∥A∥∞+2τ ,

1
4∥A∥∞

}
, it is clear that

KL
(
ζ⋆τ ∥ ζ̄(t+1)

)
≤ 2L(t)

(i)

≤ 2(1− ητ)tL(0) ≤ 2(1− ητ)tKL
(
ζ⋆τ ∥ ζ(0)

)
,

where (i) follows from the recursive relation L(t+1) ≤ (1− ητ)L(t) shown in inequality (C.21).

Proof of entrywise convergence of policy log-ratios (4.9b)

To facilitate the proof, we introduce an auxiliary sequence {ξ(t) ∈ R|A|} constructed recursively by

ξ(0)(a) = ∥exp(Aν⋆τ /τ)∥1 · µ(0)(a), (C.22a)

ξ(t+1)(a) = ξ(t)(a)1−ητ exp(η[Aν̄(t+1)]a), ∀a ∈ A, t ≥ 0. (C.22b)

It is easily seen that µ(t)(a) ∝ ξ(t)(a) = exp(log ξ(t)(a)) for t ≥ 0. Noticing that µ⋆τ ∝ exp(Aν⋆τ ),
one has

∥∥∥logµ(t+1) − logµ⋆τ

∥∥∥
∞
≤ 2

∥∥∥log ξ(t+1) −Aν⋆τ /τ
∥∥∥
∞
, (C.23)

where we make use of Lemma 15.
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Therefore it suffices for us to control the term
∥∥log ξ(t+1) −Aν⋆τ /τ

∥∥
∞ on the right-hand side of

inequality (C.23). Taking logarithm on both sides of (C.22b) yields

log ξ(t+1) −Aν⋆τ /τ = (1− ητ) log ξ(t) + ηAν̄(t+1) −Aν⋆τ /τ
= (1− ητ)

(
log ξ(t) −Aν⋆τ /τ

)
+ ηA(ν̄(t+1) − ν⋆τ ),

which, when combined with Pinsker’s inequality, implies
∥∥∥log ξ(t+1) −Aν⋆τ /τ

∥∥∥
∞
≤ (1− ητ)

∥∥∥log ξ(t) −Aν⋆τ /τ
∥∥∥
∞

+ η ∥A∥∞
∥∥∥ν̄(t+1) − ν⋆τ

∥∥∥
1

≤ (1− ητ)
∥∥∥log ξ(t) −Aν⋆τ /τ

∥∥∥
∞

+ η ∥A∥∞
[
2KL

(
ν⋆τ ∥ ν̄(t+1)

)]1/2

≤ (1− ητ)
∥∥∥log ξ(t) −Aν⋆τ /τ

∥∥∥
∞

+ η ∥A∥∞
[
2KL

(
ζ⋆τ ∥ ζ̄(t+1)

)]1/2
. (C.24)

Plugging the bound of KL
(
ζ⋆τ ∥ ζ̄(t+1)

)
from relation (4.9a) into (C.24) and invoking the inequality

recursively leads to
∥∥∥log ξ(t+1) −Aν⋆τ /τ

∥∥∥
∞

≤ (1− ητ)t+1
∥∥∥log ξ(0) −Aν⋆τ /τ

∥∥∥
∞

+ 2η ∥A∥∞
t+1∑

s=1

(1− ητ)t+1−s/2KL
(
ζ⋆τ ∥ ζ(0)

)1/2

≤ (1− ητ)t+1
∥∥∥log ξ(0) −Aν⋆τ /τ

∥∥∥
∞

+ 2η ∥A∥∞ (1− ητ)(t+1)/2 1

1− (1− ητ)1/2KL
(
ζ⋆τ ∥ ζ(0)

)1/2

≤ (1− ητ)t+1
∥∥∥log ξ(0) −Aν⋆τ /τ

∥∥∥
∞

+ 4τ−1 ∥A∥∞ (1− ητ)(t+1)/2KL
(
ζ⋆τ ∥ ζ(0)

)1/2
,

where the last line results from the fact that (1 − ητ)1/2 ≤ 1 − ητ/2. Combining pieces together,
we end up with

∥∥∥logµ(t+1) − logµ⋆τ

∥∥∥
∞
≤ 2

∥∥∥log ξ(t+1) −Aν⋆τ /τ
∥∥∥
∞

≤ 2(1− ητ)t+1
∥∥∥log ξ(0) −Aν⋆τ /τ

∥∥∥
∞

+ 8τ−1 ∥A∥∞ (1− ητ)(t+1)/2KL
(
ζ⋆τ ∥ ζ(0)

)1/2

≤ 2(1− ητ)t+1
∥∥∥logµ(0) − logµ⋆τ

∥∥∥
∞

+ 8τ−1 ∥A∥∞ (1− ητ)(t+1)/2KL
(
ζ⋆τ ∥ ζ(0)

)1/2
.

Similarly, one can establish the corresponding inequality for
∥∥log ν(t+1) − log ν⋆τ

∥∥
∞, therefore com-

pleting the proof of inequality (4.9b).

Proof of convergence of optimality gap (4.9c)

To streamline our discussions, we only provide the proof of inequality (4.9c) concerning upper
bounding fτ (µ̄

(t), ν̄(t)) − fτ (µ⋆τ , ν⋆τ ) without taking the absolute value; the other direction of the
inequality can be established in the similar manner and hence is omitted.

We first make note of an important relation that holds both for PU and OMWU. Consider the
update rule of (µ(t+1), ν(t+1)), which is the same in PU and OMWU. Lemma 13 inequality (C.2a)
gives

〈
logµ(t+1) − (1− ητ) logµ(t) − ητ logµ⋆τ , µ̄(t+1) − µ⋆τ

〉
= η(µ⋆τ − µ̄(t+1))⊤A(ν⋆τ − ν̄(t+1)). (C.25)
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Similar to what we have done in the proof of (4.9a) (cf. (C.11)), based on the above relation, we
can therefore rearrange terms and conclude that

η
(
τKL

(
µ̄(t+1) ∥µ⋆τ

)
− (µ⋆τ − µ̄(t+1))⊤A(ν⋆τ − ν̄(t+1))

)

= (1− ητ)KL
(
µ⋆τ ∥µ(t)

)
− (1− ητ)KL

(
µ̄(t+1) ∥µ(t)

)
− KL

(
µ(t+1) ∥ µ̄(t+1)

)

+
〈
log µ̄(t+1) − logµ(t+1), µ̄(t+1) − µ(t+1)

〉
− KL

(
µ⋆τ ∥µ(t+1)

)
. (C.26)

In conjunction with Lemma 14 (cf. (C.4b)), we can further derive

η
(
fτ (µ

⋆
τ , ν

⋆
τ )− fτ (µ̄(t+1), ν̄(t+1))

)
≤ η

(
τKL

(
µ̄(t+1) ∥µ⋆τ

)
− (µ⋆τ − µ̄(t+1))⊤A(ν⋆τ − ν̄(t+1))

)

= (1− ητ)KL
(
µ⋆τ ∥µ(t)

)
− (1− ητ)KL

(
µ̄(t+1) ∥µ(t)

)
− KL

(
µ⋆τ ∥µ(t+1)

)

− KL
(
µ(t+1) ∥ µ̄(t+1)

)
+
〈
log µ̄(t+1) − logµ(t+1), µ̄(t+1) − µ(t+1)

〉
, (C.27)

where the second line follows from (C.26). From this point, we shall continue the proofs for PU
and OMWU separately but follow similar strategies.

Remaining steps for PU. Plugging relation (C.14) into (C.27), we arrive at

η
(
fτ (µ

⋆
τ , ν

⋆
τ )− fτ (µ̄(t+1), ν̄(t+1))

)

≤ (1− ητ)KL
(
µ⋆τ ∥µ(t)

)
− (1− ητ)KL

(
µ̄(t+1) ∥µ(t)

)
− KL

(
µ⋆τ ∥µ(t+1)

)

− (1− η ∥A∥∞)KL
(
µ(t+1) ∥ µ̄(t+1)

)
+ η ∥A∥∞ KL

(
ν̄(t+1) ∥ ν(t)

)

≤ (1− ητ)KL
(
µ⋆τ ∥µ(t)

)
− KL

(
µ⋆τ ∥µ(t+1)

)
− (1− ητ)KL

(
µ̄(t+1) ∥µ(t)

)
+ η ∥A∥∞ KL

(
ν̄(t+1) ∥ ν(t)

)
,

(C.28)

where the last line holds since η(τ + ∥A∥∞) ≤ 1. Similarly, from Lemma 13 inequality (C.2b), one
can establish the following inequality in parallel

η
(
fτ (µ̄

(t+1), ν̄(t+1))− fτ (µ⋆τ , ν⋆τ )
)

≤ (1− ητ)KL
(
ν⋆τ ∥ ν(t)

)
− KL

(
ν⋆τ ∥ ν(t+1)

)
− (1− ητ)KL

(
ν̄(t+1) ∥ ν(t)

)
+ η ∥A∥∞ KL

(
µ̄(t+1) ∥µ(t)

)
.

(C.29)

We are ready to establish inequality (4.9c) for PU. Computing (C.28) +2
3 · (C.29) gives

η

3

(
fτ (µ

⋆
τ , ν

⋆
τ )− fτ (µ̄(t+1), ν̄(t+1))

)

≤ (1− ητ)
[
KL
(
µ⋆τ ∥µ(t)

)
+

2

3
KL
(
ν⋆τ ∥ ν(t)

)]
−
[
KL
(
µ⋆τ ∥µ(t+1)

)
+

2

3
KL
(
ν⋆τ ∥ ν(t+1)

)]

−
[
(1− ητ)− 2

3
η ∥A∥∞

]
KL
(
µ̄(t+1) ∥µ(t)

)
+

[
η ∥A∥∞ −

2

3
(1− ητ)

]
KL
(
ν̄(t+1) ∥ ν(t)

)

≤ (1− ητ)
[
KL
(
µ⋆τ ∥µ(t)

)
+

2

3
KL
(
ν⋆τ ∥ ν(t)

)]
−
[
KL
(
µ⋆τ ∥µ(t+1)

)
+

2

3
KL
(
ν⋆τ ∥ ν(t+1)

)]
(C.30)
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Here, the last step is due to the fact that (1 − ητ) − 2
3η ∥A∥∞ ≥ 0 and η ∥A∥∞ − 2

3(1 − ητ) ≤ 0

when 0 < η ≤ 1
τ+2∥A∥∞

. As a direct consequence, the difference fτ (µ
⋆
τ , ν

⋆
τ )− fτ (µ̄(t), ν̄(t)) satisfies

η

3

(
fτ (µ

⋆
τ , ν

⋆
τ )− fτ (µ̄(t), ν̄(t))

)

≤ (1− ητ)
[
(1− ητ)KL

(
µ⋆τ ∥µ(t−1)

)
+ η ∥A∥∞ KL

(
ν⋆τ ∥ ν(t−1)

)]

≤ (1− ητ)KL
(
ζ⋆τ ∥ ζ(t−1)

)
≤ (1− ητ)tKL

(
ζ⋆τ ∥ ζ(0)

)
.

We conclude by noting that the other side of (4.9c) can be shown by considering 2
3 · (C.28) + (C.29)

combined with similar arguments, and are therefore omitted.

Remaining steps for OMWU. Similar to the case of PU, plugging (C.18) into (C.27) gives

η
(
fτ (µ

⋆
τ , ν

⋆
τ )− fτ (µ̄(t+1), ν̄(t+1))

)

≤ (1− ητ)KL
(
µ⋆τ ∥µ(t)

)
− (1− ητ)KL

(
µ̄(t+1) ∥µ(t)

)
− KL

(
µ⋆τ ∥µ(t+1)

)

− (1− 2η ∥A∥∞)KL
(
µ(t+1) ∥ µ̄(t+1)

)
+ η ∥A∥∞

[
KL
(
ν(t) ∥ ν̄(t)

)
+ KL

(
ν̄(t+1) ∥ ν(t)

)]
. (C.31)

Similarly, one can establish a symmetric inequality as follows

η
(
fτ (µ̄

(t+1), ν̄(t+1))− fτ (µ⋆τ , ν⋆τ )
)

≤ (1− ητ)KL
(
ν⋆τ ∥ ν(t)

)
− (1− ητ)KL

(
ν̄(t+1) ∥ ν(t)

)
− KL

(
ν⋆τ ∥ ν(t+1)

)

− (1− 2η ∥A∥∞)KL
(
ν(t+1) ∥ ν̄(t+1)

)
+ η ∥A∥∞

[
KL
(
µ(t) ∥ µ̄(t)

)
+ KL

(
µ̄(t+1) ∥µ(t)

)]
. (C.32)

Directly computing (C.31) +2
3 · (C.32) gives

η

3
· (fτ (µ⋆τ , ν⋆τ )− fτ (µ̄(t+1), ν̄(t+1)))

≤ (1− ητ)
[
KL
(
µ⋆τ ∥µ(t)

)
+

2

3
KL
(
ν⋆τ ∥ ν(t)

)]
−
[
KL
(
µ⋆τ ∥µ(t+1)

)
+

2

3
KL
(
ν⋆τ ∥ ν(t+1)

)]

−
[
(1− ητ)− 2

3
η ∥A∥∞

]
KL
(
µ̄(t+1) ∥µ(t)

)
+

[
η ∥A∥∞ −

2

3
(1− ητ)

]
KL
(
ν̄(t+1) ∥ ν(t)

)

+ η ∥A∥∞
[
2

3
KL
(
µ(t) ∥ µ̄(t)

)
+ KL

(
ν(t) ∥ ν̄(t)

)]

− (1− 2η ∥A∥∞)

[
KL
(
µ(t+1) ∥ µ̄(t+1)

)
+

2

3
KL
(
ν(t+1) ∥ ν̄(t+1)

)]
. (C.33)

With our choice of the learning rate η ≤ min{ 1
2∥A∥∞+2τ ,

1
4∥A∥∞

}, it is guarantees that

η ∥A∥∞ −
2

3
(1− ητ) ≤ 0, (1− ητ)− 2

3
η ∥A∥∞ ≥ 0 and (1− ητ)(1− 2η ∥A∥∞) ≥ 3

2
η ∥A∥∞ .

To proceed, let us introduce the shorthand notation

G(t) := KL
(
µ⋆τ ∥µ(t)

)
+

2

3
KL
(
ν⋆τ ∥ ν(t)

)

+
2

3
(1− 2η ∥A∥∞)

[
KL
(
µ(t) ∥ µ̄(t)

)
+ KL

(
ν(t) ∥ ν̄(t)

)]
.
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With this piece of notation, we can write inequality (C.33) as

η

3
(fτ (µ

⋆
τ , ν

⋆
τ )− fτ (µ̄(t+1), ν̄(t+1))) ≤ (1− ητ)G(t) −G(t+1), (C.34)

which in turn implies

η

3
(fτ (µ

⋆
τ , ν

⋆
τ )− fτ (µ̄(t), ν̄(t)))

≤ (1− ητ)G(t−1) ≤ (1− ητ)L(t−1) ≤ (1− ητ)tL(0) = (1− ητ)tKL
(
ζ⋆τ ∥ ζ(0)

)
,

with L(t) defined in (C.20). This finishes the proof of (4.9c) for OMWU.

Proof of convergence of duality gap (4.9d)

The proof of inequality (4.9d) is built upon the following lemma whose proof is deferred to Ap-
pendix C.2.3.

Lemma 16. The duality gap at ζ = (µ, ν) can be bounded as

max
µ′∈∆(A)

fτ (µ
′, ν)− min

ν′∈∆(B)
fτ (µ, ν

′) ≤ τKL (ζ ∥ ζ⋆τ ) + τ−1∥A∥2∞KL (ζ⋆τ ∥ ζ) .

Applying Lemma 16 to ζ̄(t) = (µ̄(t), ν̄(t)) yields

DualGapτ (ζ̄
(t)) ≤ τKL

(
ζ̄(t) ∥ ζ⋆τ

)
+ τ−1∥A∥2∞KL

(
ζ⋆τ ∥ ζ̄(t)

)

≤ τKL
(
ζ̄(t) ∥ ζ⋆τ

)
+ 2τ−1∥A∥2∞(1− ητ)t−1KL

(
ζ⋆τ ∥ ζ(0)

)
, (C.35)

where the second step results from (4.9a). It remains to bound τKL
(
ζ̄(t) ∥ ζ⋆τ

)
, which we proceed

separately for PU and OMWU.

Remaining steps for PU. From inequality (C.15), we are ensured that

ητKL
(
ζ̄(t) ∥ ζ⋆τ

)
≤ (1− ητ)KL

(
ζ⋆τ ∥ ζ(t−1)

)
− KL

(
ζ⋆τ ∥ ζ(t)

)
.

It thus follows that

τKL
(
ζ̄(t) ∥ ζ⋆τ

)
≤ η−1(1− ητ)KL

(
ζ⋆τ ∥ ζ(t−1)

)
≤ η−1(1− ητ)t−1KL

(
ζ⋆τ ∥ ζ(0)

)
,

where the last inequality is due to inequality (4.9a). Plugging the above inequality into (C.35)
completes the proof of inequality (4.9d) for PU.

Remaining steps for OMWU. From inequality (C.21), we are ensured that

τKL
(
ζ̄(t) ∥ ζ⋆τ

)
≤ η−1(1− ητ)L(t−1) ≤ η−1(1− ητ)tL(0) = η−1(1− ητ)tKL

(
ζ⋆τ ∥ ζ(0)

)
,

where the last equality follows from L(0) = KL
(
ζ⋆τ ∥ ζ(0)

)
. Plugging the above inequality into (C.35)

finishes the proof of inequality (4.9d) for OMWU.
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C.2 Proof of auxiliary lemmas

C.2.1 Proof of Lemma 13

Lemma 13 follows directly from the update sequence (4.6) and the form of the optimal solution
pair (µ⋆τ , ν

⋆
τ ), provided in (4.4). Given the update sequence (4.6), taking logarithm of both sides of

the first equation gives
logµ(t+1) = (1− ητ) logµ(t) + ηAz2 + c · 1,

where c is the corresponding normalization constant. By rearranging terms and taking the inner
product with z1 − µ⋆τ , we have

〈
logµ(t+1) − (1− ητ) logµ(t), z1 − µ⋆τ

〉
= ηz⊤1 Az2 − ηµ⋆τ⊤Az2, (C.36)

Similarly, one can derive
〈
log ν(t+1) − (1− ητ) log ν(t), z2 − ν⋆τ

〉
= −ηz⊤1 Az2 + ηz⊤1 Aν

⋆
τ . (C.37)

By summing up equations (C.36) and (C.37), it is guarantee that

〈
log ζ(t+1) − (1− ητ) log ζ(t), ζz − ζ⋆τ

〉
= −ηµ⋆τ⊤Az2 + ηz⊤1 Aν

⋆
τ , (C.38)

where ζ(z) = (z1, z2).
On the other hand, recall the optimal policy pair (µ⋆τ , ν

⋆
τ ) satisfies the following fixed point

equation {
µ⋆τ (a) ∝ exp([Aν⋆τ ]a/τ), ∀a ∈ A,
ν⋆τ (b) ∝ exp(−[A⊤µ⋆τ ]b/τ), ∀b ∈ B.

Taking logarithm of both sides of the first relation gives

ητ logµ⋆τ = ηAν⋆τ + c · 1, (C.39)

for some normalization constant c. Again, by taking the inner product with z1 − µ⋆τ , we have

⟨ητ logµ⋆τ , z1 − µ⋆τ ⟩ = η(z1 − µ⋆τ )⊤Aν⋆τ , (C.40)

and similarly
⟨ητ log ν⋆τ , z2 − ν⋆τ ⟩ = ηµ⋆τ

⊤A(z2 − ν⋆τ ). (C.41)

Combining inequalities (C.36) and (C.40), we arrive at inequality (C.2a); combining inequalities
(C.37) and (C.41) gives inequality (C.2b). Moreover, putting together inequalities (C.38), (C.40)
and (C.41) leads to

〈
log ζ(t+1) − (1− ητ) log ζ(t) − ητ log ζ⋆τ , ζ(z)− ζ⋆τ

〉
= 0.

C.2.2 Proof of Lemma 14

We begin with establishing (C.4a). By the definition of fτ (µ, ν), direct calculations yield

fτ (µ
⋆
τ , ν

⋆
τ )− fτ (µ, ν⋆τ ) = (µ⋆τ − µ)⊤Aν⋆τ + τµ⊤ logµ− τµ⋆τ⊤ logµ⋆τ

= τ
(
⟨µ⋆τ − µ, logµ⋆τ ⟩+ µ⊤ logµ− µ⋆τ⊤ logµ⋆τ

)
= τKL (µ ∥µ⋆τ ) . (C.42)
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Here, the second equality is obtained by plugging in (C.39). Similarly, we have

fτ (µ
⋆
τ , ν)− fτ (µ⋆τ , ν⋆τ ) = τKL (ν ∥ ν⋆τ ) . (C.43)

Summing these two equalities completes the proof of (C.4a).
Turning to (C.4b), we first write

fτ (µ, ν) + fτ (µ
⋆
τ , ν

⋆
τ ) = µ⊤Aν + µ⋆τ

⊤Aν⋆τ + τH(µ)− τH(ν) + τH(µ⋆τ )− τH(ν⋆τ ),
fτ (µ

⋆
τ , ν) + fτ (µ, ν

⋆
τ ) = µ⋆τ

⊤Aν + µ⊤Aν⋆τ + τH(µ⋆τ )− τH(ν) + τH(µ)− τH(ν⋆τ ).
As a consequence, taking the difference of the above two equations leads to

fτ (µ, ν) + fτ (µ
⋆
τ , ν

⋆
τ )− fτ (µ⋆τ , ν)− fτ (µ, ν⋆τ ) = (µ⋆τ − µ)⊤A(ν⋆τ − ν).

This in turn allows us to write fτ (µ, ν)− fτ (µ⋆τ , ν⋆τ ) as follows
fτ (µ, ν)− fτ (µ⋆τ , ν⋆τ ) = (µ⋆τ − µ)⊤A(ν⋆τ − ν) + fτ (µ

⋆
τ , ν) + fτ (µ, ν

⋆
τ )− 2fτ (µ

⋆
τ , ν

⋆
τ ). (C.44)

Finally, plugging (C.42) and (C.43) into (C.44) reveals the desired relation (C.4b).

C.2.3 Proof of Lemma 16

Since
max

µ′∈∆(A)
fτ (µ

′, ν)− min
ν′∈∆(B)

fτ (µ, ν
′) = max

µ′∈∆(A),ν′∈∆(B)
fτ (µ

′, ν)− fτ (µ, ν ′),

it boils down to control fτ (µ
′, ν)− fτ (µ, ν ′) for any (µ′, ν ′) ∈ ∆(A)×∆(B). Towards this, we have

fτ (µ
′, ν)− fτ (µ, ν ′) =

(
fτ (µ

′, ν)− fτ (µ′, ν⋆τ )− fτ (µ, ν ′) + fτ (µ
⋆
τ , ν

′)
)
−
(
fτ (µ

⋆
τ , ν

′)− fτ (µ′, ν⋆τ )
)

=
(
fτ (µ

′, ν)− fτ (µ′, ν⋆τ )− fτ (µ, ν ′) + fτ (µ
⋆
τ , ν

′)
)
− τKL

(
ζ ′ ∥ ζ⋆τ

)
, (C.45)

where the last step is due to fτ (µ, ν
⋆
τ ) − fτ (µ

⋆
τ , ν) = τKL (ζ ∥ ζ⋆τ ), as revealed in Lemma 14

(cf. (C.4a)).
To continue, observe that

fτ (µ
′, ν)− fτ (µ′, ν⋆τ ) = µ′⊤A(ν − ν⋆τ ) + ν⊤ log ν − ν⋆τ⊤ log ν⋆τ

= (µ′ − µ⋆τ )⊤A(ν − ν⋆τ ) + fτ (µ
⋆
τ , ν)− fτ (µ⋆τ , ν⋆τ ).

Similarly, we have

−fτ (µ, ν ′) + fτ (µ
⋆
τ , ν

′) = − (µ− µ⋆τ )⊤A(ν ′ − ν⋆τ ) + fτ (µ
⋆
τ , ν

⋆
τ )− fτ (µ, ν⋆τ ).

Plugging the above two equalities into (C.45) gives

fτ (µ
′, ν)− fτ (µ, ν ′)

=
(
µ′ − µ⋆τ

)⊤
A(ν − ν⋆τ )− (µ− µ⋆τ )⊤A(ν ′ − ν⋆τ ) + fτ (µ

⋆
τ , ν)− fτ (µ, ν⋆τ )− τKL

(
ζ ′ ∥ ζ⋆τ

)

=
(
µ′ − µ⋆τ

)⊤
A(ν − ν⋆τ )− (µ− µ⋆τ )⊤A(ν ′ − ν⋆τ ) + τKL (ζ ∥ ζ⋆τ )− τKL

(
ζ ′ ∥ ζ⋆τ

)

≤ ∥A∥∞
(∥∥µ′ − µ⋆τ

∥∥
1
∥ν − ν⋆τ ∥1 +

∥∥ν ′ − ν⋆τ
∥∥
1
∥µ− µ⋆τ∥1

)
+ τKL (ζ ∥ ζ⋆τ )− τKL

(
ζ ′ ∥ ζ⋆τ

)

(i)

≤ 1

2
∥A∥∞

[
τ

∥A∥∞

(∥∥µ′ − µ⋆τ
∥∥2
1
+
∥∥ν ′ − ν⋆τ

∥∥2
1

)
+
∥A∥∞
τ

(
∥µ− µ⋆τ∥21 + ∥ν − ν⋆τ ∥21

)]

+ τKL (ζ ∥ ζ⋆τ )− τKL
(
ζ ′ ∥ ζ⋆τ

)

(ii)

≤ τKL
(
ζ ′ ∥ ζ⋆τ

)
+
∥A∥2∞
τ

KL (ζ⋆τ ∥ ζ) + τKL (ζ ∥ ζ⋆τ )− τKL
(
ζ ′ ∥ ζ⋆τ

)

=
∥A∥2∞
τ

KL (ζ⋆τ ∥ ζ) + τKL (ζ ∥ ζ⋆τ ) ,

125



where the second step invokes Lemma 14 (cf. (C.4a)), (i) follows from Young’s inequality, namely

ab ≤ a2

2ε +
εb2

2 with ε =
∥A∥∞

τ , and (ii) results from Pinsker’s inequality. Taking maximum over µ′, ν ′

finishes the proof.
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Appendix D

Proofs for Chapter 5

D.1 Analysis for the infinite-horizon setting

We begin with the definitions of a certain concentrability coefficient, as well as the regularized
minimax mismatch coefficient, which allow us to present general theorems that take into account
the problem structure in a more refined manner, from which Theorem 6 follow directly.

Definition 4. Given ρ ∈ ∆(S) with ρ(s) > 0, ∀s ∈ S, the concentrability coefficient cρ(t) is defined
as

cρ(t) = sup
x(l)∈AS ,1≤l≤t,
y(l)∈BS ,1≤l≤t

∥∥∥
ρPx(1),y(1) · · ·Px(t),y(t)

ρ

∥∥∥
∞
,

where Px(l),y(l) ∈ R|S|×|S| is the state transition matrix induced by a pair of deterministic policy

x(l), y(l):
[Px(l),y(l) ]s,s′ = P (s′|s, x(l)(s), y(l)(s)).

Let Cρ be the maximum value of cρ(t) over t ≥ 0:

Cρ = sup
t≥0

cρ(t).

In addition, let Γ(ρ) be the set of all possible distribution over S induced by an initial state distri-
bution ρ and deterministic policy sequences, i.e.,

Γ(ρ) =

∞⋃

t=0

{
ρPx(1),y(1) · · ·Px(t),y(t) : x

(l) ∈ AS , y(l) ∈ BS ,∀l ∈ [t]
}
.

The following definition of the the regularized minimax mismatch coefficient parallels that of
the unregularized one in [Daskalakis et al., 2020].

Definition 5. We define the regularized minimax mismatch coefficient by

C†ρ,τ = max

{
max
µ

∥∥∥∥
d
µ,ν†τ (µ)
ρ

ρ

∥∥∥∥
∞
, max

ν

∥∥∥∥
d
µ†
τ (ν),ν

ρ

ρ

∥∥∥∥
∞

}
.

Here, ν†τ (µ) denotes the optimal policy of the min player when the max player adopts policy µ:

ν†τ (µ) = argmin
ν
V µ,ν
τ (ρ),
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and µ†τ (ν) is defined in a symmetric way. The discounted state visitation distribution dµ,νρ is defined
as

dµ,νρ (s) = (1− γ) E
s0∼ρ

[ ∞∑

t=0

γtP (st = s|s0)
]
.

We make note that Theorem 6 is the direct corollary of the following theorems, by setting ρ to
the uniform distribution over S, where Cρ and ∥1/ρ∥∞ admit a trivial upper bound |S|. By a slight
abuse of notation, let KLρ

(
ζ ∥ ζ ′

)
denote Es∼ρ

[
KLs

(
ζ ∥ ζ ′

)]
for ρ ∈ ∆(S).

Theorem 15. With 0 < η ≤ (1−γ)3

32000Cρ , and αi = ητ , we have

max
{
KLρ

(
ζ⋆τ ∥ ζ(t)

)
,
1

2
KLρ

(
ζ⋆τ ∥ ζ̄(t)

)
, 3η E

s∼ρ

[∥∥Q(t)(s)−Q⋆
τ (s)

∥∥
∞

]}
≤ 3000

(1− γ)2τ
(
1− (1− γ)ητ

4

)t
.

Theorem 16. With 0 < η ≤ (1−γ)3

32000Cρ , and αi = ητ , we have

max
s∈S,µ,ν

(
V µ,ν̄(t)

τ (s)− V µ̄(t),ν
τ (s)

)
≤ 6000∥1/ρ∥∞

(1− γ)3τ max
{ 8

(1− γ)2τ ,
1

η

}(
1− (1− γ)ητ

4

)t
,

and

max
µ,ν

(
V µ,ν̄(t)

τ (ρ)− V µ̄(t),ν
τ (ρ)

)
≤ 6000C†ρ,τ

(1− γ)3τ max
{ 8

(1− γ)2τ ,
1

η

}(
1− (1− γ)ητ

4

)t
.

Key lemmas. While Theorem 15 and 16 focus on the case where αi = ητ, ∀i ≥ 1, we assume in
the following lemmas that the sequence {αi} is non-increasing and bounded by ητ for generality.
For notational simplicity, we set Q(−1) = 0, ζ̄(−1) = ζ̄(0) and α0 = 1. It follows from the update
rule (5.11a) that ζ̄(1) = ζ(0) = ζ̄(0). Let us introduce

αl,t = αl

t∏

i=l+1

(1− αi), (D.1)

and

λl,t = αl

t∏

i=l+1

(
1− 1− γ

4
· αi

)
. (D.2)

It follows straightforwardly that
t∑

l=0

αl,t = α0 = 1.

We start with the following lemma.

Lemma 17. Suppose 0 < η ≤ 1/τ . It holds for all t ≥ 0 that

KLρ
(
ζ⋆τ ∥ ζ(t+1)

)
− (1− ητ)KLρ

(
ζ⋆τ ∥ ζ(t)

)
+
(
1− ητ − 4η

1− γ
)
KLρ

(
ζ̄(t+1) ∥ ζ̄(t)

)
+ ητKLρ

(
ζ̄(t+1) ∥ ζ⋆τ

)

+
(
1− 2η

1− γ
)
KLρ

(
ζ(t+1) ∥ ζ̄(t+1)

)
+ (1− ητ)KLρ

(
ζ̄(t) ∥ ζ(t)

)
− 2η

1− γKLρ
(
ζ̄(t) ∥ ζ̄(t−1)

)

≤ E
s∼ρ

[
2η
∥∥Q(t+1)(s)−Q⋆

τ (s)
∥∥
∞ +

4η2

1− γ
∥∥Q(t)(s)−Q(t+1)(s)

∥∥
∞ +

12η2

1− γ
∥∥Q(t−1)(s)−Q(t)(s)

∥∥
∞

]
.

(D.3)
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Proof. See Appendix D.3.1.

We continue to bound the terms on the right hand side of (D.3). By a slight abuse of notation,
we denote ∥∥Q(t+1) −Q⋆

τ

∥∥
Γ(ρ)

= sup
χ∈Γ(ρ)

E
s∼χ

[∥∥Q(t+1)(s)−Q⋆
τ (s)

∥∥
∞

]
,

and ∥∥Q(t+1) −Q(t)
∥∥
Γ(ρ)

= sup
χ∈Γ(ρ)

E
s∼χ

[∥∥Q(t+1)(s)−Q(t)(s)
∥∥
∞

]
.

The following two lemmas establish a set of recursive bounds that relate
{∥∥Q(l+1) −Q⋆

τ

∥∥
Γ(ρ)

}
0≤l≤t

and
{∥∥Q(l+1) −Q(l)

∥∥
Γ(ρ)

}
0≤l≤t

with
{
KLρ

(
ζ̄(l+1) ∥ ζ̄(l)

)}
0≤l≤t−1

.

Lemma 18. Suppose that 0 < η ≤ min{(1− γ)/180, (1− γ)2/48}. It holds for all t ≥ 1 that

∥∥Q(t+1) −Q(t)
∥∥
Γ(ρ)
≤ 1 + γ

2

t∑

l=1

αl,t

∥∥Q(l) −Q(l−1)
∥∥
Γ(ρ)

+
4Cρ
η
·

t∑

l=1

αl,tKLρ
(
ζ̄(l) ∥ ζ̄(l−1)

)
. (D.4)

When t = 0, we have
∥∥Q(1) −Q(0)

∥∥
Γ(ρ)
≤ 2.

Proof. See Appendix D.3.2.

Lemma 19. Suppose that 0 < η ≤ (1− γ)2/16. It holds for all t ≥ 1 that

∥∥Q(t+1) −Q⋆
τ

∥∥
Γ(ρ)
≤ 1 + γ

2
·

t∑

l=0

αl,t

(∥∥Q(l) −Q⋆
τ

∥∥
Γ(ρ)

+
2η

1− γ
∥∥Q(l) −Q(l−1)

∥∥
Γ(ρ)

)
+ 2α0,t. (D.5)

When t = 0, we have
∥∥Q(1) −Q⋆

τ

∥∥
Γ(ρ)
≤ 2γ

1−γ .

Proof. See Appendix D.3.3.

The following lemma further demystifies the complicated recursive bounds showed in Lemmas
18-19.

Lemma 20. Under the assumption of Lemma 18 and 19, it holds for all t ≥ 0 that

t∑

l=0

λl+1,t+1

[
η
∥∥Q⋆

τ −Q(l+1)
∥∥
Γ(ρ)

+
12η2

(1− γ)2
∥∥Q(l+1) −Q(l)

∥∥
Γ(ρ)

]

≤ 6250ηCρ
(1− γ)3

t−1∑

l=0

λl+1,t+1KLρ
(
ζ̄(l+1) ∥ ζ̄(l)

)
+

550η

(1− γ)2λ0,t+1

Proof. See Appendix D.3.4.
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Proof of Theorem 15. We are now ready to prove our main results. Starting with Lemma 17,
averaging (D.3) with the weights λl,t gives

t∑

l=0

λl+1,t+1

[
KLρ

(
ζ⋆τ ∥ ζ(l+1)

)
− (1− ητ)KLρ

(
ζ⋆τ ∥ ζ(l)

)

+
(
1− 2η

1− γ
)
KLρ

(
ζ(l+1) ∥ ζ̄(l+1)

)
+ 3η E

s∼ρ

[∥∥Q(l+1)(s)−Q⋆
τ (s)

∥∥
∞

]

+
(
1− ητ − 4η

1− γ
)
KLρ

(
ζ̄(l+1) ∥ ζ̄(l)

)
− 2η

1− γKLρ
(
ζ̄(l) ∥ ζ̄(l−1)

)]

≤
t∑

l=0

λl+1,t+1 E
s∼ρ

[
5η
∥∥Q(l+1)(s)−Q⋆

τ (s)
∥∥
∞ +

4η2

1− γ
∥∥Q(l+1)(s)−Q(l)(s)

∥∥
∞

+
13η2

1− γ
∥∥Q(l−1)(s)−Q(l)(s)

∥∥
∞

]

≤ 5
t∑

l=0

λl+1,t+1

[
η
∥∥Q⋆

τ −Q(l+1)
∥∥
Γ(ρ)

+
12η2

(1− γ)2
∥∥Q(l+1) −Q(l)

∥∥
Γ(ρ)

]

≤ 31250ηCρ
(1− γ)3

t−1∑

l=0

λl+1,t+1KLρ
(
ζ̄(l+1) ∥ ζ̄(l)

)
+

2750η

(1− γ)2λ0,t+1

for all t ≥ 0, where the last line follows from Lemma 20. Rearranging terms, we have

αt+1

[
KLρ

(
ζ⋆τ ∥ ζ(t+1)

)
+
(
1− 2η

1− γ
)
KLρ

(
ζ(t+1) ∥ ζ̄(t+1)

)
+ 3η E

s∼ρ

[∥∥Q(t+1)(s)−Q⋆
τ (s)

∥∥
∞

] ]

+
t∑

l=1

(λl,t+1 − (1− ητ)λl+1,t+1)KLρ
(
ζ⋆τ ∥ ζ(l)

)

+

t−1∑

l=0

[
λl+1,t+1

(
1− ητ − 4η

1− γ −
31250ηCρ
(1− γ)3

)
− λl+2,t+1

2η

1− γ

]
KL
(
ζ̄(l+1) ∥ ζ̄(l)

)

≤ 2750η

(1− γ)2λ0,t+1 + (1− ητ)λ1,t+1KLρ
(
ζ⋆τ ∥ ζ(0)

)
≤
( 2750η

(1− γ)2 + η
)
λ0,t+1.

Here, the last step results from

(1− ητ)λ1,t+1KLρ
(
ζ⋆τ ∥ ζ(0)

)
= α1 ·

1− ητ
1− (1− γ)α1/4

λ0,t+1KLρ
(
ζ⋆τ ∥ ζ(0)

)

≤ ητλ0,t+1KLρ
(
ζ⋆τ ∥ ζ(0)

)
≤ ητ(log |A|+ log |B|)λ0,t+1 ≤ ηλ0,t+1.

where we use the fact that α1 = ητ and the assumption on τ (5.7). With 0 < η ≤ (1−γ)3

32000Cρ , and

αi = ητ , we have λl,t+1 − (1− ητ)λl+1,t+1 ≥ 0 (cf. (D.33)), and

λl+1,t+1

(
1− ητ − 4η

1− γ −
31250ηCρ
(1− γ)3

)
− λl+2,t+1

2η

1− γ

= ητ
t+1∏

j=l+3

(
1− 1− γ

4
αj

)[
(1− 1− γ

4
ητ)
(
1− ητ − 4η

1− γ −
31250ηCρ
(1− γ)3

)
− 2η

1− γ
]
≥ 0.
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It follows that

KLρ
(
ζ⋆τ ∥ ζ(t+1)

)
+
(
1− 2η

1− γ
)
KLρ

(
ζ(t+1) ∥ ζ̄(t+1)

)
+ 3η E

s∼ρ

[∥∥Q(t+1)(s)−Q⋆
τ (s)

∥∥
∞

]

≤
( 2750

(1− γ)2τ +
1

τ

)(
1− (1− γ)ητ

4

)t+1
<

3000

(1− γ)2τ
(
1− (1− γ)ητ

4

)t+1
. (D.6)

This proves the bound of KLρ
(
ζ⋆τ ∥ ζ(t+1)

)
and 3η E

s∼ρ

[∥∥Q(t+1)(s)−Q⋆
τ (s)

∥∥
∞
]
in Theorem 15. Note

that the bound holds trivially for KLρ
(
ζ⋆τ ∥ ζ(0)

)
and 3η E

s∼ρ

[∥∥Q(0)(s)−Q⋆
τ (s)

∥∥
∞
]
. It remains to

bound KL
(
ζ⋆τ ∥ ζ̄(t+1)

)
, which we make use of the following lemma.

Lemma 21. With 0 < η ≤ (1− γ)/8, we have

1

2
KLs

(
ζ⋆τ ∥ ζ̄(t+1)

)
+ ητKLs

(
ζ̄(t+1) ∥ ζ⋆τ

)

≤ (1− ητ)KLs
(
ζ⋆τ ∥ ζ(t)

)
+

2η

1− γKLs
(
ζ(t) ∥ ζ̄(t)

)
+ 2η

∥∥Q(t)(s)−Q⋆
τ (s)

∥∥
∞.

Proof. See Appendix D.3.5.

Combining Lemma 21 with (D.6) gives

1

2
KLρ

(
ζ⋆τ ∥ ζ̄(t+1)

)
+ ητKLρ

(
ζ̄(t+1) ∥ ζ⋆τ

)

≤ (1− ητ)
(
KLρ

(
ζ⋆τ ∥ ζ(t)

)
+
(
1− 2η

1− γ
)
KLρ

(
ζ(t) ∥ ζ̄(t)

)
+ 3η E

s∼ρ

[∥∥Q(t)(s)−Q⋆
τ (s)

∥∥
∞

] )

≤ 3000

(1− γ)2τ
(
1− (1− γ)ητ

4

)t+1
, (D.7)

which concludes the proof of Theorem 15.

Proof of Theorem 16. We are now ready to bound the duality gap in Theorem 16. Before
proceeding, we introduce the following two lemmas.

Lemma 22. It holds for any policy pair (µ, ν) that

max
µ′,ν′

(
V µ′,ν
τ (ρ)− V µ,ν′

τ (ρ)
)
≤ 2C†ρ,τ

1− γ E
s∼ρ

[
max
µ′,ν′

(
fs(Q

⋆
τ , µ

′, ν)− fs(Q⋆
τ , µ, ν

′)
)]

(D.8)

and

max
s∈S,µ′,ν′

(
V µ′,ν
τ (s)− V µ,ν′

τ (s)
)
≤ 2∥1/ρ∥∞

1− γ E
s∼ρ

[
max
µ′,ν′

(
fs(Q

⋆
τ , µ

′, ν)− fs(Q⋆
τ , µ, ν

′)
)]
. (D.9)

Here, fs(Q,µ, ν) is the one-step entropy-regularized game value at state s, i.e.,

fs(Q,µ, ν) = µ(s)⊤Q(s)ν(s) + τH(µ(s))− τH(ν(s)). (D.10)

Proof. Note that (D.9) is a slight generalization of [Wei et al., 2021b, Lemma 32]. The proof can
be found in Appendix D.3.6.
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Lemma 23 ([Cen et al., 2021, Lemma 4]). It holds for all s ∈ S and policy pair µ, ν that

max
µ′,ν′

(
fs(Q

⋆
τ , µ

′, ν)− fs(Q⋆
τ , µ, ν

′)
)
≤ 4

(1− γ)2τ KLs
(
ζ⋆τ ∥ ζ

)
+ τKLs

(
ζ ∥ ζ⋆τ

)
.

Putting all pieces together, we arrive at

max
µ,ν

(
V µ,ν̄(t)

τ (ρ)− V µ̄(t),ν
τ (ρ)

)
≤ 2C†ρ,τ

1− γ
( 4

(1− γ)2τ KLρ
(
ζ⋆τ ∥ ζ̄(t+1)

)
+ τKLρ

(
ζ̄(t+1) ∥ ζ⋆τ

))

≤ 2C†ρ,τ
1− γ max

{ 8

(1− γ)2τ ,
1

η

}(1
2
KLρ

(
ζ⋆τ ∥ ζ̄(t+1)

)
+ ητKLρ

(
ζ̄(t+1) ∥ ζ⋆τ

))

≤ 6000C†ρ,τ
(1− γ)3τ max

{ 8

(1− γ)2τ ,
1

η

}(
1− (1− γ)ητ

4

)t
,

where the last line follows from (D.7). We omit the proof for maxs∈S,µ,ν

(
V µ,ν̄(t)
τ (s) − V µ̄(t),ν

τ (s)
)

for brevity as it follows essentially from the same argument.

D.2 Analysis for the finite-horizon setting

Throughout the analysis, we restrict our choice of the step size for value update to αt = ητ . We
start with the following lemma which parallels Lemma 27 in the infinite-horizon Markov game
setting; for brevity we omit the proof.

Lemma 24. With 0 < η ≤ 1/τ , it holds for all s ∈ S, h ∈ [H] and t ≥ 0 that

max
{∥∥µ̄(t+1)

h (s)− µ(t+1)
h (s)

∥∥
1
,
∥∥ν̄(t+1)

h (s)− ν(t+1)
h (s)

∥∥
1

}
≤ 2ηH. (D.11)

In addition, we have

max{∥ log ζ(t)h (s)∥∞, ∥ log ζ̄(t)h (s)∥∞, ∥ log ζ⋆h,τ (s)∥∞} ≤
2H

τ
. (D.12)

Lemma 25. With 0 < η ≤ 1
8H , it holds for all 0 ≤ t1 ≤ t2, h ∈ [H] and s ∈ S that

KLs
(
ζ⋆h,τ ∥ ζ

(t2)
h

)
+ (1− 4ηH)KLs

(
ζ
(t2)
h ∥ ζ̄(t2)h

)

≤ (1− ητ)t2−t1
(
KLs

(
ζ⋆h,τ ∥ ζ

(t1)
h

)
+ (1− 4ηH)KLs

(
ζ
(t1)
h ∥ ζ̄(t1)h

))
+ 4η

t2∑

l=t1

(1− ητ)t2−l
∥∥Q(l)

h (s)−Q⋆
τ (s)

∥∥
∞.

Proof. See Appendix D.4.1.

Lemma 26. With 0 < η ≤ 1
8H , it holds for all 0 < t1 ≤ t2, 2 ≤ h ≤ H and s ∈ S that

∣∣Q(t2)
h−1(s, a, b)−Q⋆

h−1,τ (s, a, b)
∣∣

≤ 2(1− ητ)t2−t1H + 10ητ E
s′∼Ph−1(·|s,a,b)




t2−1∑

l=t1−1

(1− ητ)t2−1−l
∥∥Q(l)

h (s)−Q⋆
h,τ (s)

∥∥
∞




+ τ(1− ητ)t2−t1 E
s′∼Ph−1(·|s,a,b)

[
KLs

(
ζ⋆h,τ ∥ ζ

(t1−1)
h

)
+ (1− 4ηH)KLs

(
ζ
(t1−1)
h ∥ ζ̄(t1−1)

h

)]
.

Proof. See Appendix D.4.2.
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Proof of Theorem 7. We prove Theorem 7 by induction. By definition, we have

∥∥Q⋆
H,τ −Q(0)

H

∥∥
∞ =

∥∥Q⋆
H,τ

∥∥
∞ ≤ 1,

and
∥∥Q⋆

H,τ −Q
(t)
H

∥∥
∞ =

∥∥rH − rH
∥∥
∞ = 0 for t > 0. So (5.16a) holds trivially for h = H. When the

statement holds for some h, we can invoke Lemma 26 with t1 = Th + 1 and t2 = t ≥ Th−1, which
yields

∥∥Q(t)
h−1 −Q⋆

h−1,τ

∥∥ ≤ 2(1− ητ)t−Th−1H + 10ητ E
s′∼P (·|s,a,b)




t−1∑

l=Th

(1− ητ)t−1−l
∥∥Q(l)

h (s)−Q⋆
h,τ (s)

∥∥
∞




+ τ(1− ητ)t−Th−1 E
s′∼P (·|s,a,b)

[
KLs

(
ζ⋆h,τ ∥ ζ

(Th)
h

)
+ (1− 4ηH)KLs

(
ζ
(Th)
h ∥ ζ̄(Th)

h

)]

≤ 2(1− ητ)t−Th−1H + 10ητ E
s′∼P (·|s,a,b)




t−1∑

l=Th

(1− ητ)t−Th−1lH−h




+ τ(1− ητ)t−Th−1 E
s′∼P (·|s,a,b)

[
KLs

(
ζ⋆h,τ ∥ ζ

(Th)
h

)
+ (1− 4ηH)KLs

(
ζ
(Th)
h ∥ ζ̄(Th)

h

)]

≤ (1− ητ)t−Th−1(1− ητ)Tstart−1
[
10H + 10ητtH−h+1

]
,

where the last step results from

τ
(
KLs

(
ζ⋆h,τ ∥ ζ

(Th)
h

)
+ (1− 4ηH)KLs

(
ζ
(Th)
h ∥ ζ̄(Th)

h

))

≤ τ
(∥∥logµ⋆h,τ (s)− logµ

(Th)
h (s)

∥∥
∞ +

∥∥log ν⋆h,τ (s)− log ν
(Th)
h (s)

∥∥
∞

+
∥∥logµ(Th)

h (s)− log µ̄
(Th)
h (s)

∥∥
∞ +

∥∥log ν(Th)
h (s)− log ν̄

(Th)
h (s)

∥∥
∞

)

≤ τ
(
max

{∥∥logµ⋆h,τ (s)
∥∥
∞
∥∥logµ(Th)

h (s)
∥∥
∞
}
+max

{∥∥log ν⋆h,τ (s)
∥∥
∞,
∥∥log ν(Th)

h (s)
∥∥
∞
}

+max
{∥∥logµ(Th)

h (s)
∥∥
∞,
∥∥log µ̄(Th)

h (s)
∥∥
∞
}
+max

{∥∥log ν(Th)
h (s)

∥∥
∞,
∥∥log ν̄(Th)

h (s)
∥∥
∞
})

≤ 8H,

where the last step results from Lemma 24 (cf. (D.12)). Therefore, with Tstart = ⌈ 1
ητ logH⌉ we can

guarantee that

∥∥Q(t)
h−1 −Q⋆

h−1,τ

∥∥ ≤ 10(1− ητ)t−Th−1(1− ητ)Tstart−1
[
H + ητtH−h+1

]

≤ (1− ητ)t−Th−1tH−h+1.

This completes the proof for (5.16a). Regarding (5.16b), we start by the following lemmas, which
are simply Lemma 21 and Lemma 23 applied to the episodic setting.

Lemma 21A. With 0 < η ≤ 1
8H , we have

1

2
KLs

(
ζ⋆h,τ ∥ ζ̄

(t+1)
h

)
+ ητKLs

(
ζ̄
(t+1)
h ∥ ζ⋆h,τ

)

≤ (1− ητ)KLs
(
ζ⋆h,τ ∥ ζ

(t)
h

)
+ 2ηHKLs

(
ζ
(t)
h ∥ ζ̄

(t)
h

)
+ 2η

∥∥Q(t)
h (s)−Q⋆

h,τ (s)
∥∥
∞.
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Lemma 23A. It holds for all h ∈ [H], s ∈ S and policy pair µ, ν that

max
µ′,ν′

(
fs(Q

⋆
h,τ , µ

′
h, νh)− fs(Q⋆

τ , µh, ν
′
h)
)
≤ 4H2

τ
KLs

(
ζ⋆h,τ ∥ ζh

)
+ τKLs

(
ζh ∥ ζ⋆h,τ

)
.

We conclude that for 0 ≤ t1 ≤ t2 − 1,

max
µ,ν

(
fs(Q

⋆
h,τ , µh, ν̄

(t2)
h )− fs(Q⋆

τ , µ̄
(t2)
h , νh)

)

(i)

≤ 4H2

τ
KLs

(
ζ⋆h,τ ∥ ζ̄

(t2)
h

)
+ τKLs

(
ζ̄
(t2)
h ∥ ζ⋆h,τ

)

≤ max
{8H2

τ
,
1

η

}(1
2
KLs

(
ζ⋆h,τ ∥ ζ̄

(t2)
h

)
+ ητKLs

(
ζ̄
(t2)
h ∥ ζ⋆h,τ

))

(ii)

≤ max
{8H2

τ
,
1

η

}(
(1− ητ)KLs

(
ζ⋆h,τ ∥ ζ

(t2−1)
h

)
+ 2ηHKLs

(
ζ
(t2−1)
h ∥ ζ̄(t2−1)

h

)
+ 2η

∥∥Q(t2−1)
h (s)−Q⋆

h,τ (s)
∥∥
∞

)

(iii)

≤ max
{8H2

τ
,
1

η

}(
(1− ητ)t2−t1

(
KLs

(
ζ⋆h,τ ∥ ζ

(t1)
h

)
+ (1− 4ηH)KLs

(
ζ
(t1)
h ∥ ζ̄(t1)h

))

+ 6η

t2∑

l=t1

(1− ητ)t2−l
∥∥Q(l)

h (s)−Q⋆
h,τ (s)

∥∥
∞

)
,

where (i) invokes Lemma 23A, (ii) invokes Lemma 21A and (iii) results from Lemma 25. It is
straightforward to verify that the above inequality holds for 0 ≤ t1 ≤ t2, by omitting the third step.
Substitution of (5.16a) into the above inequality yields

max
µ,ν

(
fs(Q

⋆
h,τ , µh, ν̄

(t)
h )− fs(Q⋆

τ , µ̄
(t)
h , νh)

)

≤ max
{8H2

τ
,
1

η

}(
(1− ητ)t−Th

(
KLs

(
ζ⋆h,τ ∥ ζ

(Th)
h

)
+ (1− 4ηH)KLs

(
ζ
(Th)
h ∥ ζ̄(Th)

h

))

+ 6η

t∑

l=Th

(1− ητ)t−l(1− ητ)l−Th lH−h
)

≤ (1− ητ)t−Th max
{8H2

τ
,
1

η

}(8H
τ

+ 6ηtH−h+1
)
. (D.13)

We prove the following results instead, where (5.16b) is a direct consequence of (D.14) by summing
up the two inequalities,





max
s∈S,µ

(
V µ,ν̄(t)

h,τ (s)− V ⋆
h,τ (s)

)
≤ 2(1− ητ)t−Th max

{
8H2

τ , 1η

}(
8H
τ + 6ηtH−h+1

)

max
s∈S,µ

(
V ⋆
h,τ (s)− V

µ̄(t),ν
h,τ (s)

)
≤ 2(1− ητ)t−Th max

{
8H2

τ , 1η

}(
8H
τ + 6ηtH−h+1

) . (D.14)

We prove by induction. Note that when h = H, we have V µ,ν
H,τ (s) = fs(rH , µH , νH) = fs(Q

⋆
H,τ , µH , νH)
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and the claim holds by invoking (D.13). When the claim holds for some 2 ≤ h ≤ H, we have

V µ,ν̄(t)

h−1,τ (s)− V ⋆
h−1,τ (s)

= µh−1(s)
⊤Qµ,ν̄(t)

h−1,τ (s)ν̄
(t)
h−1(s) + τH

(
µh−1(s)

)
− τH

(
ν̄
(t)
h−1(s)

)

− µ⋆h−1,τ (s)
⊤Q⋆

h−1,τ (s)ν
⋆
h−1,τ (s) + τH

(
µ⋆h−1,τ (s)

)
− τH

(
ν⋆h−1,τ (s)

)

= fs(Q
⋆
h−1,τ , µh−1, ν̄

(t)
h−1)− fs(Q⋆

h−1,τ , µ
⋆
h−1,τ , ν

⋆
h−1,τ ) + µh−1(s)

⊤(Qµ,ν̄(t)

h−1,τ (s)−Q⋆
h−1,τ (s)

)
ν̄
(t)
h−1(s)

≤ fs(Q⋆
h−1,τ , µh−1, ν̄

(t)
h−1)− fs(Q⋆

h−1,τ , µ̄
(t)
h−1, ν

⋆
h−1,τ ) + max

s′∈S

[
V µ,ν̄(t)

h,τ (s′)− V ⋆
h,τ (s

′)
]

≤ max
µ′
h−1,ν

′
h−1

(
fs(Q

⋆
h−1,τ , µ

′
h−1, ν̄

(t)
h−1)− fs(Q⋆

h−1,τ , µ̄
(t)
h−1, ν

′
h−1)

)
+max

s′∈S

[
V µ,ν̄(t)

h,τ (s′)− V ⋆
h,τ (s

′)
]

≤ (1− ητ)t−Th−1 max
{8H2

τ
,
1

η

}(8H
τ

+ 6ηtH−h+2
)

+ 2(1− ητ)t−Th max
{8H2

τ
,
1

η

}(8H
τ

+ 6ηtH−h+1
)

≤ 2(1− ητ)t−Th−1 max
{8H2

τ
,
1

η

}(8H
τ

+ 6ηtH−h+2
)
.

Taking maximum over µ verifies the claim for h − 1, thereby finishing the proof. The bound for

max
s∈S,µ

(
V ⋆
h,τ (s) − V µ̄(t),ν

h,τ (s)
)

can be established by following a similar argument and is therefore

omitted.

D.3 Proof of key lemmas for the infinite-horizon setting

D.3.1 Proof of Lemma 17

Before proceeding, we shall introduce the following useful lemma that quantifies the distance be-
tween two consecutive updates, whose proof can be found in Appendix D.5.1.

Lemma 27. For 0 < η ≤ 1/τ , it holds for all s ∈ S and t ≥ 0 that

max
{∥∥µ̄(t+1)(s)− µ(t+1)(s)

∥∥
1
,
∥∥ν̄(t+1)(s)− ν(t+1)(s)

∥∥
1

}
≤ 2η

1− γ , (D.15a)

max
{∥∥µ̄(t+1)(s)− µ̄(t)(s)

∥∥
1
,
∥∥ν̄(t+1)(s)− ν̄(t)(s)

∥∥
1

}
≤ 6η

1− γ , (D.15b)

and that

max
{∥∥log ζ(t)(s)

∥∥
∞,
∥∥log ζ̄(t)(s)

∥∥
∞,
∥∥log ζ⋆τ (s)

∥∥
∞
}
≤ 2

(1− γ)τ . (D.16)

For notational simplicity, we use x
1
= y to denote equivalence up to a global shift for two vectors

x, y, i.e.
x = y + c · 1 (D.17)

for some constant c ∈ R. Taking logarithm on the both sides of the update rule (5.11a), we get

{
logµ(t+1)(s)− (1− ητ) logµ(t)(s) 1

= ηQ(t+1)(s)ν̄(t+1)(s)

log ν(t+1)(s)− (1− ητ) log ν(t)(s) 1
= −ηQ(t+1)(s)⊤µ̄(t+1)(s)

. (D.18)
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On the other hand, it holds for the QRE (µ⋆τ , ν
⋆
τ ) that

{
ητ logµ⋆τ (s)

1
= ηQ⋆

τ (s)ν
⋆
τ (s)

ητ log ν⋆τ (s)
1
= −ηQ⋆

τ (s)
⊤µ⋆τ (s)

. (D.19)

Subtracting (D.19) from (D.18) and taking inner product with ζ̄(t+1)(s)− ζ⋆τ (s) gives
〈
log ζ(t+1)(s)− (1− ητ) log ζ(t)(s)− ητ log ζ⋆τ (s), ζ̄(t+1)(s)− ζ⋆τ (s)

〉

= η
〈
µ̄(t+1)(s)− µ⋆τ (s), Q(t+1)(s)ν̄(t+1)(s)−Q⋆

τ (s)ν
⋆
τ (s)

〉

− η
〈
ν̄(t+1)(s)− ν⋆τ (s), Q(t+1)(s)⊤µ̄(t+1)(s)−Q⋆

τ (s)
⊤µ⋆τ (s)

〉

= η
〈
µ̄(t+1)(s)− µ⋆τ (s), (Q(t+1)(s)−Q⋆

τ (s))ν̄
(t+1)(s)

〉

− η
〈
ν̄(t+1)(s)− ν⋆τ (s), (Q(t+1)(s)−Q⋆

τ (s))
⊤µ̄(t+1)(s)

〉

= −η
〈
µ⋆τ (s), (Q

(t+1)(s)−Q⋆
τ (s))ν̄

(t+1)(s)
〉
+ η

〈
ν⋆τ (s), (Q

(t+1)(s)−Q⋆
τ (s))

⊤µ̄(t+1)(s)
〉

≤ 2η
∥∥Q(t+1)(s)−Q⋆

τ (s)
∥∥
∞. (D.20)

We continue to rewrite the LHS of (D.20) as
〈
log ζ(t+1)(s)− (1− ητ) log ζ(t)(s)− ητ log ζ⋆τ (s), ζ̄(t+1)(s)− ζ⋆τ (s)

〉

= −
〈
log ζ(t+1)(s)− (1− ητ) log ζ(t)(s)− ητ log ζ⋆τ (s), ζ⋆τ (s)

〉

+
〈
log ζ̄(t+1)(s)− (1− ητ) log ζ̄(t)(s)− ητ log ζ⋆τ (s), ζ̄(t+1)(s)

〉

+
〈
log ζ(t+1)(s)− log ζ̄(t+1)(s), ζ̄(t+1)(s)

〉

− (1− ητ)
〈
log ζ(t)(s)− log ζ̄(t)(s), ζ̄(t+1)(s)

〉

= KLs
(
ζ⋆τ ∥ ζ(t+1)

)
− (1− ητ)KLs

(
ζ⋆τ ∥ ζ(t)

)

+ (1− ητ)KLs
(
ζ̄(t+1) ∥ ζ̄(t)

)
+ ητKLs

(
ζ̄(t+1) ∥ ζ⋆τ

)

+ KLs
(
ζ(t+1) ∥ ζ̄(t+1)

)
−
〈
log ζ̄(t+1)(s)− log ζ(t+1)(s), ζ̄(t+1)(s)− ζ(t+1)(s)

〉

+ (1− ητ)KLs
(
ζ̄(t) ∥ ζ(t)

)
− (1− ητ)

〈
log ζ(t)(s)− log ζ̄(t)(s), ζ̄(t+1)(s)− ζ̄(t)(s)

〉
.

Rearranging terms, we have

KLs
(
ζ⋆τ ∥ ζ(t+1)

)
− (1− ητ)KLs

(
ζ⋆τ ∥ ζ(t)

)
+ (1− ητ)KLs

(
ζ̄(t+1) ∥ ζ̄(t)

)

+ ητKLs
(
ζ̄(t+1) ∥ ζ⋆τ

)
+ KLs

(
ζ(t+1) ∥ ζ̄(t+1)

)
+ (1− ητ)KLs

(
ζ̄(t) ∥ ζ(t)

)

−
〈
log ζ̄(t+1)(s)− log ζ(t+1)(s), ζ̄(t+1)(s)− ζ(t+1)(s)

〉

− (1− ητ)
〈
log ζ(t)(s)− log ζ̄(t)(s), ζ̄(t+1)(s)− ζ̄(t)(s)

〉

≤ 2η
∥∥Q(t+1)(s)−Q⋆

τ (s)
∥∥
∞.

It remains to upper bound
〈
log ζ̄(t+1)(s)− log ζ(t+1)(s), ζ̄(t+1)(s)− ζ(t+1)(s)

〉
and

〈
log ζ(t)(s)− log ζ̄(t)(s), ζ̄(t+1)(s)− ζ̄(t)(s)

〉
.
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For the first term, note that
〈
log µ̄(t+1)(s)− logµ(t+1)(s), µ̄(t+1)(s)− µ(t+1)(s)

〉

= η
〈
Q(t)(s)ν̄(t)(s)−Q(t+1)(s)ν̄(t+1)(s), µ̄(t+1)(s)− µ(t+1)(s)

〉

≤ η
∥∥Q(t)(s)ν̄(t)(s)−Q(t+1)(s)ν̄(t+1)(s)

∥∥
1

∥∥µ̄(t+1)(s)− µ(t+1)(s)
∥∥
1
. (D.21)

Here,
∥∥Q(t)(s)ν̄(t)(s)−Q(t+1)(s)ν̄(t+1)(s)

∥∥
1
can be bounded as

∥∥Q(t)(s)ν̄(t)(s)−Q(t+1)(s)ν̄(t+1)(s)
∥∥
1

≤
∥∥Q(t+1)(s)

(
ν̄(t)(s)− ν̄(t+1)(s)

)∥∥
1
+
∥∥(Q(t)(s)−Q(t+1)(s)

)
ν̄(t)(s)

∥∥
1

≤ 2

1− γ
∥∥ν̄(t)(s)− ν̄(t+1)(s)

∥∥
1
+
∥∥Q(t)(s)−Q(t+1)(s)

∥∥
∞.

Plugging the above inequality into (D.21) and invoking Young’s inequality yields

〈
log µ̄(t+1)(s)− logµ(t+1)(s), µ̄(t+1)(s)− µ(t+1)(s)

〉

≤ η

1− γ
(∥∥ν̄(t+1)(s)− ν̄(t)(s)

∥∥2
1
+
∥∥µ̄(t+1)(s)− µ(t+1)(s)

∥∥2
1

)

+ η
∥∥Q(t)(s)−Q(t+1)(s)

∥∥
∞
∥∥µ̄(t+1)(s)− µ(t+1)(s)

∥∥
1

≤ 2η

1− γKLs
(
ν̄(t+1) ∥ ν̄(t)

)
+

2η

1− γKLs
(
µ(t+1) ∥ µ̄(t+1)

)
+

2η2

1− γ
∥∥Q(t)(s)−Q(t+1)(s)

∥∥
∞, (D.22)

where the last step results from Pinsker’s inequality and Lemma 27. Similarly, we have
〈
log ν̄(t+1)(s)− log ν(t+1)(s), ν̄(t+1)(s)− ν(t+1)(s)

〉

≤ 2η

1− γKLs
(
µ̄(t+1) ∥ µ̄(t)

)
+

2η

1− γKLs
(
ν(t+1) ∥ ν̄(t+1)

)
+

2η2

1− γ
∥∥Q(t)(s)−Q(t+1)(s)

∥∥
∞.

Combining the above two inequalities gives
〈
log ζ̄(t+1)(s)− log ζ(t+1)(s), ζ̄(t+1)(s)− ζ(t+1)(s)

〉

≤ 2η

1− γKLs
(
ζ̄(t+1) ∥ ζ̄(t)

)
+

2η

1− γKLs
(
ζ(t+1) ∥ ζ̄(t+1)

)
+

4η2

1− γ
∥∥Q(t)(s)−Q(t+1)(s)

∥∥
∞.

By a similar argument, when t ≥ 1:
〈
log ζ(t)(s)− log ζ̄(t)(s), ζ̄(t+1)(s)− ζ̄(t)(s)

〉

= η
〈
Q(t)(s)ν̄(t)(s)−Q(t−1)(s)ν̄(t−1)(s), µ̄(t+1)(s)− µ̄(t)(s)

〉

− η
〈
Q(t)(s)⊤µ̄(t)(s)−Q(t−1)(s)⊤µ̄(t−1)(s), ν̄(t+1)(s)− ν̄(t)(s)

〉

≤ 2η

1− γKLs
(
ζ̄(t) ∥ ζ̄(t−1)

)
+

2η

1− γKLs
(
ζ̄(t+1) ∥ ζ̄(t)

)

+ η
(∥∥µ̄(t+1)(s)− µ̄(t)(s)

∥∥
1
+
∥∥ν̄(t+1)(s)− ν̄(t)(s)

∥∥
1

)∥∥Q(t)(s)−Q(t−1)(s)
∥∥
∞

≤ 2η

1− γKLs
(
ζ̄(t) ∥ ζ̄(t−1)

)
+

2η

1− γKLs
(
ζ̄(t+1) ∥ ζ̄(t)

)
+

12η2

1− γ
∥∥Q(t)(s)−Q(t−1)(s)

∥∥
∞.
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Note that the above inequality trivially holds for t = 0, since log ζ(0)(s) = log ζ̄(0)(s).
Putting pieces together, we conclude that

KLs
(
ζ⋆τ ∥ ζ(t+1)

)
− (1− ητ)KLs

(
ζ⋆τ ∥ ζ(t)

)
+
(
1− ητ − 4η

1− γ
)
KLs

(
ζ̄(t+1) ∥ ζ̄(t)

)

+ ητKLs
(
ζ̄(t+1) ∥ ζ⋆τ

)
+
(
1− 2η

1− γ
)
KLs

(
ζ(t+1) ∥ ζ̄(t+1)

)
+ (1− ητ)KLs

(
ζ̄(t) ∥ ζ(t)

)

− 2η

1− γKLs
(
ζ̄(t) ∥ ζ̄(t−1)

)

≤ 2η
∥∥Q(t+1)(s)−Q⋆

τ (s)
∥∥
∞ +

4η2

1− γ
∥∥Q(t)(s)−Q(t+1)(s)

∥∥
∞ +

12η2

1− γ
∥∥Q(t−1)(s)−Q(t)(s)

∥∥
∞.

Averaging state s over the initial state distribution ρ completes the proof.

D.3.2 Proof of Lemma 18

By definition of Q, it holds for t ≥ 1 that

∣∣Q(t+1)(s, a, b)−Q(t)(s, a, b)
∣∣ ≤ γEs′∼P (·|s,a,b)

[∣∣V (t)(s′)− V (t−1)(s′)
∣∣
]
. (D.23)

Recall the definition of fs(Q,µ, ν) in (D.10) as the one-step entropy-regularized game value at state
s, i.e.,

fs(Q,µ, ν) = µ(s)⊤Q(s)ν(s) + τH(µ(s))− τH(ν(s)),
which we further simplify the notation by introducing

f (t)s = fs(Q
(t), µ̄(t), ν̄(t)).

By recursively applying the update rule V (t)(s) = (1− αt)V
(t−1)(s) + αtf

(t)
s , we get

V (t)(s) = α0,tV
(0) +

t∑

l=1

αl,tfs(Q
(l), µ̄(l), ν̄(l)) =

t∑

l=0

αl,tf
(l)
s .

Therefore,

∣∣V (t)(s)− V (t−1)(s)
∣∣ = αt

∣∣f (t)s − V (t−1)(s)
∣∣

= αt

t−1∑

l=0

αl,t−1

∣∣f (t)s − f (l)s

∣∣

≤ αt

t−1∑

l=0

αl,t−1

t−1∑

j=l

∣∣f (j+1)
s − f (j)s

∣∣. (D.24)

The next lemma enables us to upper bound
∣∣f (t+1)

s −f (t)s

∣∣ with
∥∥Q(t+1)(s)−Q(t)(s)

∥∥
∞ and KLs

(
ζ̄(t+1) ∥ ζ̄(t)

)

as well as their counterparts in the (t− 1)-th iteration. The proof is postponed to Appendix D.5.2.

Lemma 28. For any t ≥ 0, η ≤ (1− γ)/180, we have

∣∣f (t+1)
s − f (t)s

∣∣ ≤
∥∥∥Q(t+1)(s)−Q(t)(s)

∥∥∥
∞

+
(3
η
+

4

1− γ
)
KLs

(
ζ̄(t+1) ∥ ζ̄(t)

)

+
12η

1− γ
∥∥Q(t)(s)−Q(t−1)(s)

∥∥
∞ +

2

1− γKLs
(
ζ̄(t) ∥ ζ̄(t−1)

)
.
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Plugging the above lemma into (D.24),

∣∣V (t)(s)− V (t−1)(s)
∣∣

≤ αt

t−1∑

l=0

αl,t−1

t−1∑

j=l

[∥∥Q(j+1)(s)−Q(j)(s)
∥∥
∞ +

(3
η
+

4

1− γ
)
KLs

(
ζ̄(j+1) ∥ ζ̄(j)

)]

+ αt

t−1∑

l=0

αl,t−1

t−1∑

j=l

[
12η

1− γ
∥∥Q(j)(s)−Q(j−1)(s)

∥∥
∞ +

2

1− γKLs
(
ζ̄(j) ∥ ζ̄(j−1)

)]

≤ αt

t−1∑

l=0

αl,t−1

t−1∑

j=l

[(
1 +

12η

1− γ
)∥∥Q(j+1)(s)−Q(j)(s)

∥∥
∞ +

(3
η
+

6

1− γ
)
KLs

(
ζ̄(j+1) ∥ ζ̄(j)

)]

+ αt

t−1∑

l=0

αl,t−1

[
12η

1− γ
∥∥Q(l)(s)−Q(l−1)(s)

∥∥
∞ +

2

1− γKLs
(
ζ̄(l) ∥ ζ̄(l−1)

)]

≤
t−1∑

j=0

αj+1

j∑

l=0

αl,t−1

[(
1 +

12η

1− γ
)∥∥Q(j+1)(s)−Q(j)(s)

∥∥
∞ +

(3
η
+

6

1− γ
)
KLs

(
ζ̄(j+1) ∥ ζ̄(j)

)]

+ αt

t−2∑

l=0

αl+1,t−1

[
12η

1− γ
∥∥Q(l+1)(s)−Q(l)(s)

∥∥
∞ +

2

1− γKLs
(
ζ̄(l+1) ∥ ζ̄(l)

)]
,

where the last step is due to αt ≤ αj for all j ≤ t. To continue, by definition of αt we have
αtαl+1,t−1 ≤ αl+1,t−1(1− αt) = αl+1,t for 0 ≤ l < t, and that

αj+1

j∑

l=0

αl,t−1 = αj+1

j∑

l=0

( t−1∏

i=l+1

(1− αi)−
t−1∏

i=l

(1− αi)
)

= αj+1

t−1∏

i=j+1

(1− αi)

≤ αj+1

t∏

i=j+2

(1− αi) = αj+1,t.

Plugging the inequality above into the previous relation gives

∣∣V (t)(s)− V (t−1)(s)
∣∣

≤
t−1∑

j=0

αj+1,t

[(
1 +

12η

1− γ
)∥∥Q(j+1)(s)−Q(j)(s)

∥∥
∞ +

(3
η
+

6

1− γ
)
KLs

(
ζ̄(j+1) ∥ ζ̄(j)

)]

+
t−2∑

l=0

αl+1,t

[
12η

1− γ
∥∥Q(l+1)(s)−Q(l)(s)

∥∥
∞ +

2

1− γKLs
(
ζ̄(l+1) ∥ ζ̄(l)

)]

≤
t−1∑

l=0

αl+1,t

[(
1 +

24η

1− γ
)∥∥Q(l+1)(s)−Q(l)(s)

∥∥
∞ +

4

η
KLs

(
ζ̄(l+1) ∥ ζ̄(l)

)]
.
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Plugging the above inequality into (D.23) leads to

∣∣Q(t+1)(s, a, b)−Q(t)(s, a, b)
∣∣

≤ γ E
s′∼P (·|s,a,b))

{
t−1∑

l=0

αl+1,t

[(
1 +

24η

1− γ
)∥∥Q(l+1)(s′)−Q(l)(s′)

∥∥
∞ +

4

η
KLs′(ζ̄

(l+1) ∥ ζ̄(l))
]}

.

When η ≤ (1−γ)2

48γ , we have γ(1 + 24η
1−γ ) ≤

1+γ
2 and hence that

∣∣Q(t+1)(s, a, b)−Q(t)(s, a, b)
∣∣

≤ E
s′∼P (·|s,a,b))

{
1 + γ

2

t−1∑

l=0

αl+1,t

[∥∥Q(l+1)(s′)−Q(l)(s′)
∥∥
∞ +

4

η
KLs′(ζ̄

(l+1) ∥ ζ̄(l))
]}
.

Let x(t+1) ∈ AS and y(t+1) ∈ BS be defined as for any s ∈ S:

(x(t+1)(s), y(t+1)(s)) = arg max
(a,b)∈A×B

∣∣Q(t+1)(s, a, b)−Q(t)(s, a, b)
∣∣.

It follows that ∀χ ∈ Γ(ρ), we have χPx(t+1),y(t+1) ∈ Γ(ρ) and hence

E
s∼χ

[∥∥Q(t+1)(s)−Q(t)(s)
∥∥
∞

]

= E
s∼χ,

a=x(t+1)(s),b=y(t+1)(s)

[∣∣Q(t+1)(s, a, b)−Q(t)(s, a, b)
∣∣
]

≤ E
s′∼χP

x(t+1),y(t+1)

[
1 + γ

2

t−1∑

l=0

αl+1,t

[∥∥Q(l+1)(s′)−Q(l)(s′)
∥∥
∞ +

4

η
KLs′(ζ̄

(l+1) ∥ ζ̄(l))
]]

≤ 1 + γ

2

t−1∑

l=0

αl+1,t

[∥∥Q(l+1) −Q(l)
∥∥
Γ(ρ)

+
4

η
·
∥∥∥
χPx(t+1),y(t+1)

ρ

∥∥∥
∞
KLρ

(
ζ̄(l+1) ∥ ζ̄(l)

)]

≤ 1 + γ

2

t−1∑

l=0

αl+1,t

[∥∥Q(l+1) −Q(l)
∥∥
Γ(ρ)

+
4Cρ
η

KLρ
(
ζ̄(l+1) ∥ ζ̄(l)

)]
. (D.25)

Taking the supremum over χ ∈ Γ(ρ) completes the proof for t ≥ 1. To complete the proof, note
that when t = 0, we have

∥∥Q(0) −Q(1)
∥∥
Γ(ρ)

=
∥∥Q(1)

∥∥
Γ(ρ)
≤ 2.

D.3.3 Proof of Lemma 19

Note that it suffices to show for t ≥ 0, s ∈ S, (a, b) ∈ A× B:
∣∣Q(t+1)(s, a, b)−Q⋆

τ (s, a, b)
∣∣

≤ 1 + γ

2
· E
s′∼P (s,a,b)

[
t∑

l=0

αl,t

[∥∥Q(l)(s′)−Q⋆
τ (s

′)
∥∥
∞ +

2η

1− γ
∥∥Q(l)(s′)−Q(l−1)(s′)

∥∥
∞

]]
+ 2α0,t.

(D.26)

The remaining step follows a similar argument as (D.25) and is therefore omitted.
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To establish (D.26), notice that we have for t ≥ 0,

Q(t+1)(s, a, b)−Q⋆
τ (s, a, b) = γEs′∼P (·|s,a,b)

[
V (t)(s′)− V ⋆

τ (s
′)
]

= γEs′∼P (·|s,a,b)

[
t∑

l=0

αl,t(f
(l)
s′ − f⋆s′)

]
. (D.27)

To continue, we start by decomposing f
(t)
s − f⋆s as

f (t)s − f⋆s = fs(Q
(t), µ̄(t), ν̄(t))− fs(Q⋆

τ , µ
⋆
τ , ν

⋆
τ )

=
(
fs(Q

(t), µ̄(t), ν̄(t))− fs(Q(t), µ̄(t), ν⋆τ )
)
+ fs(Q

(t), µ̄(t), ν⋆τ )− fs(Q⋆
τ , µ

⋆
τ , ν

⋆
τ )

≤
(
fs(Q

(t), µ̄(t), ν̄(t))− fs(Q(t), µ̄(t), ν⋆τ )
)
+ fs(Q

⋆
τ , µ̄

(t), ν⋆τ )− fs(Q⋆
τ , µ

⋆
τ , ν

⋆
τ )

+
∥∥Q(t)(s)−Q⋆

τ (s)
∥∥
∞

≤ fs(Q(t), µ̄(t), ν̄(t))− fs(Q(t), µ̄(t), ν⋆τ ) +
∥∥Q(t)(s)−Q⋆

τ (s)
∥∥
∞.

We bound the first two terms with the following lemma, whose proof can be found in Appendix
D.5.3.

Lemma 29. It holds for all t ≥ 0, s ∈ S and ν(s) ∈ ∆(B) that

fs(Q
(t), µ̄(t), ν̄(t))− fs(Q(t), µ̄(t), ν)

≤ 2η

1− γ
∥∥Q(t)(s)−Q(t−1)(s)

∥∥
∞ +

2

1− γ
(
KLs

(
µ̄(t) ∥µ(t−1)

)
+ KLs

(
µ(t−1) ∥ µ̄(t−1)

))

− 1

η

(
1− 4η

1− γ
)
KLs

(
ν(t) ∥ ν̄(t)

)
− 1− ητ

η
KLs

(
ν̄(t) ∥ ν(t−1)

)

+
1− ητ
η

KLs
(
ν ∥ ν(t−1)

)
− 1

η
KLs

(
ν ∥ ν(t)

)
.

Applying Lemma 29 with ν(s) = ν⋆τ (s) gives

f (t)s − f⋆s ≤
∥∥Q(t)(s)−Q⋆

τ (s)
∥∥
∞ +

2η

1− γ
∥∥Q(t)(s)−Q(t−1)(s)

∥∥
∞

+
1− ητ
η

KLs
(
ν⋆τ ∥ ν(t−1)

)
− 1

η
KLs

(
ν⋆τ ∥ ν(t)

)

− 1

η

(
1− 4η

1− γ
)
KLs

(
ν(t) ∥ ν̄(t)

)
− 1− ητ

η
KLs

(
ν̄(t) ∥ ν(t−1)

)

+
2

1− γ
(
KLs

(
µ̄(t) ∥µ(t−1)

)
+ KLs

(
µ(t−1) ∥ µ̄(t−1)

))
. (D.28)

By a similar argument, we can derive

f⋆s − f (t)s ≤
∥∥Q(t)(s)−Q⋆

τ (s)
∥∥
∞ +

2η

1− γ
∥∥Q(t)(s)−Q(t−1)(s)

∥∥
∞

+
1− ητ
η

KLs
(
µ⋆τ ∥µ(t−1)

)
− 1

η
KLs

(
µ⋆τ ∥µ(t)

)

− 1

η

(
1− 4η

1− γ
)
KLs

(
µ(t) ∥ µ̄(t)

)
− 1− ητ

η
KLs

(
µ̄(t) ∥µ(t−1)

)

+
2

1− γ
(
KLs

(
ν̄(t) ∥ ν(t−1)

)
+ KLs

(
ν(t−1) ∥ ν̄(t−1)

))
. (D.29)
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Combining (D.28) +1−γ
4 · (D.29) gives

(1− 1− γ
4

)(f (t)s − f⋆s )

≤ (1 +
1− γ
4

)
[∥∥Q(t)(s)−Q⋆

τ (s)
∥∥
∞ +

2η

1− γ
∥∥Q(t)(s)−Q(t−1)(s)

∥∥
∞

]

+
1− ητ
η

[
KLs

(
ν⋆τ ∥ ν(t−1)

)
+

1− γ
4

KLs
(
µ⋆τ ∥µ(t−1)

)]
− 1

η

[
KLs

(
ν⋆τ ∥ ν(t)

)
+

1− γ
4

KLs
(
µ⋆τ ∥µ(t)

)]

+
2

1− γ
[
KLs

(
µ(t−1) ∥ µ̄(t−1)

)
+

1− γ
4

KLs
(
ν(t−1) ∥ ν̄(t−1)

)]

− 1

η

(
1− 4η

1− γ
)[1− γ

4
KLs

(
µ(t) ∥ µ̄(t)

)
+ KLs

(
ν(t) ∥ ν̄(t)

)]

+ (
2

1− γ −
1− ητ
η

· 1− γ
4

)KLs
(
µ̄(t) ∥µ(t−1)

)
+ (

2

1− γ ·
1− γ
4
− 1− ητ

η
)KLs

(
ν̄(t) ∥ ν(t−1)

)
.

(D.30)

With 0 < η ≤ (1− γ)2/16, we have

2

1− γ −
1− ητ
η

· 1− γ
4

) ≤ 0,
2

1− γ ·
1− γ
4
− 1− ητ

η
≤ 0,

1

η

(
1− 4η

1− γ
)
· 1− γ

4
≥ 2

1− γ ·
1

1− ητ .

To proceed, we introduce a shorthand notation

G(t)(s) =
1

η

[
KLs

(
ν⋆τ ∥ ν(t)

)
+

1− γ
4

KLs
(
µ⋆τ ∥µ(t)

)]

+
2

(1− γ)(1− ητ)
[
KLs

(
µ(t) ∥ µ̄(t)

)
+ KLs

(
ν(t) ∥ ν̄(t)

)]
.

We can then write (D.30) as

(1− 1− γ
4

)(f (t)s − f⋆s ) ≤ (1 +
1− γ
4

)
[∥∥Q(t)(s)−Q⋆

τ (s)
∥∥
∞ +

2η

1− γ
∥∥Q(t)(s)−Q(t−1)(s)

∥∥
∞

]

+ (1− ητ)G(t−1)(s)−G(t)(s). (D.31)

Note that when t = 0, we have

f (0)s − f⋆s = τ log |A| − τ log |B| − µ⋆τ (s)⊤Q⋆
τ (s)ν

⋆
τ (s)− τH(µ⋆τ (s)) + τH(ν⋆τ (s))

= max
µ(s)

min
ν(s)

fs(Q
(0), µ, ν)−max

µ(s)
min
ν(s)

fs(Q
⋆
τ , µ, ν)

≤
∥∥Q(0)(s)−Q⋆

τ (s)
∥∥
∞. (D.32)
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Substitution of (D.31) and (D.32) into (D.27) gives

Q(t+1)(s, a, b)−Q⋆
τ (s, a, b)

= γEs′∼P (·|s,a,b)

[
t∑

l=0

αl,t(f
(l)
s′ − f⋆s′)

]

≤ γEs′∼P (s,a,b)

[
α0,t

∥∥Q(0)(s′)−Q⋆
τ (s

′)
∥∥
∞

]

+ γ · 1 + (1− γ)/4
1− (1− γ)/4 E

s′∼P (s,a,b)

[
t∑

l=1

αl,t

[∥∥Q(l)(s′)−Q⋆
τ (s

′)
∥∥
∞ +

2η

1− γ
∥∥Q(l)(s′)−Q(l−1)(s′)

∥∥
∞

]]

+
γ

1− (1− γ)/4 E
s′∼P (s,a,b)

[
(1− ητ)

t∑

l=1

αl,tG
(l−1)(s′)−

t∑

l=1

αl,tG
(l)(s′)

]
.

Note that

(1− ητ)
t∑

l=1

αl,tG
(l−1)(s′)−

t∑

l=1

αl,tG
(l)(s′) ≤

t−1∑

l=1

((1− ητ)αl+1,t − αl,t)G
(l)(s′) + α1,tG

(0)(s′)

≤ α1,tG
(0)(s′) ≤ 2α0,tητG

(0)(s′) ≤ 2α0,t,

where the second step is due to

(1− ητ)αl+1,t − αl,t = ((1− ητ)αl+1 − αl(1− αl+1))
t∏

j=l+2

αj

≤ ((1− ητ)αl+1 − αl+1 + αlαl+1)
t∏

j=l+2

αj

= αl+1(αl − ητ)
t∏

j=l+2

αj ≤ 0. (D.33)

We conclude that

Q(t+1)(s, a, b)−Q⋆
τ (s, a, b)

≤ γ · 1 + (1− γ)/4
1− (1− γ)/4 E

s′∼P (s,a,b)

[
t∑

l=0

αl,t

[∥∥Q(l)(s′)−Q⋆
τ (s

′)
∥∥
∞ +

2η

1− γ
∥∥Q(l)(s′)−Q(l−1)(s′)

∥∥
∞

]]

+ 2α0,t

≤ 1 + γ

2
· E
s′∼P (s,a,b)

[
t∑

l=0

αl,t

[∥∥Q(l)(s′)−Q⋆
τ (s

′)
∥∥
∞ +

2η

1− γ
∥∥Q(l)(s′)−Q(l−1)(s′)

∥∥
∞

]]

+ 2α0,t.

The other side of (D.26) can be obtained by computing 1−γ
4 · (D.28) + (D.29) and following a

similar argument, and is therefore omitted. To conclude the proof, we note that for t = 0, we have∣∣Q(1)(s, a, b)−Q⋆
τ (s, a, b)

∣∣ ≤ γmaxs′∈S |f (0)s′ − f⋆s′ | ≤
2γ
1−γ .
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D.3.4 Proof of Lemma 20

For t ≥ 1, let

ut = η
∥∥Q⋆

τ (s)−Q(t)(s)
∥∥
Γ(ρ)

+
12η2

(1− γ)2
∥∥Q(t)(s)−Q(t−1)(s)

∥∥
Γ(ρ)

.

It follows that

u1 ≤
2γη

1− γ +
24η2

(1− γ)3 ≤ 1.

When t ≥ 1, invoking Lemma 18 and Lemma 19 gives

ut+1 ≤
(
1− 1− γ

2

) t∑

l=1

αl,t

[
η
∥∥Q(l) −Q⋆

τ

∥∥
Γ(ρ)

+
( 2η2

1− γ +
12η2

(1− γ)2
)∥∥Q(l) −Q(l−1)

∥∥
Γ(ρ)

]

+
48ηCρ

(1− γ)2
t∑

l=1

αl,tKLρ
(
ζ̄(l) ∥ ζ̄(l−1)

)
+ 2α0,tη + α0,tη

∥∥Q(0) −Q⋆
τ

∥∥
Γ(ρ)

≤
(
1− 1− γ

3

) t∑

l=1

αl,tul +
48ηCρ

(1− γ)2
t∑

l=1

αl,tKLρ
(
ζ̄(l) ∥ ζ̄(l−1)

)
+

4η

1− γα0,t.

(D.34)

Let

βl,t = αl

t∏

i=l+1

(
1− 1− γ

3
· αi

)
.

It follows that for t ≥ 0,

t+1∑

l=1

αl,t+1ul

= (1− αt+1)
t∑

l=1

αl,tul + αt+1ut+1

≤
(
1− 1− γ

3
· αt+1

) t∑

l=1

αl,tul + αt+1
48ηCρ

(1− γ)2 ·
t∑

l=1

αl,tKLρ
(
ζ̄(l) ∥ ζ̄(l−1)

)
+

4η

1− γαt+1α0,t

≤
t+1∏

l=2

(
1− 1− γ

3
· αl

)
α1,1u1 +

48ηCρ
(1− γ)2

t∑

i=1

βi+1,t+1

i∑

l=1

αl,iKLρ
(
ζ̄(l) ∥ ζ̄(l−1)

)
+

4η

1− γ
t∑

i=1

α0,iβi+1,t+1

≤ β1,t+1u1 +
48ηCρ

(1− γ)2
t∑

l=1

t∑

i=l

αl,iβi+1,t+1KLρ
(
ζ̄(l) ∥ ζ̄(l−1)

)
+

4η

1− γ
t∑

i=1

α0,iβi+1,t+1

≤ 200ηCρ
(1− γ)2

t∑

l=1

βl,t+1KLρ
(
ζ̄(l) ∥ ζ̄(l−1)

)
+

18η

1− γ β0,t+1, (D.35)

where the last step is due to the following lemma. Similar lemma has appeared in prior works (see
i.e., [Wei et al., 2021b, Lemma 36]). Our version features a simpler proof, which is postponed to
Appendix D.5.4.
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Lemma 30. Let two sequences {δi}, {ξi} be defined as

δi = 1− c1αi, and ξi = 1− c2αi,

where the constants c1, c2 satisfy 0 < c1 < c2 < 1
2αi

. For l ≤ t, let δl,t = αl
∏t

i=l+1 δi and

ξl,t = αl
∏t

i=l+1 ξi, where we take δl,l = ξl,l = αl. We have

t∑

i=l

ξl,iδi+1,t ≤
(
1 +

2

c2 − c1

)
δl,t.

Substitution of (D.35) into (D.34) gives

ut+1 ≤
(
1− 1− γ

3

) t∑

l=1

αl,tul +
48η

(1− γ)2
t∑

l=1

αl,tKLρ
(
ζ̄(l) ∥ ζ̄(l−1)

)
+

4η

1− γα0,t

≤ 200ηCρ
(1− γ)2

t∑

l=1

βl,tKLρ
(
ζ̄(l) ∥ ζ̄(l−1)

)
+

18η

1− γ β0,t +
48ηCρ

(1− γ)2
t∑

l=1

αl,tKLρ
(
ζ̄(l) ∥ ζ̄(l−1)

)
+

4η

1− γα0,t

≤ 250ηCρ
(1− γ)2

t∑

l=1

βl,tKLρ
(
ζ̄(l) ∥ ζ̄(l−1)

)
+

22η

1− γ β0,t.

for t ≥ 1. It is straightforward to verify that the above inequality holds for t = 0 as well.

So we conclude that

t∑

l=0

λl+1,t+1ul+1 =

t∑

i=0

λi+1,t+1ui+1

≤
t∑

i=0

λi+1,t+1

[ 250ηCρ
(1− γ)2

i∑

l=1

βl,iKLρ
(
ζ̄(l) ∥ ζ̄(l−1)

)
+

22η

1− γ β0,i
]

=
250ηCρ
(1− γ)2

t∑

l=1

t∑

i=l

βl,iλi+1,t+1KLρ
(
ζ̄(l) ∥ ζ̄(l−1)

)
+

22η

1− γ
t∑

i=0

β0,iλi+1,t+1

≤ 6250ηCρ
(1− γ)3

t∑

l=1

λl,t+1KLρ
(
ζ̄(l) ∥ ζ̄(l−1)

)
+

550η

(1− γ)2λ0,t+1

=
6250ηCρ
(1− γ)3

t−1∑

l=0

λl+1,t+1KLρ
(
ζ̄(l+1) ∥ ζ̄(l)

)
+

550η

(1− γ)2λ0,t+1,

where the penultimate step invokes Lemma 30.

D.3.5 Proof of Lemma 21

Taking logarithm on the both sides of the update rule (5.11b), we get

{
log µ̄(t+1)(s)− (1− ητ) logµ(t)(s) 1

= ηQ(t)(s)ν̄(t)(s)

log ν̄(t+1)(s)− (1− ητ) log ν(t)(s) 1
= −ηQ(t)(s)⊤µ̄(t)(s)

, (D.36)

where we recall the notation in (D.17).
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Subtracting (D.19) from (D.36) and taking inner product with ζ̄(t+1)(s)− ζ⋆τ (s) gives
〈
log ζ̄(t+1)(s)− (1− ητ) log ζ(t)(s)− ητ log ζ⋆τ (s), ζ̄(t+1)(s)− ζ⋆τ (s)

〉

= η
〈
µ̄(t+1)(s)− µ⋆τ (s), Q(t)(s)ν̄(t)(s)−Q⋆

τ (s)ν
⋆
τ (s)

〉

− η
〈
ν̄(t+1)(s)− ν⋆τ (s), Q(t)(s)⊤µ̄(t)(s)−Q⋆

τ (s)
⊤µ⋆τ (s)

〉

≤ η
〈
µ̄(t+1)(s)− µ⋆τ (s), Q(t)(s)

(
ν̄(t)(s)− ν⋆τ (s)

)〉

− η
〈
ν̄(t+1)(s)− ν⋆τ (s), Q(t)(s)⊤

(
µ̄(t)(s)− µ⋆τ (s)

)〉
+ 2η

∥∥Q(t)(s)−Q⋆
τ (s)

∥∥
∞

≤ η
〈
µ̄(t+1)(s)− µ⋆τ (s), Q(t)(s)

(
ν̄(t)(s)− ν̄(t+1)(s)

)〉

− η
〈
ν̄(t+1)(s)− ν⋆τ (s), Q(t)(s)⊤

(
µ̄(t)(s)− µ̄(t+1)(s)

)〉
+ 2η

∥∥Q(t)(s)−Q⋆
τ (s)

∥∥
∞

≤ 2η

1− γ
(
2KLs

(
ζ⋆τ ∥ ζ̄(t+1)

)
+ KLs

(
ζ̄(t+1) ∥ ζ(t)

)
+ KLs

(
ζ(t) ∥ ζ̄(t)

))
+ 2η

∥∥Q(t)(s)−Q⋆
τ (s)

∥∥
∞.

LHS can be written as
〈
log ζ̄(t+1)(s)− (1− ητ) log ζ(t)(s)− ητ log ζ⋆τ (s), ζ̄(t+1)(s)− ζ⋆τ (s)

〉

= −
〈
log ζ̄(t+1)(s)− (1− ητ) log ζ(t)(s)− ητ log ζ⋆τ (s), ζ⋆τ (s)

〉

+
〈
log ζ̄(t+1)(s)− (1− ητ) log ζ(t)(s)− ητ log ζ⋆τ (s), ζ̄(t+1)(s)

〉

= KLs
(
ζ⋆τ ∥ ζ̄(t+1)

)
− (1− ητ)KLs

(
ζ⋆τ ∥ ζ(t)

)
+ (1− ητ)KLs

(
ζ̄(t+1) ∥ ζ(t)

)
+ ητKLs

(
ζ̄(t+1) ∥ ζ⋆τ

)
.

So we conclude that
(
1− 4η

1− γ
)
KLs

(
ζ⋆τ ∥ ζ̄(t+1)

)
− (1− ητ)KLs

(
ζ⋆τ ∥ ζ(t)

)

+
(
1− ητ − 2η

1− γ
)
KLs

(
ζ̄(t+1) ∥ ζ(t)

)
+ ητKLs

(
ζ̄(t+1) ∥ ζ⋆τ

)

≤ 2η

1− γKLs
(
ζ(t) ∥ ζ̄(t)

)
+ 2η

∥∥Q(t)(s)−Q⋆
τ (s)

∥∥
∞.

With 0 < η ≤ 1−γ
8 , we have

1

2
KLs

(
ζ⋆τ ∥ ζ̄(t+1)

)
+ ητKLs

(
ζ̄(t+1) ∥ ζ⋆τ

)

≤ (1− ητ)KLs
(
ζ⋆τ ∥ ζ(t)

)
+

2η

1− γKLs
(
ζ(t) ∥ ζ̄(t)

)
+ 2η

∥∥Q(t)(s)−Q⋆
τ (s)

∥∥
∞.

D.3.6 Proof of Lemma 22

By definition of value function Vτ , we have

V µ,ν
τ (s)− V ⋆

τ (s) = µ(s)⊤Qµ,ν
τ (s)ν(s) + τH

(
µ(s)

)
− τH

(
ν(s)

)

− µ⋆τ (s)⊤Q⋆
τ (s)ν

⋆
τ (s)− τH

(
µ⋆τ (s)

)
+ τH

(
ν⋆τ (s)

)

= µ(s)⊤Qµ,ν
τ (s)ν(s)− µ(s)⊤Q⋆

τ (s)ν(s) + fs(Q
⋆
τ , µ, ν)− fs(Q⋆

τ , µ
⋆
τ , ν

⋆
τ )

= γ E
a∼µ(·|s),b∼ν(·|s),

s′∼P (·|s,a,b)

[
V µ,ν
τ (s′)− V ⋆

τ (s
′)
]
+ fs(Q

⋆
τ , µ, ν)− fs(Q⋆

τ , µ
⋆
τ , ν

⋆
τ ).
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Applying the relation recursively and averaging s over ρ, we arrive at

V µ,ν
τ (ρ)− V ⋆

τ (ρ) =
1

1− γ E
s′∼dµ,νρ

[fs′(Q
⋆
τ , µ, ν)− fs′(Q⋆

τ , µ
⋆
τ , ν

⋆
τ )] , (D.37)

which is the well-known performance difference lemma applied to the setting of Markov games. It
follows that

V µ†
τ (ν),ν

τ (ρ)− V ⋆
τ (ρ) =

1

1− γ E
s′∼d

µ
†
τ (ν),ν

ρ

[
fs′(Q

⋆
τ , µ

†
τ (ν), ν)− fs′(Q⋆

τ , µ
⋆
τ , ν

⋆
τ )
]

≤ 1

1− γ E
s′∼d

µ
†
τ (ν),ν

ρ

[
fs′(Q

⋆
τ , µ

†
τ (ν), ν)− fs′(Q⋆

τ , µ, ν
⋆
τ )
]

≤ 1

1− γ E
s′∼d

µ
†
τ (ν),ν

ρ

[
max
µ′,ν′

(
fs′(Q

⋆
τ , µ

′, ν)− fs′(Q⋆
τ , µ, ν

′)
)]

(D.38)

≤ C†ρ,τ
1− γ E

s∼ρ

[
max
µ′,ν′

(
fs(Q

⋆
τ , µ

′, ν)− fs(Q⋆
τ , µ, ν

′)
)]
.

A similar argument gives V ⋆
τ (ρ) − V µ,ν†τ (µ)

τ (ρ) ≤ C†
ρ,τ

1−γ E
s∼ρ

[
maxµ′,ν′

(
fs(Q

⋆
τ , µ

′, ν)− fs(Q⋆
τ , µ, ν

′)
)]

.

Summing the two inequalities proves (D.8). Alternatively, we continue from (D.38) and show that

V µ†
τ (ν),ν

τ (s)− V ⋆
τ (s) ≤

1

1− γ E
s′∼d

µ
†
τ (ν),ν

s

[
max
µ′,ν′

(
fs′(Q

⋆
τ , µ

′, ν)− fs′(Q⋆
τ , µ, ν

′)
)]

≤ ∥1/ρ∥∞
1− γ E

s∼ρ

[
max
µ′,ν′

(
fs(Q

⋆
τ , µ

′, ν)− fs(Q⋆
τ , µ, ν

′)
)]
.

Summing the inequality with the one for V ⋆
τ (s) − V

µ,ν†τ (µ)
τ (s) and taking maximum over s ∈ S

completes the proof for (D.9).

D.4 Proof of key lemmas for the finite-horizon setting

D.4.1 Proof of Lemma 25

Following similar arguments of arriving (D.20), we have

〈
log ζ

(t+1)
h (s)− (1− ητ) log ζ(t)h (s)− ητ log ζ⋆h,τ (s), ζ̄

(t+1)
h (s)− ζ⋆h,τ (s)

〉

≤ 2η
∥∥Q(t+1)

h (s)−Q⋆
h,τ (s)

∥∥
∞.
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We rewrite the LHS as
〈
log ζ

(t+1)
h (s)− (1− ητ) log ζ(t)h (s)− ητ log ζ⋆h,τ (s), ζ̄

(t+1)
h (s)− ζ⋆h,τ (s)

〉

= −
〈
log ζ

(t+1)
h (s)− (1− ητ) log ζ(t)h (s)− ητ log ζ⋆h,τ (s), ζ⋆h,τ (s)

〉

+
〈
log ζ̄

(t+1)
h (s)− (1− ητ) log ζ(t)h (s)− ητ log ζ⋆h,τ (s), ζ̄

(t+1)
h (s)

〉

+
〈
log ζ

(t+1)
h (s)− log ζ̄

(t+1)
h (s), ζ̄

(t+1)
h (s)

〉

= KLs
(
ζ⋆h,τ ∥ ζ

(t+1)
h

)
− (1− ητ)KLs

(
ζ⋆h,τ ∥ ζ

(t)
h

)

+ (1− ητ)KLs
(
ζ̄
(t+1)
h ∥ ζ(t)h

)
+ ητKLs

(
ζ̄
(t+1)
h ∥ ζ⋆h,τ

)

+ KLs
(
ζ
(t+1)
h ∥ ζ̄(t+1)

h

)
−
〈
log ζ̄

(t+1)
h (s)− log ζ

(t+1)
h (s), ζ̄

(t+1)
h (s)− ζ(t+1)

h (s)
〉
.

Rearranging terms gives

KLs
(
ζ⋆h,τ ∥ ζ

(t+1)
h

)
− (1− ητ)KLs

(
ζ⋆h,τ ∥ ζ

(t)
h

)
+ (1− ητ)KLs

(
ζ̄
(t+1)
h ∥ ζ(t)h

)

+ ητKLs
(
ζ̄
(t+1)
h ∥ ζ⋆h,τ

)
+ KLs

(
ζ
(t+1)
h ∥ ζ̄(t+1)

h

)

−
〈
log ζ̄

(t+1)
h (s)− log ζ

(t+1)
h (s), ζ̄

(t+1)
h (s)− ζ(t+1)

h (s)
〉

≤ 2η
∥∥Q(t+1)(s)−Q⋆

τ (s)
∥∥
∞. (D.39)

Note that
〈
log µ̄

(t+1)
h (s)− logµ

(t+1)
h (s), µ̄

(t+1)
h (s)− µ(t+1)

h (s)
〉

= η
〈
Q

(t)
h (s)ν̄

(t)
h (s)−Q(t+1)

h (s)ν̄
(t+1)
h (s), µ̄

(t+1)
h (s)− µ(t+1)

h (s)
〉

≤ η
∥∥Q(t)

h (s)ν̄
(t)
h (s)−Q(t+1)

h (s)ν̄
(t+1)
h (s)

∥∥
1

∥∥µ̄(t+1)
h (s)− µ(t+1)

h (s)
∥∥
1
. (D.40)

We bound
∥∥Q(t)

h (s)ν̄
(t)
h (s)−Q(t+1)

h (s)ν̄
(t+1)
h (s)

∥∥
1
as

∥∥Q(t)
h (s)ν̄

(t)
h (s)−Q(t+1)

h (s)ν̄
(t+1)
h (s)

∥∥
1

≤
∥∥Q(t+1)

h (s)
(
ν̄
(t)
h (s)− ν̄(t+1)

h (s)
)∥∥

1
+
∥∥(Q(t)

h (s)−Q(t+1)
h (s)

)
ν̄
(t)
h (s)

∥∥
1

≤ 2H
∥∥ν̄(t)h (s)− ν̄(t+1)

h (s)
∥∥
1
+
∥∥Q(t)

h (s)−Q(t+1)
h (s)

∥∥
∞

≤ 2H
∥∥ν̄(t+1)

h (s)− ν(t)h (s)
∥∥
1
+ 2H

∥∥ν(t)h (s)− ν̄(t)h (s)
∥∥
1
+
∥∥Q(t)

h (s)−Q(t+1)
h (s)

∥∥
∞.

Plugging the above inequality into (D.40) and invoking Young’s inequality yields
〈
log µ̄

(t+1)
h (s)− logµ

(t+1)
h (s), µ̄

(t+1)
h (s)− µ(t+1)

h (s)
〉

≤ ηH
(∥∥ν̄(t+1)

h (s)− ν(t)h (s)
∥∥2
1
+
∥∥ν(t)h (s)− ν̄(t)h (s)

∥∥2
1
+ 2
∥∥µ̄(t+1)

h (s)− µ(t+1)
h (s)

∥∥2
1

)

+ η
∥∥Q(t)

h (s)−Q(t+1)
h (s)

∥∥
∞
∥∥µ̄(t+1)

h (s)− µ(t+1)
h (s)

∥∥
1

≤ 2ηHKLs
(
ν̄
(t+1)
h ∥ ν(t)h

)
+ 2ηHKLs

(
ν
(t)
h ∥ ν̄

(t)
h

)
+ 4ηHKLs

(
µ
(t+1)
h ∥ µ̄(t+1)

h

)
+ 2η2H

∥∥Q(t)
h (s)−Q(t+1)

h (s)
∥∥
∞,

where the last step results from Pinsker’s inequality and Lemma 24. Similarly, we have
〈
log ν̄

(t+1)
h (s)− log ν

(t+1)
h (s), ν̄

(t+1)
h (s)− ν(t+1)

h (s)
〉

≤ 2ηHKLs
(
µ̄
(t+1)
h ∥µ(t)h

)
+ 2ηHKLs

(
µ
(t)
h ∥ µ̄

(t)
h

)
+ 4ηHKLs

(
ν
(t+1)
h ∥ ν̄(t+1)

h

)
+ 2η2H

∥∥Q(t)
h (s)−Q(t+1)

h (s)
∥∥
∞.
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Summing the above two inequalities gives

〈
log ζ̄

(t+1)
h (s)− log ζ

(t+1)
h (s), ζ̄

(t+1)
h (s)− ζ(t+1)

h (s)
〉

≤ 2ηHKLs
(
ζ̄
(t+1)
h ∥ ζ(t)h

)
+ 2ηHKLs

(
ζ
(t)
h ∥ ζ̄

(t)
h

)
+ 4ηHKLs

(
ζ
(t+1)
h ∥ ζ̄(t+1)

h

)

+ 4η2H
∥∥Q(t)

h (s)−Q(t+1)
h (s)

∥∥
∞

≤ 2ηHKLs
(
ζ̄
(t+1)
h ∥ ζ(t)h

)
+ 2ηHKLs

(
ζ
(t)
h ∥ ζ̄

(t)
h

)
+ 4ηHKLs

(
ζ
(t+1)
h ∥ ζ̄(t+1)

h

)

+
η

2

(∥∥Q(t)
h (s)−Q⋆

h,τ (s)
∥∥
∞ +

∥∥Q(t+1)
h (s)−Q⋆

h,τ (s)
∥∥
∞

)
,

where the second step invokes triangular inequality and the fact that η ≤ 1
8H . Plugging the above

inequality into (D.39) gives

KLs
(
ζ⋆h,τ ∥ ζ

(t+1)
h

)
− (1− ητ)KLs

(
ζ⋆h,τ ∥ ζ

(t)
h

)
+ (1− η(τ + 2H))KLs

(
ζ̄
(t+1)
h ∥ ζ(t)h

)

+ ητKLs
(
ζ̄
(t+1)
h ∥ ζ⋆h,τ

)
+ (1− 4ηH)KLs

(
ζ
(t+1)
h ∥ ζ̄(t+1)

h

)
− 2ηHKLs

(
ζ
(t)
h ∥ ζ̄

(t)
h

)

≤ 5η

2

∥∥Q(t+1)
h (s)−Q⋆

τ (s)
∥∥
∞ +

η

2

∥∥Q(t)
h (s)−Q⋆

τ (s)
∥∥
∞.

With η ≤ 1
8H , we have (1− ητ)(1− 4ηH) ≥ 2ηH and 1− η(τ + 2H) ≥ 0. It follows that

KLs
(
ζ⋆h,τ ∥ ζ

(t+1)
h

)
+ (1− 4ηH)KLs

(
ζ
(t+1)
h ∥ ζ̄(t+1)

h

)
+ ητKLs

(
ζ̄
(t+1)
h ∥ ζ⋆h,τ

)

≤ (1− ητ)KLs
(
ζ⋆h,τ ∥ ζ

(t)
h

)
+ 2ηHKLs

(
ζ
(t)
h ∥ ζ̄

(t)
h

)

+
5η

2

∥∥Q(t+1)
h (s)−Q⋆

τ (s)
∥∥
∞ +

η

2

∥∥Q(t)
h (s)−Q⋆

τ (s)
∥∥
∞

≤ (1− ητ)
(
KLs

(
ζ⋆h,τ ∥ ζ

(t)
h

)
+ (1− 4ηH)KLs

(
ζ
(t)
h ∥ ζ̄

(t)
h

))

+
5η

2

∥∥Q(t+1)
h (s)−Q⋆

τ (s)
∥∥
∞ +

η

2

∥∥Q(t)
h (s)−Q⋆

τ (s)
∥∥
∞.

Therefore, it holds for 0 ≤ t1 < t2 that

KLs
(
ζ⋆h,τ ∥ ζ

(t2)
h

)
+ (1− 4ηH)KLs

(
ζ
(t2)
h ∥ ζ̄(t2)h

)
+ ητKLs

(
ζ̄
(t2)
h ∥ ζ⋆h,τ

)

≤ (1− ητ)t2−t1
(
KLs

(
ζ⋆h,τ ∥ ζ

(t1)
h

)
+ (1− 4ηH)KLs

(
ζ
(t1)
h ∥ ζ̄t1h

))

+

t2∑

t′=t1+1

(1− ητ)t2−l
[5η
2

∥∥Q(l)
h (s)−Q⋆

τ (s)
∥∥
∞ +

η

2

∥∥Q(l−1)
h (s)−Q⋆

τ (s)
∥∥
∞

]

≤ (1− ητ)t2−t1
(
KLs

(
ζ⋆h,τ ∥ ζ

(t1)
h

)
+ (1− 4ηH)KLs

(
ζ
(t1)
h ∥ ζ̄(t1)h

))

+ 4η

t2∑

l=t1

(1− ητ)t2−l
∥∥Q(l)

h (s)−Q⋆
τ (s)

∥∥
∞.
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D.4.2 Proof of Lemma 26

For t2 > 0, we have

Q
(t2)
h−1(s, a, b)−Q⋆

h−1,τ (s, a, b)

= E
s′∼Ph−1(·|s,a,b)

[
V

(t2−1)
h (s′)− V ⋆

h,τ (s
′)
]

= E
s′∼Ph−1(·|s,a,b)

[
(1− ητ)t2−t1

(
V

(t1−1)
h (s′)− V ⋆

h,τ (s
′)
)

+ ητ

t2−1∑

l=t1

(1− ητ)t2−1−l
(
fs′(Q

(t1), µ̄
(t1)
h , ν̄

(t1)
h )− fs′(Q⋆

h,τ , µ
⋆
h,τ , ν

⋆
h,τ )
)]

≤ (1− ητ)t2−t12H + E
s′∼Ph−1(·|s,a,b)


ητ

t2−1∑

l=t1

(1− ητ)t2−1−l
(
fs′(Q

(l)
h , µ̄

(l)
h , ν̄

(l)
h )− fs′(Q⋆

h,τ , µ
⋆
h,τ , ν

⋆
h,τ )
)

 .

(D.41)

We start by decomposing f
(t)
s − f⋆s as

fs(Q
(t)
h , µ̄

(t)
h , ν̄

(t)
h )− fs(Q⋆

h,τ , µ
⋆
h,τ , ν

⋆
h,τ )

=
(
fs(Q

(t)
h , µ̄

(t)
h , ν̄

(t)
h )− fs(Q(t)

h , µ̄
(t)
h , ν⋆h,τ )

)
+ fs(Q

(t)
h , µ̄

(t)
h , ν⋆h,τ )− fs(Q⋆

h,τ , µ
⋆
h,τ , ν

⋆
h,τ )

≤
(
fs(Q

(t)
h , µ̄

(t)
h , ν̄

(t)
h )− fs(Q(t)

h , µ̄
(t)
h , ν⋆h,τ )

)
+ fs(Q

⋆
τ , µ̄

(t), ν⋆h,τ )− fs(Q⋆
h,τ , µ

⋆
h,τ , ν

⋆
h,τ )

+
∥∥Q(t)

h (s)−Q⋆
h,τ (s)

∥∥
∞

≤ fs(Q(t)
h , µ̄

(t)
h , ν̄

(t)
h )− fs(Q(t)

h , µ̄
(t)
h , ν⋆h,τ ) +

∥∥Q(t)
h (s)−Q⋆

h,τ (s)
∥∥
∞.

Note that Lemma 29 can be applied to the episodic setting by simply replacing 1/(1− γ) with H,
which yields

fs(Q
(t)
h , µ̄

(t)
h , ν̄

(t)
h )− fs(Q⋆

h,τ , µ
⋆
h,τ , ν

⋆
h,τ ) ≤

∥∥Q(t)
h (s)−Q⋆

h,τ (s)
∥∥
∞ + 2ηH

∥∥Q(t)
h (s)−Q(t−1)

h (s)
∥∥
∞

+
1− ητ
η

KLs
(
ν⋆h,τ ∥ ν

(t−1)
h

)
− 1

η
KLs

(
ν⋆h,τ ∥ ν

(t)
h

)

− 1

η

(
1− 4ηH

)
KLs

(
ν
(t)
h ∥ ν̄

(t)
h

)
− 1− ητ

η
KLs

(
ν̄
(t)
h ∥ ν

(t−1)
h

)

+ 2H
(
KLs

(
µ̄
(t)
h ∥µ

(t−1)
h

)
+ KLs

(
µ
(t−1)
h ∥ µ̄(t−1)

h

))
.

(D.42)

By a similar argument,

fs(Q
⋆
h,τ , µ

⋆
h,τ , ν

⋆
h,τ )− fs(Q

(t)
h , µ̄

(t)
h , ν̄

(t)
h ) ≤

∥∥Q(t)
h (s)−Q⋆

h,τ (s)
∥∥
∞ + 2ηH

∥∥Q(t)
h (s)−Q(t−1)

h (s)
∥∥
∞

+
1− ητ
η

KLs
(
µ⋆h,τ ∥µ

(t−1)
h

)
− 1

η
KLs

(
µ⋆h,τ ∥µ

(t)
h

)

− 1

η

(
1− 4ηH

)
KLs

(
µ
(t)
h ∥ µ̄

(t)
h

)
− 1− ητ

η
KLs

(
µ̄
(t)
h ∥µ

(t−1)
h

)

+ 2H
(
KLs

(
ν̄
(t)
h ∥ ν

(t−1)
h

)
+ KLs

(
ν
(t−1)
h ∥ ν̄(t−1)

h

))
.

(D.43)
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Combining (D.42) + 2
3 · (D.43) gives

1

3

[
fs(Q

(t)
h , µ̄

(t)
h , ν̄

(t)
h )− fs(Q⋆

h,τ , µ
⋆
h,τ , ν

⋆
h,τ )
]

≤ 5

3

[∥∥Q(t)
h (s)−Q⋆

h,τ (s)
∥∥
∞ + 2ηH

∥∥Q(t)
h (s)−Q(t−1)

h (s)
∥∥
∞
]

+
1− ητ
η

[
KLs

(
ν⋆h,τ ∥ ν

(t−1)
h

)
+

2

3
KLs

(
µ⋆h,τ ∥µ

(t−1)
h

)]
− 1

η

[
KLs

(
ν⋆h,τ ∥ ν

(t)
h

)
+

2

3
KLs

(
µ⋆h,τ ∥µ

(t)
h

)]

+ 2H
[
KLs

(
µ
(t−1)
h ∥ µ̄(t−1)

h

)
+

2

3
KLs

(
ν
(t−1)
h ∥ ν̄(t−1)

h

)]

− 1

η

(
1− 4ηH

)[2
3
KLs

(
µ
(t)
h ∥ µ̄

(t)
h

)
+ KLs

(
ν
(t)
h ∥ ν̄

(t)
h

)]

+
(
2H − 1− ητ

η
· 2
3

)
KLs

(
µ̄(t) ∥µ(t−1)

)
+
(
2H · 2

3
− 1− ητ

η

)
KLs

(
ν̄(t) ∥ ν(t−1)

)
. (D.44)

With η ≤ 1
8H , we have

2H − 1− ητ
η

· 2
3
≤ 0, 2H · 2

3
− 1− ητ

η
≤ 0, and

1

η
(1− ητ)(1− 4ηH) · 2

3
≥ 2H.

Let

G
(t)
h (s) = KLs

(
ν⋆h,τ ∥ ν

(t)
h

)
+

2

3
KLs

(
µ⋆h,τ ∥µ

(t)
h

)
+

2

3
(1− 4ηH)

[
KLs

(
µ
(t)
h ∥ µ̄

(t)
h

)
+ KLs

(
ν
(t)
h ∥ ν̄

(t)
h

)]
.

We can simplify (D.44) as

fs(Q
(t)
h , µ̄

(t)
h , ν̄

(t)
h )− fs(Q⋆

h,τ , µ
⋆
h,τ , ν

⋆
h,τ )

≤ 5
[∥∥Q(t)

h (s)−Q⋆
h,τ (s)

∥∥
∞ + 2ηH

∥∥Q(t)
h (s)−Q(t−1)

h (s)
∥∥
∞
]
+

1− ητ
η

G
(t−1)
h (s)− 1

η
G

(t)
h (s).

Plugging the above inequality into (D.41) gives

Q
(t2)
h−1(s, a, b)−Q⋆

h−1,τ (s, a, b)

≤ (1− ητ)t2−t12H

+ E
s′∼Ph−1(·|s,a,b)


5ητ

t2−1∑

l=t1

(1− ητ)t2−1−l
(∥∥Q(l)

h (s′)−Q⋆
h,τ (s

′)
∥∥
∞ + 2ηH

∥∥Q(l)
h (s′)−Q(l−1)

h (s′)
∥∥
∞
)



+ E
s′∼Ph−1(·|s,a,b)

[
τ(1− ητ)t2−t1G

(t1−1)
h (s′)

]

≤ (1− ητ)t2−t12H

+ 10ητ E
s′∼Ph−1(·|s,a,b)




t2−1∑

l=t1−1

(1− ητ)t2−1−l
∥∥Q(l)

h (s′)−Q⋆
h,τ (s

′)
∥∥
∞




+ τ(1− ητ)t2−t1 E
s′∼Ph−1(·|s,a,b)

[
KLs′

(
ζ⋆h,τ ∥ ζ

(t1−1)
h

)
+ (1− 4ηH)KLs′

(
ζ
(t1−1)
h ∥ ζ̄(t1−1)

h

)]
.

The other side of Lemma 26 can be shown with a similar proof and is therefore omitted.
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D.5 Proof of auxiliary lemmas

D.5.1 Proof of Lemma 27

We first single out a set of bounds for V (t) and Q(t), which can be obtained by a simple induction:

∀(s, a, b) ∈ S ×A× B,
{
− τ log |B|

1−γ ≤ V (t)(s) ≤ 1+τ log |A|
1−γ

−γτ log |B|
1−γ ≤ Q(t)(s, a, b) ≤ 1+γτ log |A|

1−γ

. (D.45)

We invoke the following lemma to bound several key quantities that will be helpful in the analysis.

Lemma 31 ([Mei et al., 2020b, Lemma 24]). Let π, π′ ∈ ∆(A) such that π(a) ∝ exp(θ(a)),
π′(a) ∝ exp(θ′(a)) for some θ, θ′ ∈ R|A|. It holds that

∥∥π − π′
∥∥
1
≤
∥∥θ − θ′

∥∥
∞.

With this lemma in mind, for any t ≥ 0, it follows that
∥∥µ̄(t+1)(s)− µ(t+1)(s)

∥∥
1
≤ min

c∈R

∥∥log µ̄(t+1)(s)− logµ(t+1)(s)− c · 1
∥∥
∞

≤ η
∥∥Q(t)(s)ν̄(t)(s)−Q(t+1)(s)ν̄(t+1)(s)

∥∥
∞

≤ η · 1 + γτ(log |A|+ log |B|)
1− γ ≤ 2η

1− γ ,

where the second line follows from the update rule (5.11), and the last line follows from (D.45). A
similar argument reveals that

∥∥ν̄(t+1)(s)− ν(t+1)(s)
∥∥
1
≤ 2η

1− γ ,

which completes the proof of (D.15a).
Moving onto the second claim (D.15b), we make note of the fact that when t ≥ 1,

µ̄(t+1)(a|s) ∝ µ(t)(a|s)1−ητ exp(η[Q(t)(s)ν̄(t)(s)]a)

(i)∝ µ̄(t)(a|s)1−ητ exp
(
η
[
Q(t)(s)ν̄(t)(s) + (1− ητ)(Q(t)(s)ν̄(t)(s)−Q(t−1)(s)ν̄(t−1)(s))

]
a

)

∝ µ̄(t)(a|s) exp(ηw(t)(a)), (D.46)

where

w(t) = Q(t)(s)ν̄(t)(s) + (1− ητ)
(
Q(t)(s)ν̄(t)(s)−Q(t−1)(s)ν̄(t−1)(s)

)
− τ log µ̄(t)(s).

Here, (i) follows from the update rule (5.11) as

µ(t)(a|s) ∝ µ(t−1)(a|s)1−ητ exp(η[Q(t)(s)ν̄(t)(s)]a)

∝ µ(t−1)(a|s)1−ητ exp(η[Q(t−1)(s)ν̄(t−1)(s)]a) exp(η[Q
(t)(s)ν̄(t)(s)−Q(t−1)(s)ν̄(t−1)(s)]a)

∝ µ̄(t)(a|s) exp(η[Q(t)(s)ν̄(t)(s)−Q(t−1)(s)ν̄(t−1)(s)]a).

Moreover, w(t) satisfies
∥∥w(t)

∥∥
∞ ≤

∥∥Q(t)(s)ν̄(t)(s)
∥∥
∞ +

∥∥τ log µ̄(t)(s)
∥∥
∞ + (1− ητ)

∥∥Q(t)(s)ν̄(t)(s)−Q(t−1)(s)ν̄(t−1)(s)
∥∥
∞

≤ 2

1− γ +
2

1− γ +
2(1− ητ)
1− γ ≤ 6

1− γ .
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Here, the second step is due to (D.16), which we shall prove momentarily. Recall that when t = 0,
we have µ̄(t+1) = µ̄(0). In sum, we have

∀s ∈ S, t ≥ 0,
∥∥µ̄(t+1)(s)− µ̄(t)(s)

∥∥
1
≤ 6η

1− γ ,

concluding the proof of (D.15b).
It remains to prove the claim (D.16). For simplicity we focus on the bound with

∥∥logµ(t)(s)
∥∥
∞;

the other bounds follow similarly. It is worth noting that µ(t)(s) can be always written as µ(t)(a|s) ∝
exp(w(t)(a)/τ) for some w(t) ∈ R|A| satisfying

∀a ∈ A, −γτ log |B|
1− γ ≤ w(t)(a) ≤ 1 + γτ log |A|

1− γ .

To see this, note that the claim trivially holds for t = 0 with w(0) = 0. When the statement holds
for some t ≥ 0, we have

µ(t+1)(a|s) ∝ µ(t)(a|s)1−ητ exp(ηQ(t+1)(s)ν̄(t+1)(s))

∝ exp
(
((1− ητ)w(t) + ητQ(t+1)(s)ν̄(t+1)(s))/τ

)

∝ exp
(
w(t+1)/τ

)
,

with w(t+1) = (1 − ητ)w(t) + ητQ(t+1)(s)ν̄(t+1)(s). We conclude that the claim holds for t + 1 by
recalling (D.45). It then follows straightforwardly that

µ(t)(a1|s)
µ(t)(a2|s)

= exp
(w(t)(a1)− w(t)(a2)

τ

)
≤ exp

(1 + γτ(log |A|+ log |B|)
(1− γ)τ

)

for any a1, a2 ∈ A. This allows us to show that

min
a∈A

µ(t)(a|s) ≥ 1

|A| exp
(1+γτ(log |A|+log |B|)

(1−γ)τ

)
∑

a∈A
µ(t)(a|s) = 1

|A| exp
(1+γτ(log |A|+log |B|)

(1−γ)τ

) ,

which gives

∥ logµ(t)(s)∥∞ ≤
1 + γτ(log |A|+ log |B|)

(1− γ)τ + log |A| ≤ 1

(1− γ)τ +
log |A|+ γ log |B|

1− γ
≤ 2

(1− γ)τ .

D.5.2 Proof of Lemma 28

We decompose the term fs(Q
(t+1), µ̄(t+1), ν̄(t+1))− fs(Q(t), µ̄(t), ν̄(t)) as follows:

fs(Q
(t+1), µ̄(t+1), ν̄(t+1))− fs(Q(t), µ̄(t), ν̄(t))

= fs(Q
(t+1), µ̄(t+1), ν̄(t+1))− fs(Q(t), µ̄(t+1), ν̄(t+1)) + fs(Q

(t), µ̄(t+1), ν̄(t+1))− fs(Q(t), µ̄(t), ν̄(t))

= µ̄(t+1)(s)⊤
(
Q(t+1)(s)−Q(t)(s)

)
ν̄(t+1)(s)

+ fs(Q
(t), µ̄(t+1), ν̄(t))− fs(Q(t), µ̄(t), ν̄(t)) + fs(Q

(t), µ̄(t), ν̄(t+1))− fs(Q(t), µ̄(t), ν̄(t))

+
[
fs(Q

(t), µ̄(t+1), ν̄(t+1)) + fs(Q
(t), µ̄(t), ν̄(t))− fs(Q(t), µ̄(t+1), ν̄(t))− fs(Q(t), µ̄(t), ν̄(t+1))

]
.
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Note that
∣∣µ̄(t+1)(s)⊤

(
Q(t+1)(s)−Q(t)(s)

)
ν̄(t+1)(s)

∣∣ ≤
∥∥Q(t+1)(s)−Q(t)(s)

∥∥
∞. For the terms in the

bracket, we have
∣∣∣
[
fs(Q

(t), µ̄(t+1), ν̄(t+1)) + fs(Q
(t), µ̄(t), ν̄(t))− fs(Q(t), µ̄(t+1), ν̄(t))− fs(Q(t), µ̄(t), ν̄(t+1))

]∣∣∣

=
∣∣∣
(
µ̄(t+1)(s)− µ̄(t)(s)

)⊤
Q(t)(s)

(
ν̄(t+1)(s)− ν̄(t)(s)

)∣∣∣

≤ 2

1− γKLs
(
ζ̄(t+1) ∥ ζ̄(t)

)
,

where the last step invokes Cauchy-Schwarz inequality and Pinsker’s inequality (see e.g., (D.22)). It
remains to bound the two difference terms

∣∣fs(Q(t), µ̄(t+1), ν̄(t))−fs(Q(t), µ̄(t), ν̄(t))
∣∣ and

∣∣fs(Q(t), µ̄(t), ν̄(t+1))−
fs(Q

(t), µ̄(t), ν̄(t))
∣∣. To proceed, we show that

fs(Q
(t), µ̄(t), ν̄(t))− fs(Q(t), µ̄(t+1), ν̄(t))

=
〈
µ̄(t)(s)− ν̄(t+1)(s), Q(t)(s)⊤µ̄(t)(s)

〉
+ τH(µ̄(t)(s))− τH(µ̄(t+1)(s))

=
〈
µ̄(t)(s)− µ̄(t+1)(s), Q(t)(s)⊤ν̄(t)(s) + (1− ητ)

(
Q(t)(s)ν̄(t)(s)−Q(t−1)(s)ν̄(t−1)(s)

)〉

+ τH(µ̄(t)(s))− τH(µ̄(t+1)(s))

− (1− ητ)
〈
µ̄(t)(s)− µ̄(t+1)(s), Q(t)(s)ν̄(t)(s)−Q(t−1)(s)ν̄(t−1)(s)

〉

= −1

η
KLs

(
µ̄(t) ∥ µ̄(t+1)

)
− 1− ητ

η
KLs

(
µ̄(t+1) ∥ µ̄(t)

)

− (1− ητ)
〈
µ̄(t)(s)− µ̄(t+1)(s), Q(t)(s)ν̄(t)(s)−Q(t−1)(s)ν̄(t−1)(s)

〉
. (D.47)

Here, the third step results from the special case of the following three-point lemma—which is
proven in Appendix D.5.5—in view of (D.46).

Lemma 32 (Regularized three-point lemma). Let x ∈ ∆(A) be defined as

x(a) ∝ y(a)1−ητ exp(−ηw(a))

for some w ∈ R|A| and y ∈ ∆(A). It holds for all z ∈ ∆(A) that
η

1− ητ
[
⟨x− z, w⟩ − τH(x) + τH(z)

]
= KL (z ∥ y)− 1

1− ητ KL (z ∥x)− KL (x ∥ y) .

This immediately implies that

η

1− ητ
[
⟨x− y, w⟩ − τH(x) + τH(y)

]
= − 1

1− ητ KL (y ∥x)− KL (x ∥ y) .

Recall from the earlier discussion (cf. (D.46)) that µ̄(t+1)(a|s) ∝ µ̄(t)(a|s) exp(ηw(t)(s)) for some
w(t) ∈ R|B| satisfying ∥∥w(t)

∥∥
∞ ≤

6

1− γ .

We can ensure that ∥ηw(t)∥∞ ≤ 1/30 as long as η−1 ≥ 180
1−γ , and the next lemma guarantees

KLs
(
µ̄(t) ∥ µ̄(t+1)

)
≤ 2KLs

(
µ̄(t+1) ∥ µ̄(t)

)
in this case.

Lemma 33. Let w ∈ R|A|, π, π′ ∈ ∆(A) satisfy, for each a ∈ A, π′(a) ∝ π(a) exp(w(a)) with
∥w∥∞ ≤ 1

30 . It holds that
KL
(
π ∥π′

)
≤ 2KL

(
π′ ∥π

)
.
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Therefore, we can continue to bound (D.47) by

∣∣fs(Q(t), µ̄(t+1), ν̄(t))− fs(Q(t), µ̄(t), ν̄(t))
∣∣

≤ 1

η
KLs

(
µ̄(t) ∥ µ̄(t+1)

)
+

1− ητ
η

KLs
(
µ̄(t+1) ∥ µ̄(t)

)

+
∥∥µ̄(t+1)(s)− µ̄(t)(s)

∥∥
1

∥∥Q(t)(s)ν̄(t)(s)−Q(t−1)(s)ν̄(t−1)(s)
∥∥
∞

≤ 3

η
KLs

(
µ̄(t+1) ∥ µ̄(t)

)
+
∥∥µ̄(t+1)(s)− µ̄(t)(s)

∥∥
1

∥∥Q(t)(s)−Q(t−1)(s)
∥∥
∞

+
∥∥Q(t)(s)

∥∥
∞
∥∥µ̄(t+1)(s)− µ̄(t)(s)

∥∥
1

∥∥ν̄(t)(s)− ν̄(t−1)(s)
∥∥
1

≤
(3
η
+

2

1− γ
)
KLs

(
µ̄(t+1) ∥ µ̄(t)

)
+

2

1− γKLs
(
µ̄(t) ∥ µ̄(t−1)

)
+

6η

1− γ
∥∥Q(t)(s)−Q(t−1)(s)

∥∥
∞,

where the last line uses Lemma 27, Cauchy-Schwarz inequality and Pinsker’s inequality (see e.g.,
(D.22)). One can bound

∣∣fs(Q(t), µ̄(t), ν̄(t))− fs(Q(t), µ̄(t), ν̄(t+1))
∣∣ with similar arguments. Putting

all pieces together, we arrive at

∣∣fs(Q(t+1), µ̄(t+1), ν̄(t+1))− fs(Q(t), µ̄(t), ν̄(t))
∣∣

≤
∥∥∥Q(t+1)(s)−Q(t)(s)

∥∥∥
∞

+
(3
η
+

4

1− γ
)
KLs

(
ζ̄(t+1) ∥ ζ̄(t)

)
+

2

1− γKLs
(
ζ̄(t) ∥ ζ̄(t−1)

)

+
12η

1− γ
∥∥Q(t)(s)−Q(t−1)(s)

∥∥
∞.

D.5.3 Proof of Lemma 29

Note that

fs(Q
(t), µ̄(t), ν̄(t))− fs(Q(t), µ̄(t), ν)

=
〈
ν̄(t)(s)− ν⋆τ (s), Q(t)(s)⊤µ̄(t)(s)

〉
− τH(ν̄(t)(s)) + τH(ν⋆τ (s))

=
〈
ν̄(t)(s)− ν(t)(s), Q(t)(s)⊤µ̄(t)(s)−Q(t−1)(s)⊤µ̄(t−1)(s)

〉

+
〈
ν̄(t)(s)− ν(t)(s), Q(t−1)(s)⊤µ̄(t−1)(s)

〉
− τH(ν̄(t)(s)) + τH(ν(t)(s))

+
〈
ν(t)(s)− ν⋆τ (s), Q(t)(s)⊤µ̄(t)(s)

〉
− τH(ν(t)(s)) + τH(ν⋆τ (s))

=
〈
ν̄(t)(s)− ν(t)(s), Q(t)(s)⊤µ̄(t)(s)−Q(t−1)(s)⊤µ̄(t−1)(s)

〉

+
1− ητ
η

KLs
(
ν(t) ∥ ν(t−1)

)
− 1

η
KLs

(
ν(t) ∥ ν̄(t)

)
− 1− ητ

η
KLs

(
ν̄(t) ∥ ν(t−1)

)

+
1− ητ
η

KLs
(
ν⋆τ ∥ ν(t−1)

)
− 1

η
KLs

(
ν⋆τ ∥ ν(t)

)
− 1− ητ

η
KLs

(
ν(t) ∥ ν(t−1)

)

≤
∥∥ν̄(t)(s)− ν(t)(s)

∥∥
1

∥∥Q(t)(s)⊤µ̄(t)(s)−Q(t−1)(s)⊤µ̄(t−1)(s)
∥∥
∞

− 1

η
KLs

(
ν(t) ∥ ν̄(t)

)
− 1− ητ

η
KLs

(
ν̄(t) ∥ ν(t−1)

)
+

1− ητ
η

KLs
(
ν⋆τ ∥ ν(t−1)

)
− 1

η
KLs

(
ν⋆τ ∥ ν(t)

)
.

(D.48)
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Here, the second step results from Lemma 32. We further bound the first term in (D.48) as follows.
∥∥ν̄(t)(s)− ν(t)(s)

∥∥
1

∥∥Q(t)(s)⊤µ̄(t)(s)−Q(t−1)(s)⊤µ̄(t−1)(s)
∥∥
∞

≤
∥∥ν̄(t)(s)− ν(t)(s)

∥∥
1

(∥∥(Q(t)(s)−Q(t−1)(s)
)⊤
µ̄(t−1)(s)

∥∥
∞ +

∥∥Q(t)(s)
(
µ̄(t)(s)− µ̄(t−1)(s)

)∥∥
∞

)

≤
∥∥ν̄(t)(s)− ν(t)(s)

∥∥
1

∥∥Q(t)(s)−Q(t−1)(s)
∥∥
∞ +

2

1− γ
∥∥ν̄(t)(s)− ν(t)(s)

∥∥
1

∥∥µ̄(t)(s)− µ̄(t−1)(s)
∥∥
1

≤ 2η

1− γ
∥∥Q(t)(s)−Q(t−1)(s)

∥∥
∞ +

1

1− γ
[
2
∥∥ν̄(t)(s)− ν(t)(s)

∥∥2
1

+
∥∥µ̄(t)(s)− µ(t−1)(s)

∥∥2
1
+
∥∥µ(t−1)(s)− µ̄(t−1)(s)

∥∥2
1

]

≤ 2η

1− γ
∥∥Q(t)(s)−Q(t−1)(s)

∥∥
∞ +

4

1− γKLs
(
ν(t) ∥ ν̄(t)

)

+
2

1− γKL
(
µ̄(t)(s) ∥µ(t−1)(s)

)
+

2

1− γKL
(
µ(t−1)(s) ∥ µ̄(t−1)(s)

)
,

where the penultimate inequality follows from Lemma 27, and the last line follows from Pinsker’s
inequality. Substitution of the above inequality into (D.48) completes the proof.

D.5.4 Proof of Lemma 30

By definition, we have

δl,t = αl

t∏

i=l+1

(1− c1αi)

= αl

t∏

i=l+1

(1− c2αi + (c2 − c1)αi)

= αl(c2 − c1)αl+1

t∏

i=l+2

(1− c2αi + (c2 − c1)αi) + αl(1− c2αl+1)
t∏

i=l+2

(1− c2αi + (c2 − c1)αi).

Continuing this expansion recursively, we obtain

δl,t = αl

t∑

i=l+1

(c2 − c1)αi ·
i∏

j=l+1

(1− c2αj) ·
t∏

k=i+1

(1− c1αk) + αl

t∏

i=l+1

(1− c2αi)

= (c2 − c1)
t∑

i=l+1

ξl,iδi,t + ξl,t.

Rearranging terms, it follows that

t∑

i=l

ξl,iδi+1,t = αlδl+1,t +
t∑

i=l+1

ξl,iδi+1,t

=
αl+1

1− c1αl+1
δl,t +

t∑

i=l+1

ξl,iδi,t ·
αi+1

αi(1− c1αi+1)

(i)

≤ δl,t + 2

t∑

i=l+1

ξl,iδi,t = δl,t +
2

c2 − c1
(δl,t − ξl,t) ≤

(
1 +

2

c2 − c1

)
δl,t,
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where the second line results from the definition of δl,t and (i) is due to {αi} being non-increasing
and

αl+1 ≤ ητ ≤ 1/2, 1− c1αl ≥ 1/2

for all l ≥ 1.

D.5.5 Proof of Lemma 32

We have

KL (z ∥ y) = −H(z) +H(y)− ⟨z − y, log y⟩
= −H(z) +H(x)− ⟨z − x, log y⟩ − H(x) +H(y)− ⟨x− y, log y⟩
= −H(z) +H(x)− ⟨z − x, log x⟩ − H(x) +H(y)− ⟨x− y, log y⟩ − ⟨z − x, log y − log x⟩
= KL (z ∥x) + KL (x ∥ y)− η

1− ητ ⟨z − x,w + τ log x⟩ ,

where the last line follows from the update rule. Rearranging terms gives

η

1− ητ ⟨x− z, w⟩ = KL (z ∥ y)− KL (z ∥x)− KL (x ∥ y) + ητ

1− ητ ⟨z − x, log x⟩ .

Adding ητ
1−ητ (−H(x) +H(z)) to both sides, we are left with

η

1− ητ
[
⟨x− z, w⟩ − τH(x) + τH(z)

]
= KL (z ∥ y)− KL (z ∥x)− KL (x ∥ y)

− ητ

1− ητ
(
−H(z) +H(x)− ⟨z − x, log x⟩

)

= KL (z ∥ y)− 1

1− ητ KL (z ∥x)− KL (x ∥ y) .

D.5.6 Proof of Lemma 33

We begin with a simple sandwich bound of log(1 + x) which will be used later: when x > − 1
10 , we

have

x−
(1
2
+
|x|
2

)
x2 ≤ log(1 + x) ≤ x−

(1
2
− |x|

3

)
x2. (D.49)

We shall prove this at the end of this proof. The following lemma, which is standard (see, e.g., [Mei
et al., 2020b, Lemma 23], [Cen et al., 2022b, Lemma 3]), allows us to control

∥∥log π − log π′
∥∥
∞,

and in turn ∥π/π′∥∞.

Lemma 34. Let π, π′ ∈ ∆(A) satisfy π(a) ∝ exp(θ(a)) and π′(a) ∝ exp(θ′(a)) for some θ, θ′ ∈ R|A|.
It holds that ∥∥log π − log π′

∥∥
∞ ≤ 2

∥∥θ − θ′
∥∥
∞.

In view of the above lemma, and since
∥∥w
∥∥
∞ < 1/30, we have ∀a ∈ A:

∣∣∣ π(a)
π′(a)

− 1
∣∣∣ =

∣∣∣ exp
(
log

π(a)

π′(a)

)
− exp(0)

∣∣∣ ≤ | log π(a)− log π′(a)|max
{
1,
π(a)

π′(a)

}

≤ 2
∥∥w
∥∥
∞ exp(2

∥∥w
∥∥
∞) ≤ 3

∥∥w
∥∥
∞. (D.50)
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Therefore, we can bound KL (π ∥π′) as

KL
(
π ∥π′

)
=
∑

a∈A
π(a) log

π(a)

π′(a)

(i)

≤
∑

a∈A
π(a)

(
π(a)

π′(a)
− 1−

(1
2
−
∥∥w
∥∥
∞

)( π(a)
π′(a)

− 1
)2)

(ii)
=
∑

a∈A

(
π(a)− π′(a)

)( π(a)
π′(a)

− 1
)
+
∑

a∈A
π′(a)

( π(a)
π′(a)

− 1
)
−
(1
2
−
∥∥w
∥∥
∞

)∑

a∈A
π(a)

( π(a)
π′(a)

− 1
)2

= χ2(π;π′)−
(1
2
−
∥∥w
∥∥
∞

)∑

a∈A
π(a)

( π(a)
π′(a)

− 1
)2

(iii)

≤ χ2(π;π′)−
(1
2
−
∥∥w
∥∥
∞

) (
1− 3

∥∥w
∥∥
∞
)∑

a∈A
π′(a)

( π(a)
π′(a)

− 1
)2

=

(
1−

(1
2
−
∥∥w
∥∥
∞

) (
1− 3

∥∥w
∥∥
∞
))

χ2(π;π′), (D.51)

where (i) follows from (D.49), (ii) utilizes the fact
∑

a∈A(π(a)− π′(a)) = 0, and (iii) makes use of
(D.50). On the other hand, by similar arguments, we have

KL
(
π′ ∥π

)
=
∑

a∈A
π′(a) log

π′(a)

π(a)

≥
∑

a∈A
π′(a)

(
π′(a)

π(a)
− 1−

(1 + 3
∥∥w
∥∥
∞)

2

(π′(a)
π(a)

− 1
)2
)

= χ2(π′;π)−
(1 + 3

∥∥w
∥∥
∞)

2

∑

a∈A
π′(a)

(π′(a)
π(a)

− 1
)2

≥ χ2(π′;π)−
(1 + 3

∥∥w
∥∥
∞)2

2

∑

a∈A
π(a)

(π′(a)
π(a)

− 1
)2

=
(
1−

(1 + 3
∥∥w
∥∥
∞)2

2

)
χ2(π′;π). (D.52)

By definition of χ2(π;π′), we further have

χ2(π;π′) =
∑

a∈A
π′(a)

( π(a)
π′(a)

− 1
)2

≤
∥∥π/π′

∥∥
∞

∑

a∈A

(
π′(a)− π(a)

)2

π(a)

≤ (1 + 3
∥∥w
∥∥
∞)χ2(π′;π), (D.53)

where the last line uses (D.50). Combining (D.51), (D.52) and (D.53) gives

KL
(
π ∥π′

)
≤ (1 + 3

∥∥w
∥∥
∞) ·

[
1−

(
1/2−

∥∥w
∥∥
∞
)
(1− 3

∥∥w
∥∥
∞)

1− (1 + 3
∥∥w
∥∥
∞)2/2

]
KL
(
π′ ∥π

)
.

It is straightforward to verify that the factor is less than 2 when
∥∥w
∥∥
∞ ≤ 1/30.
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Proof of (D.49). For any x > −1, it holds that

log(1 + x) ≤ x− x2

2
+
x3

3

≤ x− x2

2
+
|x3|
3

= x−
(1
2
− |x|

3

)
x2,

and that

log(1 + x) ≥ x− x2

2
+

x3

3(1 + x)3

≥ x− x2

2
− |x3|

3(1 + x)3
= x−

(1
2
+

|x|
3(1 + x)3

)
x2.

Therefore, when x > − 1
10 , we have (1 + x)3 > 2

3 and thus

x−
(1
2
+
|x|
2

)
x2 ≤ log(1 + x) ≤ x−

(1
2
− |x|

3

)
x2.
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Appendix E

Proofs for Chapter 6

E.1 Proof for single-timescale OMWU (Section 6.2)

Before delving into the main proof, we first record a useful lemma pertaining to a basic property
of zero-sum polymatrix games; the proof is deferred to Appendix E.3.1. For i ∈ V , we denote by
Ni = {j : (i, j) ∈ E} the neighbors of agent i in the graph (V,E). For notational simplicity, we

denote by x
1
= y the equivalence between two vectors x and y up to a global shift, i.e.,

x = y + c · 1 (E.1)

for some constant c ∈ R, where 1 is the all-one vector.

Lemma 35. For any zero-sum polymatrix game G, it holds that for π, π′ ∈ ∆(S) that
∑

i∈V

[
ui(πi, π

′
−i) + ui(π

′
i, π−i)

]
= 0. (E.2)

Or equivalently,
∑

i∈V
[
π⊤i Aiπ

′ + (π′i)
⊤Aiπ

]
= 0. It follows that

∑

i∈V

〈
πi − π′i, Ai(π − π′)

〉
=
∑

i∈V

[
ui(π) + ui(π

′)
]
−
∑

i∈V

[
π⊤i Aiπ

′ + (π′i)
⊤Aiπ

]
= 0.

E.1.1 Proof of Theorem 8

We start with the following lemma that characterizes the iterates of OMWU, which generalizes
Lemma 13 for zero-sum two-player games to zero-sum polymatrix games. The proof can be found
in Appendix E.3.2.

Lemma 36. The iterates of OMWU based on the update rule (6.12) satisfy
〈
log π(t+1) − (1− ητ) log π(t) − ητ log π⋆τ , π(t+1) − π⋆τ

〉
= 0.

To continue, by the definition of KL divergence, we have
〈
log π(t+1) − (1− ητ) log π(t) − ητ log π⋆τ , π(t+1)

〉

=
〈
log π(t+1) − (1− ητ) log π(t) − ητ log π⋆τ , π(t+1)

〉

−
〈
log π(t+1) − log π(t+1), π(t+1)

〉
−
〈
log π(t+1) − log π(t+1), π(t+1) − π(t+1)

〉

= (1− ητ)KL
(
π(t+1) ∥π(t)

)
+ ητKL

(
π(t+1) ∥π⋆τ

)
+ KL

(
π(t+1) ∥π(t+1)

)

−
〈
log π(t+1) − log π(t+1), π(t+1) − π(t+1)

〉
.
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In addition,

−
〈
log π(t+1) − (1− ητ) log π(t) − ητ log π⋆τ , π⋆τ

〉
= KL

(
π⋆τ ∥π(t+1)

)
− (1− ητ)KL

(
π⋆τ ∥π(t)

)
.

Summing up the above two relations, in view of Lemma 36, it holds that

KL
(
π⋆τ ∥π(t+1)

)
= (1− ητ)KL

(
π⋆τ ∥π(t)

)
− (1− ητ)KL

(
π(t+1) ∥π(t)

)
− KL

(
π(t+1) ∥π(t+1)

)

+
〈
log π(t+1) − log π(t+1), π(t+1) − π(t+1)

〉
− ητKL

(
π(t+1) ∥π⋆τ

)
.

(E.3)
We now proceed to bound the terms of interest one by one.

Bounding KL
(
π⋆τ ∥π(t)

)
. We aim to control the right-hand-side (RHS) of (E.3). Based on the

update rule of π
(t+1)
i in Algorithm 8, we have

log π
(t+1)
i − log π

(t+1)
i

1
= ηAi(π

(t) − π(t+1)) (E.4)

1
= ηAi(π

(t) − π(t)) + ηAi(π
(t) − π(t+1)).

It follows that

〈
log π

(t+1)
i − log π

(t+1)
i , π

(t+1)
i − π(t+1)

i

〉

= η
∑

j∈Ni

(π
(t+1)
i − π(t+1)

i )⊤Aij(π
(t)
j − π

(t)
j ) + η

∑

j∈Ni

(π
(t+1)
i − π(t+1)

i )⊤Aij(π
(t)
j − π

(t+1)
j )

≤ η
∑

j∈Ni

∥Aij∥∞
∥∥π(t+1)

i − π(t+1)
i

∥∥
1

∥∥π(t)j − π
(t)
j

∥∥
1
+ η

∑

j∈Ni

∥Aij∥∞
∥∥π(t+1)

i − π(t+1)
i

∥∥
1

∥∥π(t)j − π
(t+1)
j

∥∥
1

≤ η

2
∥A∥∞

∑

j∈Ni

(∥∥π(t)j − π
(t)
j

∥∥2
1
+
∥∥π(t+1)

j − π(t)j

∥∥2
1
+ 2
∥∥π(t+1)

i − π(t+1)
i

∥∥2
1

)

≤ η ∥A∥∞
∑

j∈Ni

(
KL
(
π
(t)
j ∥π

(t)
j

)
+ KL

(
π
(t+1)
j ∥π(t)j

)
+ 2KL

(
π
(t+1)
i ∥π(t+1)

i

))
, (E.5)

where the last line follows from Pinsker’s inequality. Summing the inequality over i ∈ V , we get

〈
log π(t+1) − log π(t+1), π(t+1) − π(t+1)

〉

≤ ηdmax ∥A∥∞
(
KL
(
π(t) ∥π(t)

)
+ KL

(
π(t+1) ∥π(t)

)
+ 2KL

(
π(t+1) ∥π(t+1)

))
.

Plugging the above inequality back into (E.3) yields

KL
(
π⋆τ ∥π(t+1)

)
≤ (1− ητ)KL

(
π⋆τ ∥π(t)

)
− (1− ητ − ηdmax ∥A∥∞)KL

(
π(t+1) ∥π(t)

)

− (1− 2ηdmax ∥A∥∞)KL
(
π(t+1) ∥π(t+1)

)
+ ηdmax ∥A∥∞ KL

(
π(t) ∥π(t)

)

− ητKL
(
π(t+1) ∥π⋆τ

)
. (E.6)

With the choice of the learning rate

0 < η ≤ min

{
1

2τ
,

1

4dmax ∥A∥∞

}
,
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it holds that 1− ητ − ηdmax ∥A∥∞ > 0 and

ηdmax ∥A∥∞ ≤
1

4
≤ (1− ητ)(1− 2ηdmax ∥A∥∞). (E.7)

This allows us to further relax (E.6) by

KL
(
π⋆τ ∥π(t+1)

)
+ (1− 2ηdmax ∥A∥∞)KL

(
π(t+1) ∥π(t+1)

)

≤ (1− ητ)KL
(
π⋆τ ∥π(t)

)
+ ηdmax ∥A∥∞ KL

(
π(t) ∥π(t)

)

≤ (1− ητ)
(
KL
(
π⋆τ ∥π(t)

)
+ (1− 2ηdmax ∥A∥∞)KL

(
π(t) ∥π(t)

))
.

Let us now introduce the potential function of iterates

L(t) := KL
(
π⋆τ ∥π(t)

)
+ (1− 2ηdmax ∥A∥∞)KL

(
π(t) ∥π(t)

)
,

which allows us to simply the previous inequality as

L(t+1) ≤ (1− ητ)L(t) ≤ (1− ητ)t+1L(0) = (1− ητ)t+1KL
(
π⋆τ ∥π(0)

)
, (E.8)

where the last equality follows from the definition π(0) = π(0). Hence, we have

KL
(
π⋆τ ∥π(t)

)
≤ L(t) ≤ (1− ητ)tKL

(
π⋆τ ∥π(0)

)
.

Bounding KL
(
π⋆τ ∥π(t+1)

)
. Following similar approaches to (E.5), we can bound

−
〈
π⋆i,τ − π(t+1)

i , log π
(t+1)
i − log π

(t+1)
i

〉

= η(π
(t+1)
i − π⋆i,τ )⊤Ai(π

(t) − π(t)) + η(π
(t+1)
i − π⋆i,τ )⊤Ai(π

(t) − π(t+1))

≤ η ∥A∥∞
∑

j∈Ni

(
KL
(
π
(t)
j ∥π

(t)
j

)
+ KL

(
π
(t+1)
j ∥π(t)j

)
+ 2KL

(
π⋆i,τ ∥π(t+1)

i

))
. (E.9)

Summing the inequality over i ∈ V leads to

−
〈
π⋆τ − π(t+1), log π(t+1) − log π(t+1)

〉

≤ ηdmax ∥A∥∞
[
KL
(
π(t) ∥π(t)

)
+ KL

(
π(t+1) ∥π(t)

)
+ 2KL

(
π⋆τ ∥π(t+1)

) ]
.

On the other hand, by the definition of KL divergence, we have

KL
(
π⋆τ ∥π(t+1)

)
= KL

(
π⋆τ ∥π(t+1)

)
− KL

(
π(t+1) ∥π(t+1)

)
−
〈
π⋆τ − π(t+1), log π(t+1) − log π(t+1)

〉
.

(E.10)
Combining the above two inequalities, we get

(1− 2ηdmax ∥A∥∞)KL
(
π⋆τ ∥π(t+1)

)

≤ KL
(
π⋆τ ∥π(t+1)

)
+ ηdmax ∥A∥∞

(
KL
(
π(t) ∥π(t)

)
+ KL

(
π(t+1) ∥π(t)

))
.
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Plugging the above inequality back into (E.6), we have

(1− 2ηdmax ∥A∥∞)KL
(
π⋆τ ∥π(t+1)

)

≤ (1− ητ)KL
(
π⋆τ ∥π(t)

)
− (1− ητ − 2dmaxη ∥A∥∞)KL

(
π(t+1) ∥π(t)

)
− ητKL

(
π(t+1) ∥π⋆τ

)

− (1− 2ηdmax ∥A∥∞)KL
(
π(t+1) ∥π(t+1)

)
+ 2ηdmax ∥A∥∞ KL

(
π(t) ∥π(t)

)

≤ (1− ητ)KL
(
π⋆τ ∥π(t)

)
+ 2ηdmax ∥A∥∞ KL

(
π(t) ∥π(t)

)

≤ KL
(
π⋆τ ∥π(t)

)
+ (1− 2ηdmax ∥A∥∞)KL

(
π(t) ∥π(t)

)
= L(t),

where the second and third inequalities follow from the choice of the learning rate, and the last line
follows from the definition of the potential function L(t). Then the result follows from (E.8) as

1

2
KL
(
π⋆τ ∥π(t+1)

)
≤ (1− 2ηdmax ∥A∥∞)KL

(
π⋆τ ∥π(t+1)

)
≤ L(t) ≤ (1− ητ)tKL

(
π⋆τ ∥π(0)

)
.

Bounding the QRE-Gap. Finally, we bound the QRE-gap, which can be linked to the KL
divergence using the following lemma. The proof can be found in Appendix E.3.3.

Lemma 37. For any π ∈ ∆(S) and QRE π⋆τ ∈ ∆(S), it holds that

QRE-Gapτ (π) ≤ τKL (π ∥π⋆τ ) +
d2max ∥A∥2∞

τ
KL (π⋆τ ∥π) .

Lemma 37 tells us

QRE-Gapτ (π
(t)) ≤ τKL

(
π(t) ∥π⋆τ

)
+
d2max ∥A∥2∞

τ
KL
(
π⋆τ ∥π(t)

)
. (E.11)

With KL
(
π⋆τ ∥π(t)

)
controlled in the above, we still need to control KL

(
π(t) ∥π⋆τ

)
. From (E.6), it

follows that

τKL
(
π(t) ∥π⋆τ

)
≤ η−1(1− ητ)L(t−1) ≤ η−1(1− ητ)tL(0) = η−1(1− ητ)tKL

(
π⋆τ ∥π(0)

)
.

Plugging them back to (E.11), we arrive at

QRE-Gapτ (π
(t)) ≤

(
η−1 + 2τ−1d2max∥A∥2∞

)
(1− ητ)t−1KL

(
π⋆τ ∥π(0)

)
.

E.1.2 Proof of Theorem 9

We begin with bounding the KL divergence KL
(
π⋆τ ∥π(t)

)
and then move to bound the QRE-gap

by linking it to the KL divergence.

Bounding the term KL
(
π⋆τ ∥π(t)

)
. We start with the following equation

(1− ητ)KL
(
π⋆i,τ ∥π(t)i

)
= (1− ητ)KL

(
π
(t+1)
i ∥π(t)i

)
+ ητKL

(
π
(t+1)
i ∥π⋆i,τ

)
+ KL

(
π
(t+1)
i ∥π(t+1)

i

)

+ KL
(
π⋆i,τ ∥π(t+1)

i

)
−
〈
log π

(t+1)
i − log π

(t+1)
i , π

(t+1)
i − π(t+1)

i

〉

+ η(π
(t+1)
i − π⋆i,τ )⊤Ai(π

(κ
(t)
i ) − π⋆τ ) (E.12)
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where its proof follows a similar deduction as (E.3). Our first target is to bound the last two terms
on the RHS of (E.12) with

ητKL
(
π
(t+1)
i ∥π⋆i,τ

)
+ KL

(
π
(t+1)
i ∥π(t+1)

i

)
+ (1− ητ)KL

(
π
(t+1)
i ∥π(t)i

)
.

Let us introduce the potential function of iterates

Ψ
(l)
i := KL

(
π
(l+1)
i ∥π(l)i

)
+KL

(
π
(l)
i ∥π

(l)
i

)
, Ψ(l) =

∑

i∈V
Ψ

(l)
i = KL

(
π(l+1) ∥π(l)

)
+KL

(
π(l) ∥π(l)

)
,

which will be used repetitively in the rest of this proof. For notational simplicity, let Ψ
(l)
i = 0 when

l < 0.

Step 1: bounding
〈
log π

(t+1)
i − log π

(t+1)
i , π

(t+1)
i − π(t+1)

i

〉
. Following a similar argument as

(E.5), we get

〈
log π

(t+1)
i − log π

(t+1)
i , π

(t+1)
i − π(t+1)

i

〉

= η
∑

j∈Ni

(π
(t+1)
i − π(t+1)

i )⊤Aij(π
(κ

(t+1)
i )

j − π(κ
(t)
i )

j )

≤ ηdmax ∥A∥∞ KL
(
π
(t+1)
i ∥π(t+1)

i

)
+
η ∥A∥∞

2

∑

j∈Ni

∥∥π(κ
(t+1)
i )

j − π(κ
(t)
i )

j

∥∥2
1
. (E.13)

To control the term
∥∥π(κ

(t+1)
i )

j − π(κ
(t)
i )

j

∥∥2
1
, when t = 0, we have

∥∥π(κ
(t+1)
i )

j − π(κ
(t)
i )

j

∥∥2
1
=
∥∥π(κ

(t+1)
i )

j − π(0)j

∥∥2
1
≤
∥∥π(1)j − π

(0)
j

∥∥2
1
≤ 2Ψ

(0)
j (E.14)

by Pinsker’s inequality. For t ≥ 1, consider the decomposition

π
(t)
j − π

(t−k)
j =

t−1∑

l=t−k

(
π
(l+1)
j − π(l)j

)
, ∀1 ≤ k ≤ t,

it then follows that

∥∥π(t)j − π
(t−k)
j

∥∥2
1
≤ k

t−1∑

l=t−k

∥∥π(l+1)
j − π(l)j

∥∥2
1

≤ 2k

t−1∑

l=t−k

(∥∥π(l+1)
j − π(l)j

∥∥2
1
+
∥∥π(l)j − π

(l)
j

∥∥2
1

)

≤ 4k
t−1∑

l=t−k

Ψ
(l)
j , (E.15)

where the last line applies Pinsker’s inequality. Depending on whether γ
(t+1)
i > 0, we proceed to

bound the terms
∥∥π(κ

(t+1)
i )

j − π(κ
(t)
i )

j

∥∥2
1
in (E.13) considering the following two cases based on (E.15).
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• γ
(t+1)
i = 0. Then

∥∥π(κ
(t+1)
i )

j − π(κ
(t)
i )

j

∥∥2
1
≤ 2
∥∥π(t+1)

j − π(t)j

∥∥2
1
+ 2
∥∥π(t)j − π

(κ
(t)
i )

j

∥∥2
1

≤ 8Ψ
(t)
j + 8γ

(t)
i

t−1∑

l=t−γ
(t)
i

Ψ
(l)
j ,

where the last step uses (E.15) and

∥∥π(t+1)
j − π(t)j

∥∥2
1
≤ 2

(∥∥π(t+1)
j − π(t)j

∥∥2
1
+
∥∥π(t)j − π

(t)
j

∥∥2
1

)
≤ 4Ψ

(t)
j

via again Pinsker’s inequality.

• γ
(t+1)
i > 0. Then it follows similarly that

∥∥π(κ
(t+1)
i )

j − π(κ
(t)
i )

j

∥∥2
1
≤

t−1∑

l=t+1−γ
(t+1)
i

∥∥π(l+1)
j − π(l)j

∥∥2
1
+

t−1∑

l=t−γ
(t)
i

∥∥π(l+1)
j − π(l)j

∥∥2
1

≤ 4γ
(t+1)
i

t−1∑

l=t−γ
(t+1)
i

Ψ
(l)
j + 4γ

(t)
i

t−1∑

l=t−γ
(t)
i

Ψ
(l)
j .

Combining the above two bounds together, we get

∥∥π(κ
(t+1)
i )

j − π(κ
(t)
i )

j

∥∥2
1
≤ 8Ψ

(t)
j + 8γ

(t)
i

t−1∑

l=t−γ
(t)
i

Ψ
(l)
j + 4γ

(t+1)
i

t−1∑

l=t−γ
(t+1)
i

Ψ
(l)
j (E.16)

when t > 0. In view of (E.14) when t = 0, the above bound (E.16) holds for all t ≥ 0. Plugging
the above inequality into (E.13) yields

〈
log π

(t+1)
i − log π

(t+1)
i , π

(t+1)
i − π(t+1)

i

〉
≤ 2η ∥A∥∞

∑

j∈Ni

t−1∑

l=t−γ
(t+1)
i

γ
(t+1)
i Ψ

(l)
j + 4η ∥A∥∞

∑

j∈Ni

t−1∑

l=t−γ
(t)
i

γ
(t)
i Ψ

(l)
j

+ 4η ∥A∥∞
∑

j∈Ni

Ψ
(t)
j + ηdmax ∥A∥∞ KL

(
π
(t+1)
i ∥π(t+1)

i

)
.

(E.17)

Step 2: bounding (π
(t+1)
i − π⋆i,τ )⊤Ai(π

(κ
(t+1)
i ) − π⋆τ ). Let us begin with the following decompo-

sition

(π
(t+1)
i − π⋆i,τ )⊤Ai(π

(κ
(t+1)
i ) − π⋆τ ) = (π

(t+1)
i − π⋆i,τ )⊤Ai(π

(t+1) − π⋆τ )

+ (π
(t+1)
i − π⋆i,τ )⊤Ai(π

(κ
(t+1)
i ) − π(t+1)), (E.18)
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where the second term in the RHS of (E.18) can be bounded by

(π
(t+1)
i − π⋆i,τ )⊤Ai(π

(κ
(t+1)
i ) − π(t+1))

=
∑

j∈Ni

(π
(t+1)
i − π⋆i,τ )⊤Aij(π

(κ
(t+1)
i )

j − π(t+1)
j )

≤ ∥A∥∞
∑

j∈Ni

∥∥π(t+1)
i − π⋆i,τ

∥∥
1

∥∥π(κ
(t+1)
i )

j − π(t+1)
j

∥∥
1

≤ 1

2
∥A∥∞

∑

j∈Ni

(
τ

dmax ∥A∥∞
∥∥π(t+1)

i − π⋆i,τ
∥∥2
1
+
dmax ∥A∥∞

τ

∥∥π(κ
(t+1)
i )

j − π(t+1)
j

∥∥2
1

)

≤ τKL
(
π
(t+1)
i ∥π⋆i,τ

)
+
dmax ∥A∥2∞

2τ

∑

j∈Ni

∥∥π(κ
(t+1)
i )

j − π(t+1)
j

∥∥2
1
.

Following similar deduction of (E.16) for the second term, we attain

(π
(t+1)
i − π⋆i,τ )⊤Ai(π

(κ
(t+1)
i ) − π(t+1))

≤ τKL
(
π
(t+1)
i ∥π⋆i,τ

)
+

4dmax ∥A∥2∞
τ

∑

j∈Ni

(
Ψ

(t)
j +

t−1∑

l=t−γ
(t+1)
i

γ
(t+1)
i Ψ

(l)
j

)
.

Plugging the above inequality back to (E.18) results in

(π
(t+1)
i − π⋆i,τ )⊤Ai(π

(κ
(t+1)
i ) − π⋆τ ) ≤ (π

(t+1)
i − π⋆i,τ )⊤Ai(π

(t+1) − π⋆τ )

+ τKL
(
π
(t+1)
i ∥π⋆i,τ

)
+

4dmax ∥A∥2∞
τ

∑

j∈Ni

(
Ψ

(t)
j +

t−1∑

l=t−γ
(t+1)
i

γ
(t+1)
i Ψ

(l)
j

)
. (E.19)

Step 3: combining the bounds. For simplicity, we introduce the short-hand notation

cτ = 1 +
dmax ∥A∥∞

τ
and cA = dmax ∥A∥∞ . (E.20)

Combining (E.17) and (E.19) into (E.12), and summing over i ∈ V gives

(1− ητ)KL
(
π⋆τ ∥π(t)

)

≥ (1− ητ)KL
(
π(t+1) ∥π(t)

)
+ (1− 2ηcA)KL

(
π(t+1) ∥π(t+1)

)
+ KL

(
π⋆τ ∥π(t+1)

)

− 4η ∥A∥∞
∑

i∈V

∑

j∈Ni

(
t−1∑

l=t−γ
(t+1)
i

cτγ
(t+1)
i Ψ

(l)
j +

t−1∑

l=t−γ
(t)
i

γ
(t)
i Ψ

(l)
j + cτΨ

(t)
j

)

≥ KL
(
π⋆τ ∥π(t+1)

)
+ (1− 4ηcA(cτ + 1))Ψ(t)

− 4η ∥A∥∞
∑

i∈V

∑

j∈Ni

(
cτ

t−1∑

l=t−γ
(t+1)
i

γ
(t+1)
i Ψ

(l)
j +

t−1∑

l=t−γ
(t)
i

γ
(t)
i Ψ

(l)
j

)
, (E.21)

where we make use of the fact
∑

i∈V
(π

(t+1)
i − π⋆i,τ )⊤Ai(π

(t+1) − π⋆τ ) = 0
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from Lemma 35 in the first inequality, and the second inequality uses the relation

∑

i∈V

∑

j∈Ni

Ψ
(t)
j =

∑

i∈V
diΨ

(t)
i ≤ dmaxΨ

(t).

Step 4: finishing up via averaging the delay. We now evaluate the expectation of KL
(
π⋆τ ∥π(t+1)

)
.

Recall that we use subscript Est [·] to represent the conditional expectation given st = {γ(t)i }i∈V . We

shall first control the conditional expectation of the last term in (E.21). Observing that π
(l+1)
j , π

(l)
j

are independent of γ
(t)
i for j ∈ Ni and l ≤ t− 1. Using the definition of E(t− l), we have

∑

i∈V

∑

j∈Ni

Est

[
γ
(t)
i

t−1∑

l=t−γ
(t)
i

Ψ
(l)
j

]
=
∑

i∈V

t−1∑

l=0

∑

j∈Ni

E
t−l≤γ

(t)
i

[
γ
(t)
i Ψ

(l)
j

]

≤
t−1∑

l=0

E(t− l)
∑

i∈V

∑

j∈Ni

Ψ
(l)
j

=
t−1∑

l=0

E(t− l)
∑

i∈V

∑

j∈Ni

Ψ
(l)
i

≤ dmax

t−1∑

l=0

E(t− l)
∑

i∈V
Ψ

(l)
i = dmax

t−1∑

l=0

E(t− l)Ψ(l), (E.22)

where the second line follows from the definition of E(t − l) in Assumption 4. Applying a similar

argument to bound
∑

i∈V
∑

j∈Ni
Eγ(t+1)

[
γ
(t+1)
i

∑t−1

l=t−γ
(t+1)
i

Ψ
(l)
j

]
, and taking expectation of st, γ

(t+1)

on both sides of (E.21), we get

(1− ητ)Est

[
KL
(
π⋆τ ∥π(t)

)]
≥ Est,γ(t+1)

[
KL
(
π⋆τ ∥π(t+1)

)
+ (1− 4cA(cτ + 1))Ψ(t)

]

− 4ηcA(cτ + 1)
t−1∑

l=0

E(t− l)Ψ(l).

Taking expectation on both sides over all the delays yields

(1− ητ)E
[
KL
(
π⋆τ ∥π(t)

)]

≥ E
[
KL
(
π⋆τ ∥π(t+1)

)]
+ E

[
(1− 4ηcA(cτ + 1))Ψ(t) − 4ηcA(cτ + 1)

∑t−1

l=0
E(t− l)Ψ(l)

︸ ︷︷ ︸
=:U(t)

]
. (E.23)

Telescoping over t = 0, 1, . . . , T , we get

(1− ητ)T+1KL
(
π⋆τ ∥π(0)

)
≥ E

[
KL
(
π⋆τ ∥π(T+1)

)]
+

T∑

t=0

(1− ητ)T−tE
[
U (t)

]
, (E.24)

which leads to the desired bound if

t∑

t=0

(1− ητ)T−tE
[
U (t)

]
≥ 0. (E.25)
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Proof of (E.25). To begin, notice that with the choice of the learning rate

0 < η ≤ min

{
τ

24d2max ∥A∥2∞ (L+ 1)
,
ζ − 1

ζτ

}
,

it follows that
1

1− ητ ≤ ζ (E.26a)

and

4ηcA(cτ + 1)(L+ 1) < 4
τ

24d2max ∥A∥2∞ (L+ 1)
dmax ∥A∥∞

(
2 +

dmax ∥A∥∞
τ

)
(L+ 1)

=
τ

6dmax ∥A∥∞

(
2 +

dmax ∥A∥∞
τ

)
=

τ

3dmax ∥A∥∞
+

1

6
≤ 1

2
(E.26b)

as τ ≤ dmax ∥A∥∞. Both of these relations will be useful in our follow-up analysis.
Now, taking the definition of U (t) (cf. (E.23)), we have

T∑

t=0

(1− ητ)T−tU (t) =
T∑

t=0

(1− ητ)T−t

[
(1− 4ηcA(cτ + 1))Ψ(t) − 4ηcA(cτ + 1)

t−1∑

l=0

E(t− l)Ψ(l)

]
,

where the second half of the RHS can be further controlled via

T∑

t=0

(1− ητ)T−t
t−1∑

l=0

E(t− l)Ψ(l) =
T∑

t=0

Ψ(t)
T∑

l=t+1

(1− ητ)T−lE(l − t)

≤
T∑

t=0

Ψ(t)
T−t∑

l′=0

(1− ητ)T−(t+l′)E(l′)

=
T∑

t=0

(1− ητ)T−tΨ(t)
T−t∑

l′=0

(1− ητ)−l′E(l′)

≤
T∑

t=0

(1− ητ)T−tΨ(t)
∞∑

l=0

ζ lE(l)

=

T∑

t=0

(1− ητ)T−tLΨ(t),

where the first line follows by changing the order of summation, the second line follows from the
change of variable l′ = l − t, and the last line follows from (E.26a) and the definition of L in
Assumption 4. Plugging the above relation back leads to

T∑

t=0

(1− ητ)T−tU (t) ≥
T∑

t=0

(1− ητ)T−t [(1− 4ηcA(cτ + 1))− 4ηcA(cτ + 1)L] Ψ(t)

≥
T∑

t=0

1

2
(1− ητ)T−tΨ(t) ≥ 0, (E.27)

where the second line results from (E.26b).
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Bounding the term KL
(
π⋆τ ∥π(t+1)

)
. With a similar deduction of (E.3), we get

(1− ητ)KL
(
π⋆τ ∥π(t)

)
+ η

∑

i∈V
(π

(t+1)
i − π⋆τ )⊤Ai(π

(κ
(t)
i ) − π⋆τ ) = KL

(
π⋆τ ∥π(t+1)

)
+ (1− ητ)KL

(
π(t+1) ∥π(t)

)

+ ητKL
(
π(t+1) ∥π⋆τ

)
. (E.28)

Following the similar argument of (E.19), we have

(π
(t+1)
i − π⋆i,τ )⊤Ai(π

(κ
(t)
i ) − π⋆τ ) ≤ (π

(t+1)
i − π⋆i,τ )⊤Ai(π

(t+1) − π⋆τ )

+
τ

2
KL
(
π
(t+1)
i ∥π⋆i,τ

)
+

8dmax ∥A∥2∞
τ

∑

j∈Ni

(
Ψ

(t)
j +

t−1∑

l=t−γ
(t)
i

γ
(t)
i Ψ

(l)
j

)
.

Summing over i ∈ V and plugging into (E.28) yields

(1− ητ)KL
(
π⋆τ ∥π(t)

)
+

8ηdmax ∥A∥2∞
τ

∑

(i,j)∈E

(
Ψ

(t)
j +

t−1∑

l=t−γ
(t)
i

γ
(t)
i Ψ

(l)
j

)

≥ KL
(
π⋆τ ∥π(t+1)

)
+ (1− ητ)KL

(
π(t+1) ∥π(t)

)
+
ητ

2
KL
(
π(t+1) ∥π⋆τ

)

≥ KL
(
π⋆τ ∥π(t+1)

)
+
ητ

2
KL
(
π(t+1) ∥π⋆τ

)
.

Taking expectation on both sides over all delays and using (E.22) leads to

(1− ητ)E
[
KL
(
π⋆τ ∥π(t)

)]
+

8ηd2max ∥A∥2∞
τ

E

[
Ψ(t) +

t−1∑

l=0

E(t− l)Ψ(l)

]

≥ E
[
KL
(
π⋆τ ∥π(t+1)

)]
+
ητ

2
E
[
KL
(
π(t+1) ∥π⋆τ

)]
. (E.29)

Notice that with the choice of the learning rate

0 < η ≤ min

{
τ

24d2max ∥A∥2∞ (L+ 1)
,
ζ − 1

ζτ

}
,

we have
8(L+ 1)ηd2max ∥A∥2∞

τ
≤ 1

2

and

(1− ητ)t+1KL
(
π⋆τ ∥π(0)

)
≥ 1

2

t∑

l=0

(1− ητ)t−lE
[
Ψ(l)

]

by combining (E.27) and (E.24). It follows that

E
[
Ψ(t)

]
≤ 2(1− ητ)t+1KL

(
π⋆τ ∥π(0)

)
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and

E

[
t−1∑

l=0

E(t− l)Ψ(l)

]
(i)

≤ E

[
t−1∑

l=0

(1− ητ)t−lΨ(l) · E(t− l)ζt−l

]

≤ E

[
t−1∑

l=0

(1− ητ)t−lΨ(l)
t−1∑

l=0

E(t− l)ζt−l

]

(ii)

≤ 2L(1− ητ)t+1KL
(
π⋆τ ∥π(0)

)
,

where (i) is by the bound (1−ητ)−1 ≤ ζ and (ii) uses the definition of L in Assumption 4. Plugging
the above inequalities into (E.29) leads to

(1− ητ)E
[
KL
(
π⋆τ ∥π(t)

)]
+ (1− ητ)t+1KL

(
π⋆τ ∥π(0)

)

≥ E
[
KL
(
π⋆τ ∥π(t+1)

)]
+
ητ

2
E
[
KL
(
π(t+1) ∥π⋆τ

)]
.

Then from (E.24) we have

E
[
KL
(
π⋆τ ∥π(t+1)

)]
≤ E

[
KL
(
π⋆τ ∥π(t+1)

)]
+
ητ

2
E
[
KL
(
π(t+1) ∥π⋆τ

)]

≤ (1− ητ)t+1KL
(
π⋆τ ∥π(0)

)
+ (1− ητ)t+1KL

(
π⋆τ ∥π(0)

)

= 2(1− ητ)t+1KL
(
π⋆τ ∥π(0)

)
. (E.30)

Bounding the QRE-Gap. Combining (E.11) and (E.30), we have

E
[
QRE-Gapτ (π

(t+1))
]
≤ τE

[
KL
(
π(t+1) ∥π⋆τ

)]
+
d2max ∥A∥2∞

τ
E
[
KL
(
π⋆τ ∥π(t+1)

)]

≤ 2

η

(ητ
2
E
[
KL
(
π(t+1) ∥π⋆τ

)]
+ E

[
KL
(
π⋆τ ∥π(t+1)

)])

≤ 4(1− ητ)t+1

η
KL
(
π⋆τ ∥π(0)

)
,

where the second line uses the learning rate bound

2

η
>

24d2max ∥A∥2∞ (L+ 1)

τ
>
d2max ∥A∥2∞

τ
.

E.2 Proof for two-timescale OMWU (Section 6.3)

E.2.1 Proof of Theorem 10

Bounding KL
(
π⋆τ ∥π(t)

)
. For notational convenience, we set π(t) = π(t) = π(0) for t < 0. The

following lemma parallels Lemma 36 by focusing on delayed feedbacks. The proof is postponed to
Appendix E.3.4.

Lemma 38. Assuming constant delays γ
(t)
i = γ, the iterates of OMWU based on the update rule

(6.13) satisfy 〈
log π(t+1) − (1− ητ) log π(t) − ητ log π⋆τ , π(t−γ+1) − π⋆τ

〉
= 0.

170



By following a similar argument in (E.3), we conclude that

KL
(
π⋆τ ∥π(t+1)

)
= (1− ητ)KL

(
π⋆τ ∥π(t)

)
− (1− ητ)KL

(
π(t−γ+1) ∥π(t)

)
− KL

(
π(t+1) ∥π(t−γ+1)

)

+
〈
log π(t−γ+1) − log π(t+1), π(t−γ+1) − π(t+1)

〉
− ητKL

(
π(t−γ+1) ∥π⋆τ

)
.

(E.31)

It boils down to control the term −
〈
log π(t−γ+1) − log π(t+1), π(t−γ+1) − π(t+1)

〉
. When t ≥ γ, by

taking logarithm on the both sides of the update rules (6.9) and (6.13), we have

log π
(t−γ+1)
i

1
= (1− ητ) log π(t−γ)

i + ηAiπ
(t−2γ)

and

log π
(t+1)
i

1
= (1− ητ) log π(t)i + ηAiπ

(t−γ+1)

1
= (1− ητ)γ+1 log π

(t−γ)
i + η

γ∑

l=0

(1− ητ)lAiπ
(t−γ−l+1).

Subtracting the above equalities and taking inner product with π
(t−γ+1)
i − π(t+1)

i gives

〈
log π

(t−γ+1)
i − log π

(t+1)
i , π

(t−γ+1)
i − π(t+1)

i

〉

= η

γ∑

l=0

(1− ητ)l
〈
π
(t−γ+1)
i − π(t+1)

i , Ai(π
(t−2γ) − π(t−γ−l+1))

〉
,

where the log π
(t−γ)
i terms cancel out due to the choice 1− ητ = (1− ητ)γ+1. Summing over i ∈ V ,

〈
log π(t−γ+1) − log π(t+1), π(t−γ+1) − π(t+1)

〉

= η
∑

i∈V

γ∑

l=0

(1− ητ)l
〈
π
(t−γ+1)
i − π(t+1)

i , Ai(π
(t−2γ) − π(t−γ−l+1))

〉

≤ η ∥A∥∞
∑

(i,j)∈E

γ∑

l=0

(1− ητ)l
∥∥π(t−γ+1)

i − π(t+1)
i

∥∥
1

∥∥π(t−2γ)
j − π(t−γ−l+1)

j

∥∥
1
. (E.32)

Using the triangle inequality, we can bound
∥∥π(t−2γ) − π(t−γ−l+1)

∥∥
1
as

∥∥π(t−2γ) − π(t−γ−l+1)
∥∥
1
≤

t−l∑

l1=t−γ

∥∥π(l1−γ)
i − π(l1−γ+1)

j

∥∥
1

≤
t−l∑

l1=t−γ

(∥∥π(l1−γ)
i − π(l1)i

∥∥
1
+
∥∥π(l1−γ+1)

j − π(l1)j

∥∥
1

)
.
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Substitution of the bound into (E.32) yields

〈
log π(t−γ+1) − log π(t+1), π(t−γ+1) − π(t+1)

〉

≤ η ∥A∥∞
∑
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(1− ητ)l
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i
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1
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1
+
∥∥π(l1−γ+1)

j − π(l1)j

∥∥
1

)

= η ∥A∥∞
∑
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l=0
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∥∥π(t−γ+1)

i − π(t+1)
i

∥∥
1

(∥∥π(l1−γ)
j − π(l1)j

∥∥
1
+
∥∥π(l1−γ+1)

j − π(l1)j

∥∥
1

)

≤ 1

2
η ∥A∥∞

∑

(i,j)∈E

[
2

t∑

l1=t−γ

t−l1∑

l=0

(1− ητ)l
∥∥π(t−γ+1)

i − π(t+1)
i

∥∥2
1

+
t∑

l1=t−γ

t−l1∑

l=0

(1− ητ)l
(∥∥π(l1−γ)

j − π(l1)j

∥∥2
1
+
∥∥π(l1−γ+1)

j − π(l1)j

∥∥2
1

)]

≤ ηdmax ∥A∥∞
[
2(γ + 1)2KL

(
π(t+1) ∥π(t−γ+1)

)

+

t∑

l1=t−γ

t−l1∑

l=0

(1− ητ)l
(
KL
(
π(l1) ∥π(l1−γ)

)
+ KL

(
π(l1−γ+1) ∥π(l1)

))]
. (E.33)

Plugging the above inequality into (E.31) and recursively applying the inequality gives

KL
(
π⋆τ ∥π(t+1)

)
+ KL

(
π(t+1) ∥π(t−γ+1)

)
+ ητKL

(
π(t−γ+1) ∥π⋆τ

)

≤ (1− ητ)t+1−γKL
(
π⋆τ ∥π(γ)

)
−

t∑

l1=γ

(1− ητ)t−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))

+ ηdmax ∥A∥∞
[
2(γ + 1)2

t∑

l1=γ

(1− ητ)t−l1KL
(
π(l1+1) ∥π(l1−γ+1)

)

+

t∑

t2=γ

(1− ητ)t−l2

l2∑

l1=l2−γ

l2−l1∑

l=0

(1− ητ)l
(
KL
(
π(l1) ∥π(l1−γ)

)
+ KL

(
π(l1−γ+1) ∥π(l1)

))]

(i)

≤ (1− ητ)t+1−γKL
(
π⋆τ ∥π(γ)

)
−

t∑

l1=γ

(1− ητ)t−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))

+ 2(γ + 1)2ηdmax ∥A∥∞
t∑

l1=γ

(1− ητ)t−l1KL
(
π(l1+1) ∥π(l1−γ+1)

)

+ 2(γ + 1)2ηdmax ∥A∥∞
t∑

l1=0

(1− ητ)t−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))

(ii)

≤ (1− ητ)t+1−γKL
(
π⋆τ ∥π(γ)

)

+ 2(γ + 1)2ηdmax ∥A∥∞
γ−1∑

l1=0

(1− ητ)t−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))
,

(E.34)
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where (i) results from basic calculation

t∑

t2=γ

(1− ητ)t−l2

l2∑

l1=l2−γ

l2−l1∑

l=0

(1− ητ)l
(
KL
(
π(l1) ∥π(l1−γ)

)
+ KL

(
π(l1−γ+1) ∥π(l1)

))

=
t∑

l1=0

(1− ητ)t−l1

l1+γ∑

l2=l1

l2−l1∑

l=0

(1− ητ)l1−l2+l
(
KL
(
π(l1) ∥π(l1−γ)

)
+ KL

(
π(l1−γ+1) ∥π(l1)

))

=
t∑

l1=0

(1− ητ)t−l1

γ∑

l′=0

l′∑

l=0

(1− ητ)l−l′
(
KL
(
π(l1) ∥π(l1−γ)

)
+ KL

(
π(l1−γ+1) ∥π(l1)

))

≤
t∑

l1=0

(1− ητ)t−l1(γ + 1)2
(
1− 1

2(γ + 1)

)−(γ+1)
(1− ητ)

(
KL
(
π(l1) ∥π(l1−γ)

)
+ KL

(
π(l1−γ+1) ∥π(l1)

))

≤ 2(γ + 1)2
t∑

l1=0

(1− ητ)t−l1(1− ητ)
(
KL
(
π(l1) ∥π(l1−γ)

)
+ KL

(
π(l1−γ+1) ∥π(l1)

))

≤ 2(γ + 1)2
t∑

l1=0

(1− ητ)t−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))

and (ii) is due to η ≤ min
{

1
2τ(γ+1) ,

1
5dmax∥A∥∞(γ+1)2

}
. To proceed, we introduce the following lemma

concerning the error KL
(
π⋆τ ∥π(γ)

)
, with the proof postponed to Appendix E.3.5.

Lemma 39. With constant delays γ
(t)
i = γ, the iterates of OMWU based on the update rule (6.13)

satisfy

KL
(
π⋆τ ∥π(γ)

)

≤ (1− ητ)γKL
(
π⋆τ ∥π(0)

)
−

γ−1∑

l1=0

(1− ητ)γ−1−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))

+ 2ηγ2dmax ∥A∥∞.

With the lemma above in mind, we can continue to bound (E.34) by

KL
(
π⋆τ ∥π(t+1)

)

≤ (1− ητ)t+1KL
(
π⋆τ ∥π(0)

)
+ 2(1− ητ)t+1−γηγ2dmax ∥A∥∞

−
γ−1∑

l1=0

(1− ητ)t−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))

+ 2(γ + 1)2ηdmax ∥A∥∞
γ−1∑

l1=0

(1− ητ)t−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))

≤ (1− ητ)t+1KL
(
π⋆τ ∥π(0)

)
+ (1− ητ)t+1−γ .

173



Bounding KL
(
π⋆τ ∥π(t−γ+1)

)
. By definition of KL divergence, we have

KL
(
π⋆τ ∥π(t−γ+1)

)

= KL
(
π⋆τ ∥π(t+1)

)
+
〈
π⋆τ , log π

(t+1) − log π(t−γ+1)
〉

= KL
(
π⋆τ ∥π(t+1)

)
+ KL

(
π(t+1) ∥π(t−γ+1)

)
+
〈
π⋆τ − π(t+1), log π(t+1) − log π(t−γ+1)

〉
. (E.35)

It remains to control the term
〈
π⋆τ − π(t+1), log π(t+1) − log π(t−γ+1)

〉
. By following a similar argu-

ment in (E.33), we have

〈
π⋆τ − π(t+1), log π(t+1) − log π(t−γ+1)

〉

= η
∑

i∈V

γ∑

l=0

(1− ητ)l
〈
π⋆i,τ − π(t+1)

i , Ai(π
(t−2γ) − π(t−γ−l+1))

〉

≤ η ∥A∥∞
∑

(i,j)∈E

γ∑

l=0

(1− ητ)l
∥∥π⋆i,τ − π(t+1)

i

∥∥
1

∥∥π(t−2γ)
j − π(t−γ−l+1)

j

∥∥
1

≤ η ∥A∥∞
∑

(i,j)∈E

γ∑

l=0

(1− ητ)l
t−l∑

l1=t−γ

∥∥π⋆i,τ − π(t+1)
i

∥∥
1

(∥∥π(l1−γ)
j − π(l1)j

∥∥
1
+
∥∥π(l1−γ+1)

j − π(l1)j

∥∥
1

)

= η ∥A∥∞
∑

(i,j)∈E

t∑

l1=t−γ

t−l1∑

l=0

(1− ητ)l
∥∥π⋆i,τ − π(t+1)

i

∥∥
1

(∥∥π(l1−γ)
j − π(l1)j

∥∥
1
+
∥∥π(l1−γ+1)

j − π(l1)j

∥∥
1

)

≤ ηdmax ∥A∥∞
[
2(γ + 1)2KL

(
π⋆τ ∥π(t+1)

)

+
t∑

l1=t−γ

t−l1∑

l=0

(1− ητ)l
(
KL
(
π(l1) ∥π(l1−γ)

)
+ KL

(
π(l1−γ+1) ∥π(l1)

))]
.
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Substitution of the above inequality into (E.35) yields

KL
(
π⋆τ ∥π(t−γ+1)

)
+ ητKL

(
π(t−γ+1) ∥π⋆τ

)

= (1 + 2(γ + 1)2ηdmax)KL
(
π⋆τ ∥π(t+1)

)
+ KL

(
π(t+1) ∥π(t−γ+1)

)
+ ητKL

(
π(t−γ+1) ∥π⋆τ

)

+ ηdmax ∥A∥∞
t∑

l1=t−γ

t−l1∑

l=0

(1− ητ)l
(
KL
(
π(l1) ∥π(l1−γ)

)
+ KL

(
π(l1−γ+1) ∥π(l1)

))

(i)

≤ 2
(
KL
(
π⋆τ ∥π(t+1)

)
+ KL

(
π(t+1) ∥π(t−γ+1)

)
+ ητKL

(
π(t−γ+1) ∥π⋆τ

))

+ 2(γ + 1)ηdmax ∥A∥∞
t∑

l1=0

(1− ητ)t−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))

(ii)

≤ 2(1− ητ)t+1−γKL
(
π⋆τ ∥π(γ)

)
− 2

t∑

l1=γ

(1− ητ)t−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))

+ 4(γ + 1)2ηdmax ∥A∥∞
t∑

l1=γ

(1− ητ)t−l1KL
(
π(l1+1) ∥π(l1−γ+1)

)

+ 6(γ + 1)2ηdmax ∥A∥∞
t∑

l1=0

(1− ητ)t−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))

≤ 2(1− ητ)t+1−γKL
(
π⋆τ ∥π(γ)

)

+ 6(γ + 1)2ηdmax ∥A∥∞
γ−1∑

l1=0

(1− ητ)t−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))
,

where (i) results from

t∑

l1=t−γ

t−l1∑

l=0

(1− ητ)l
(
KL
(
π(l1) ∥π(l1−γ)

)
+ KL

(
π(l1−γ+1) ∥π(l1)

))

=
t∑

l1=t−γ

(1− ητ)t−l1

t−l1∑

l=0

(1− ητ)l+l1−t
(
KL
(
π(l1) ∥π(l1−γ)

)
+ KL

(
π(l1−γ+1) ∥π(l1)

))

≤
t∑

l1=t−γ

(1− ητ)t−l1(γ + 1)(1− ητ)−(γ+1)(1− ητ)
(
KL
(
π(l1) ∥π(l1−γ)

)
+ KL

(
π(l1−γ+1) ∥π(l1)

))

≤ 2(γ + 1)
t∑

l1=0

(1− ητ)t−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))
.
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and (ii) is due to the bound established in (E.34). Finally, applying Lemma 39 yields

KL
(
π⋆τ ∥π(t−γ+1)

)
+ ητKL

(
π(t−γ+1) ∥π⋆τ

)

≤ 2(1− ητ)t+1KL
(
π⋆τ ∥π(0)

)
+ 4(1− ητ)t+1−γηγ2dmax ∥A∥∞

− 2

γ−1∑

l1=0

(1− ητ)t−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))

+ 6(γ + 1)2ηdmax ∥A∥∞
γ−1∑

l1=0

(1− ητ)t−l1
(
KL
(
π(l1+1) ∥π(l1−γ+1)

)
+ (1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

))

≤ 2(1− ητ)t+1KL
(
π⋆τ ∥π(0)

)
+ 2(1− ητ)t+1−γ . (E.36)

Bounding the QRE gap. With Lemma 37, we have

QRE-Gapτ (π
(t−γ+1)) ≤ d2max ∥A∥2∞

τ
KL
(
π⋆τ ∥π(t−γ+1)

)
+ τKL

(
π(t−γ+1) ∥π⋆τ

)

≤ max
{d2max ∥A∥2∞

τ
,
1

η

}(
KL
(
π⋆τ ∥π(t−γ+1)

)
+ ητKL

(
π(t−γ+1) ∥π⋆τ

))

≤ 2max
{d2max ∥A∥2∞

τ
,
1

η

}(
(1− ητ)t+1KL

(
π⋆τ ∥π(0)

)
+ (1− ητ)t+1−γ

)
,

where the last step results from (E.36).

E.2.2 Proof of Theorem 11

Bounding the term KL
(
π⋆τ ∥π(t)

)
. Recall that the update rule of π

(t)
i (k) is given by

π
(t)
i (k) ∝ π(t−1)

i (k)1−ητ exp(η[Aiπ
(κ

(t)
i )]k). (E.37)

We introduce an auxiliary variable π̃
(t)
i :

π̃
(t)
i (k) ∝ π(t−1)

i (k)1−η̃
(t)
i τ exp

(
η̃
(t)
i [Aiπ

(κ
(t)
i )]k

)
, (E.38)

which can be viewed as a conceptual alternative update of π
(t)
i with a different step size η̃

(t)
i > 0

satisfying

(1− η̃(t)i τ)(1− ητ)t−κ
(t)
i = 1− ητ

or equivalently

1− η̃(t)i τ = (1− ητ)γ+1−t+κ
(t)
i .

It directly follows that η̃
(t)
i ≥ η. Since κ

(t)
i ≤ t, we have 1 − η̃(t)i τ ≥ 1 − (γ + 1 − t + κ

(t)
i )ητ ≥

1− (γ+1)ητ , which implies η̃
(t)
i ≤ (γ+1)η. For notational convenience, we set π̃

(t)
i = π(0), η̃

(t)
i = η

and κ
(t)
i = 0 when t ≤ 0. The following lemma establishes a one-step analysis, with the proof

postponed to Appendix E.3.6.
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Lemma 40. When t ≥ 1, it holds that

KL
(
π⋆i,τ ∥π(t)i

)
+ ητKL

(
π
(κ

(t)
i )

i ∥π⋆i,τ
)

= (1− ητ)KL
(
π⋆i,τ ∥π(t−1)

i

)
− η(π(κ

(t)
i )

i − π⋆i,τ )⊤Ai(π
(κ

(t)
i ) − π⋆τ )− ψ(t)

i

+
η

η̃
(t)
i

〈
log π

(κ
(t)
i )

i − log π̃
(t)
i , π

(κ
(t)
i )

i − π̃(t)i

〉
, (E.39)

where

ψ
(t)
i :=

(
1− η

η̃
(t)
i

)
KL
(
π
(t)
i ∥π

(t−1)
i

)

+
η

η̃
(t)
i

[
(1− η̃(t)i τ)KL

(
π
(κ

(t)
i )

i ∥π(t−1)
i

)
+ KL

(
π̃
(t)
i ∥π

(κ
(t)
i )

i

)
+ KL

(
π
(t)
i ∥ π̃

(t)
i

)]
.

We proceed to control the term

〈
log π

(κ
(t)
i )

i − log π̃
(t)
i , π

(κ
(t)
i )

i − π̃(t)i

〉
. By definition, we have

log π̃
(t)
i

1
= (1− η̃(t)i τ) log π

(t−1)
i + η̃

(t)
i Aiπ

(κ
(t)
i )

1
= (1− η̃(t)i τ)(1− ητ)t−κ

(t)
i log π(κ

(t)
i −1)

+ η̃
(t)
i

(
Aiπ

(κ
(t)
i ) +

t−1∑

l=κ
(t)
i

(1− η̃(t)i τ)(1− ητ)t−1−lAiπ
(κ

(l)
i )

)

and

log π
(κ

(t)
i )

i
1
= (1− ητ) log π(κ

(t)
i −1) + ηAiπ

(κ
(κ

(t)
i

−1)

i )

when κ
(t)
i ≥ 1. Subtracting the two equations yields

log π
(κ

(t)
i )

i − log π̃
(t)
i

1
= η̃

(t)
i

(
Ai(π

(κ
(κ

(t)
i

−1)

i ) − π(κ
(t)
i ))

+
t−1∑

l=κ
(t)
i

(1− η̃(t)i τ)(1− ητ)t−1−lAi(π
(κ

(κ
(t)
i

−1)

i ) − π(κ
(l)
i ))

)
, (E.40)

where the log π(κ
(t)
i −1) terms cancel out due to (1− η̃(t)i τ)(1− ητ)t−κ

(t)
i = 1− ητ . It follows that

〈
log π

(κ
(t)
i )

i − log π̃
(t)
i , π

(κ
(t)
i )

i − π̃(t)i

〉

= η̃
(t)
i

(〈
π
(κ

(t)
i )

i − π̃(t)i , Ai(π
(κ

(κ
(t)
i

−1)

i ) − π(κ
(t)
i ))
〉

+

t−1∑

l=κ
(t)
i

(1− η̃(t)i τ)(1− ητ)t−1−l
〈
π
(κ

(t)
i )

i − π̃(t)i , Ai(π
(κ

(κ
(t−1)
i

)

i ) − π(κ
(l)
i ))
〉)

≤ η̃(t)i ∥A∥∞
∥∥π(κ

(t)
i )

i − π̃(t)i

∥∥
1

∑

j∈Ni

t∑

l=κ
(t)
i

∥∥π(κ
(l)
i )

j − π(κ
(κ

(t−1)
i

)

i )
j

∥∥
1
. (E.41)
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The next lemma establishes an upper bound on the term
∑t

l=κ
(t)
i

∥∥π(κ
(l)
i )

j − π(κ
(κ

(t−1)
i

)

i )
j

∥∥
1
, with the

proof postponed to Appendix E.3.7.

Lemma 41. Let νj(t) denote the time index when agent j receives the payoff from the t-th iteration,

i.e., κ
(νj(t))
j = t. For t = 0, we set νj(0) to an arbitrary index that satisfies κ

(νj(0))
j = 0. When

t ≥ 2γ + 1, it holds that

t∑

l=κ
(t)
i

∥∥π(κ
(l)
i )

j − π(κ
(κ

(t−1)
i

)

i )
j

∥∥
1
≤ 4
√
2(γ + 1)

t+γ∑

l=t−2γ

√
ψ
(l)
j + 2

√
2(γ + 1)2

√

ψ
(νj(κ

(κ
(t−1)
i

)

i ))
j ,

Plugging Lemma 41 into (E.41) gives

〈
log π

(κ
(t)
i )

i − log π̃
(t)
i , π

(κ
(t)
i )

i − π̃(t)i

〉

≤ η̃(t)i ∥A∥∞
∥∥π(κ

(k)
i )

i − π̃(t)i

∥∥
1

∑

j∈Ni

[
4
√
2(γ + 1)

t+γ∑

l=t−2γ

√
ψ
(l)
j + 2

√
2(γ + 1)2

√

ψ
(νj(κ

(κ
(t−1)
i

)

i ))
j

]

(i)

≤ 1

2
η̃
(t)
i ∥A∥∞

{
14dmax(γ + 1)3/2

∥∥π(κ
(t)
i )

i − π̃(t)i

∥∥2
1

+
∑

j∈Ni

[
8(γ + 1)3/2

t+γ∑

l=t−2γ

ψ
(l)
j + 4(γ + 1)5/2ψ

(νj(κ
(κ

(t−1)
i

)

i ))
j

]}

(ii)

≤ η̃
(t)
i ∥A∥∞

{
14dmax(γ + 1)5/2ψ

(t)
i +

∑

j∈Ni

[
4(γ + 1)3/2

t+γ∑

l=t−2γ

ψ
(l)
j + 2(γ + 1)5/2ψ

(νj(κ
(κ

(t−1)
i

)

i ))
j

]}
,

(E.42)

where (i) results from Young’s inequality

∥∥π(κ
(t)
i )

i − π̃(t)i

∥∥
1

√
ψ
(l)
j ≤

1

2

( 1√
2(γ + 1)1/2

∥∥π(κ
(t)
i )

i − π̃(t)i

∥∥2
1
+
√
2(γ + 1)1/2ψ

(l)
j

)

and (ii) follows from

∥∥∥∥π
(κ

(t)
i )

i − π̃(t)i

∥∥∥∥
2

1

≤ 2KL
(
π̃
(t)
i ∥π

(κ
(t)
i )

i

)
≤ 2(γ + 1)ψ

(t)
i . Plugging (E.42) into

(E.39) and summing over i ∈ V yields

KL
(
π⋆τ ∥π(t)

)
+ ητ

∑

i∈V
KL
(
π
(κ

(t)
i )

i ∥π⋆τ
)

≤ (1− ητ)KL
(
π⋆τ ∥π(t−1)

)
− η

∑

i∈V
(π

(κ
(t)
i )

i − π⋆i,τ )⊤Ai(π
(κ

(t)
i ) − π⋆τ )

− (1− 14ηdmax ∥A∥∞ (γ + 1)5/2)
∑

i∈V
ψ
(t)
i + 2η ∥A∥∞ (γ + 1)5/2

∑

(i,j)∈E

ψ
(νj(κ

(κ
(t−1)
i

)

i ))
j

+ 4ηdmax ∥A∥∞ (γ + 1)3/2
t+γ∑

l=t−2γ

ψ(l), (E.43)
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where we denote
∑

i∈V ψ
(l)
i by ψ(l) for notation simplicity. We then seek to sum the above equation

over t = 2γ + 1, · · · , T . Before proceeding, we note that

T∑

t=2γ+1

t+γ∑

l=t−2γ

ψ(l) ≤
T+γ∑

l=1

l+2γ∑

t=l−γ

ψ(l) ≤ 3(γ + 1)

T+γ∑

l=1

ψ(l),

and that

T∑

t=2γ+1

∑

(i,j)∈E

ψ
(νj(κ

(κ
(t−1)
i

)

i ))
j ≤

∑

(i,j)∈E

T+γ−1∑

t=0

ψ
(t)
j ≤ dmax

T+γ−1∑

t=1

ψ(t),

where the first step is due to the mapping t 7→ νj(κ
(κ

(t−1)
i )

i ) being injective when t ≥ 2γ + 1 (cf.

Assumptions 5, 6). Note that ψ
(t)
j = 0 when t ≤ 0 and hence can be safely discarded. Taken

together, we arrive at

ητ

T∑

t=2γ+1

KL
(
π⋆τ ∥π(t)

)
+ ητ

T∑

t=2γ+1

∑

i∈V
KL
(
π
(κ

(t)
i )

i ∥π⋆i,τ
)

≤ (1− ητ)KL
(
π⋆τ ∥π(2γ)

)
− η

T∑

t=2γ+1

∑

i∈V
(π

(κ
(t)
i )

i − π⋆i,τ )⊤Ai(π
(κ

(t)
i ) − π⋆τ )

−
(
1− 14ηdmax ∥A∥∞ (γ + 1)5/2

) T∑

t=2γ+1

ψ(t) + 12ηdmax ∥A∥∞ (γ + 1)5/2
T+γ∑

l=1

ψ(l)

+ 2ηdmax ∥A∥∞ (γ + 1)5/2
T+γ−1∑

t=1

ψ(t)

≤ (1− ητ)KL
(
π⋆τ ∥π(2γ)

)
− η

T∑

t=2γ+1

∑

i∈V
(π

(κ
(t)
i )

i − π⋆i,τ )⊤Ai(π
(κ

(t)
i ) − π⋆τ )

−
(
1− 28ηdmax ∥A∥∞ (γ + 1)5/2

) T∑

t=2γ+1

ψ(t) + 14ηdmax ∥A∥∞ (γ + 1)5/2
∑

l∈Γ
ψ(l)

≤ (1− ητ)KL
(
π⋆τ ∥π(2γ)

)
− η

T∑

t=2γ+1

∑

i∈V
(π

(κ
(t)
i )

i − π⋆i,τ )⊤Ai(π
(κ

(t)
i ) − π⋆τ ) +

1

3

∑

l∈Γ
ψ(l), (E.44)

where Γ = {1, · · · , 2γ}∪{T+1, · · · , T+γ}. The last step results from the choice of learning rate η ≤
1

28dmax∥A∥∞(γ+1)5/2
. It now remains to bound the terms

∑T
t=2γ+1

∑
i∈V (π

(κ
(t)
i )

i −π⋆i,τ )⊤Ai(π
(κ

(t)
i )−π⋆τ ),

KL
(
π⋆τ ∥π(2γ)

)
and

∑
l∈Γ ψ

(l). In view of Lemma 35, we have

−
T∑

t=2γ+1

∑

i∈V
(π

(κ
(t)
i )

i − π⋆i,τ )⊤Ai(π
(κ

(t)
i ) − π⋆τ )

=

T∑

t=γ+1

∑

i∈V
(π

(t)
i − π⋆i,τ )⊤Ai(π

(t) − π⋆τ )−
T∑

t=2γ+1

∑

i∈V
(π

(κ
(t)
i )

i − π⋆i,τ )⊤Ai(π
(κ

(t)
i ) − π⋆τ ).
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We remark that each (π
(κ

(t)
i )

i −π⋆i,τ )⊤Ai(π
(κ

(t)
i )−π⋆τ ) term will cancel out due to the mapping t 7→ κ

(t)
i

being injective when t ≥ γ. In addition, we have a crude bound

(π
(t)
i − π⋆i,τ )⊤Ai(π

(t) − π⋆τ ) =
∑

j∈Ni

(π
(t)
i − π⋆i,τ )⊤Aij(π

(t)
j − π⋆j,τ ) ≤ 4dmax ∥A∥∞

for every i ∈ V, t ≥ 0. Applying the bound to the remaining nγ terms gives

−
T∑

t=2γ+1

∑

i∈V
(π

(κ
(t)
i )

i − π⋆i,τ )⊤Ai(π
(κ

(t)
i ) − π⋆τ ) ≤ 4nγdmax ∥A∥∞ . (E.45)

The remaining terms KL
(
π⋆τ ∥π(2γ)

)
and ψ(l) can be bounded with the following lemma, with the

proof postponed to Appendix E.3.8.

Lemma 42. It holds for all i ∈ V and t ≥ 0 that

ψ
(t)
i ≤ η(dmax ∥A∥∞ (2γ + 11) + 3τ log |Si|). (E.46)

In addition, we have

KL
(
π⋆i,τ ∥π(2γ)i

)
≤ KL

(
π⋆i,τ ∥π(0)i

)
+ 4ηdmax ∥A∥∞ γ. (E.47)

Putting all pieces together, we continue from (E.44) and show that

ητ
T∑

t=2γ+1

KL
(
π⋆τ ∥π(t)

)
≤ (1− ητ)KL

(
π⋆τ ∥π(2γ)

)
− η

T∑

t=2γ+1

∑

i∈V
(π

(κ
(t)
i )

i − π⋆i,τ )⊤Ai(π
(κ

(t)
i ) − π⋆τ ) +

1

3

∑

l∈Γ
ψ(l)

≤ KL
(
π⋆i,τ ∥π(0)i

)
+ 8ηnγdmax ∥A∥∞ + ηγ

(
ndmax ∥A∥∞ (2γ + 11) + 3τ

∑

i∈V
log |Si|

)

≤ KL
(
π⋆i,τ ∥π(0)i

)
+ 8ηn

[
γdmax ∥A∥∞ + γ

(
dmax ∥A∥∞ (2γ + 11) + 3τ logSmax

)]

≤ KL
(
π⋆i,τ ∥π(0)i

)
+ n+ 24ητnγ logSmax.

Bounding the term KL
(
π⋆τ ∥π(t−γ+1)

)
. By definition of KL divergence, we have

KL
(
π⋆i,τ ∥π(t−γ+1)

i

)

= KL
(
π⋆i,τ ∥π(t+1)

i

)
+
〈
π⋆i,τ , log π

(t+1)
i − log π

(t−γ+1)
i

〉

= KL
(
π⋆i,τ ∥π(t+1)

i

)
− KL

(
π
(t−γ+1)
i ∥π(t+1)

i

)
+
〈
π⋆i,τ − π(t−γ+1)

i , log π
(t+1)
i − log π

(t−γ+1)
i

〉
.

(E.48)

It follows directly from the update rules that





log π
(t−γ+1)
i

1
= (1− ητ) log π(t−γ)

i + ηAiπ
(κ

(t−γ)
i )

log π
(t+1)
i

1
= (1− ητ)γ+1 log π

(t−γ)
i + η

t+1∑

l=t−γ+1

(1− ητ)t−l+1Aiπ
(κ

(l)
i )
,
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which enables us to control the term
〈
π⋆i,τ − π

(t−γ+1)
i , log π

(t+1)
i − log π

(t−γ+1)
i

〉
as

〈
π⋆i,τ − π(t−γ+1)

i , log π
(t+1)
i − log π

(t−γ+1)
i

〉

= η
t+1∑

l=t−γ+1

(1− ητ)t−l+1
〈
π⋆i,τ − π(t−γ+1)

i , Ai(π
(κ

(t−γ)
i ) − π(κ

(l)
i ))
〉

≤ η ∥A∥∞
∥∥π⋆i,τ − π(t−γ+1)

i

∥∥
1

∑

j∈Ni

t+1∑

l=t−γ+1

∥∥π(κ
(t−γ)
i )

j − π(κ
(l)
i )

j

∥∥
1
. (E.49)

In the same vein as Lemma 41, we can bound the term
∑t+1

l=t−γ+1

∥∥π(κ
(t−γ)
i )

j − π(κ
(l)
i )

j

∥∥
1
with {ψ(l)

i },
as detailed in the following lemma. The proof is omitted due to its similarity with that of Lemma
41.

Lemma 43. When t ≥ 2γ, it holds that

t+1∑

l=t−γ+1

∥∥π(κ
(t−γ)
i )

j − π(κ
(l)
i )

j

∥∥
1
≤ 4
√
2(γ + 1)

t+γ+1∑

l=t−2γ+1

√
ψ
(l)
i + 2

√
2(γ + 1)2

√
ψ
(νj(κ

(t−γ)
i ))

j .

Plugging the above lemma into (E.49), we have

〈
π⋆i,τ − π(t−γ+1)

i , log π
(t+1)
i − log π

(t−γ+1)
i

〉

≤ η ∥A∥∞
∥∥π⋆i,τ − π(t−γ+1)

i

∥∥
1

∑

j∈Ni

(
4
√
2(γ + 1)

t+γ+1∑

l=t−2γ+1

√
ψ
(l)
i + 2

√
2(γ + 1)2

√
ψ
(νj(κ

(t−γ)
i ))

j

)

(i)

≤ 1

2
η ∥A∥∞

{
14dmax(γ + 1)3/2

∥∥π⋆i,τ − π(t−γ+1)
i

∥∥2
1

+
∑

j∈Ni

[
8(γ + 1)3/2

t+γ+1∑

l=t−2γ+1

ψ
(l)
j + 4(γ + 1)5/2ψ

(νj(κ
(t−γ)
i ))

j

]}

(ii)

≤ η ∥A∥∞
{
14dmax(γ + 1)3/2KL

(
π⋆i,τ ∥π(t−γ+1)

i

)

+
∑

j∈Ni

[
4(γ + 1)3/2

t+γ+1∑

l=t−2γ+1

ψ
(l)
j + 2(γ + 1)5/2ψ

(νj(κ
(t−γ)
i ))

j

]}
,

where (i) results from similar arguments in (E.42) and (ii) invokes Pinsker’s inequality. Substitution
of the above inequality into (E.48) and summing over i ∈ V leads to

(1− 14ηdmax ∥A∥∞ (γ + 1)3/2)KL
(
π⋆τ ∥π(t−γ+1)

)

≤ KL
(
π⋆τ ∥π(t+1)

)
+ η ∥A∥∞

∑

(i,j)∈E

[
4(γ + 1)3/2

t+γ+1∑

l=t−2γ+1

ψ
(l)
j + 2(γ + 1)5/2ψ

(νj(κ
(t−γ)
i ))

j

]

≤ KL
(
π⋆τ ∥π(t+1)

)
+ 4ηdmax ∥A∥∞ (γ + 1)3/2

t+γ+1∑

l=t−2γ+1

ψ(l) + 2ηdmax ∥A∥∞ (γ + 1)5/2ψ(νj(κ
(t−γ)
i )).
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Summing the above inequality over t = 2γ−1, · · · , T−1 and adding
∑T−1

t=2γ

∑
i∈V KL

(
π
(κ

(t+1)
i )

i ∥π⋆i,τ
)

to the both sides,

T−1∑

t=2γ

[
2

3
KL
(
π⋆τ ∥π(t−γ+1)

)
+
∑

i∈V
KL
(
π
(κ

(t+1)
i )

i ∥π⋆i,τ
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≤
T−1∑

t=2γ
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(
π⋆τ ∥π(t+1)

)
+

T−1∑

t=2γ

∑

i∈V
KL
(
π
(κ

(t+1)
i )

i ∥π⋆i,τ
)

+ 4ηdmax ∥A∥∞ (γ + 1)3/2
T−1∑

t=2γ

t+γ+1∑

l=t−2γ+1

ψ(l) + 2ηdmax ∥A∥∞ (γ + 1)5/2
T−1∑

t=2γ

ψ(νj(κ
(t−γ)
i ))

(i)

≤ 1

ητ

{
(1− ητ)KL

(
π⋆τ ∥π(2γ)

)
− η

T∑

t=2γ+1

∑

i∈V
(π

(κ
(t)
i )

i − π⋆i,τ )⊤Ai(π
(κ

(t)
i ) − π⋆τ )

−
(
1− 28ηdmax ∥A∥∞ (γ + 1)5/2

) T∑

t=2γ+1

ψ(t) + 14ηdmax ∥A∥∞ (γ + 1)5/2
∑

l∈Γ
ψ(l)

}

+ 12ηdmax ∥A∥∞ (γ + 1)5/2
T+γ∑

l=1

ψ(l) + 2ηdmax ∥A∥∞ (γ + 1)5/2
T+γ−1∑

t=0

ψ(l)

=
1

ητ

{
(1− ητ)KL

(
π⋆τ ∥π(2γ)

)
− η

T∑

t=2γ+1

∑

i∈V
(π

(κ
(t)
i )

i − π⋆i,τ )⊤Ai(π
(κ

(t)
i ) − π⋆τ )

−
(
1− 28(1 +

ητ

2
)ηdmax ∥A∥∞ (γ + 1)5/2

) T∑

t=2γ+1

ψ(t) + 14(1 + ητ)ηdmax ∥A∥∞ (γ + 1)5/2
∑

l∈Γ
ψ(l)

}
.

Here, (i) invokes the bound established in (E.44). We remark that our choice of learning rate

η ≤ min
{ 1

2τ(γ + 1)
,

1

42dmax ∥A∥∞ (γ + 1)5/2

}

guarantees 1− 28(1 + ητ
2 )ηdmax ∥A∥∞ (γ + 1)5/2 ≥ 0. This taken together with (E.45) and Lemma

42 gives

T−1∑

t=2γ

[
2

3
KL
(
π⋆τ ∥π(t−γ+1)

)
+
∑

i∈V
KL
(
π
(κ

(t+1)
i )

i ∥π⋆i,τ
)]

≤ 1

ητ

{
(1− ητ)KL

(
π⋆τ ∥π(2γ)

)
− η

T∑

t=2γ+1

∑

i∈V
(π

(κ
(t)
i )

i − π⋆i,τ )⊤Ai(π
(κ

(t)
i ) − π⋆τ ) +

1

2

∑

l∈Γ
ψ(l)

}

≤ 1

ητ

{
KL
(
π⋆i,τ ∥π(0)i

)
+ 8ηn

[
γdmax ∥A∥∞ +

3γ

2

(
dmax ∥A∥∞ (2γ + 11) + 3τ logSmax

)]}

≤ 1

ητ

{
KL
(
π⋆i,τ ∥π(0)i

)
+ n+ 36ητnγ logSmax

}
. (E.50)
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Bounding the QRE gap. With Lemma 37, we have

T−γ−1∑

t=2γ

QRE-Gapτ (π
(t+1)) ≤

T−γ−1∑

t=2γ

(d2max ∥A∥2∞
τ

KL
(
π⋆τ ∥π(t+1)

)
+ τKL

(
π(t+1) ∥π⋆τ

))

≤ max
{3d2max ∥A∥2∞

2τ
, τ
} T−γ−1∑

t=2γ

(2
3
KL
(
π⋆τ ∥π(t+1)

)
+ KL

(
π(t+1) ∥π⋆τ

))
.

Since the mapping t 7→ νi(t) is injective, we have

T−γ−1∑

t=2γ

∑

i∈V
KL
(
π
(t+1)
i ∥π⋆i,τ

)
=

T−γ−1∑

t=2γ

∑

i∈V
KL
(
π
(κ

(νi(t+1))
i )

i ∥π⋆i,τ
)
≤

T−1∑

t=2γ

∑

i∈V
KL
(
π
(κ

(t+1)
i )

i ∥π⋆i,τ
)
.

Combining the above two equalities gives

T−γ−1∑

t=2γ

QRE-Gapτ (π
(t+1)) ≤ max

{3d2max ∥A∥2∞
2τ

, τ
}[ T−γ−1∑

t=2γ

2

3
KL
(
π⋆τ ∥π(t+1)

)
+

T−1∑

t=2γ

KL
(
π(t+1) ∥π⋆τ

) ]

≤ max
{3d2max ∥A∥2∞

2τ
, τ
} T−1∑

t=2γ

[2
3
KL
(
π⋆τ ∥π(t−γ+1)

)
+
∑

i∈V
KL
(
π
(κ

(t+1)
i )

i ∥π⋆i,τ
)]

≤ max
{3d2max ∥A∥2∞

2τ
, τ
} 1

ητ

(
KL
(
π⋆i,τ ∥π(0)i

)
+ n+ 36ητnγ logSmax

)
,

where the last step results from (E.50).

E.3 Proof of auxiliary lemmas

E.3.1 Proof of Lemma 35

To prove this lemma, we recall a key observation in Cai et al. [2016] that allows one to trans-
form a zero-sum polymatrix game G = {(V,E), {Si}i∈V , {Aij}(i,j)∈E} into a pairwise constant-sum

polymatrix game G̃ = {(V,E), {Si}i∈V , {Ãij}(i,j)∈E} such that

(1) For every player i ∈ V , it has the same payoff in G and G̃:

ui(s) = ũi(s), ∀s ∈ S.

(2) For each pair (i, j) ∈ E, i ̸= j, the two-player game G̃ is constant-sum, i.e., there exist
constants αij = αji, such that

Ãij(si, sj) + Ãji(sj , si) = αij (E.51)

holds for all si ∈ Si, sj ∈ Sj .
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We are now in a place to prove Lemma 35. Let G̃ be the pairwise constant-sum polymatrix
game associated with G after the above payoff preserving transformation. We have

∑

i∈V

[
ui(πi, π

′
−i) + ui(π

′
i, π−i)

]
=
∑

i∈V

[
ũi(πi, π

′
−i) + ũi(π

′
i, π−i)

]

=
∑

(i,j)∈E

[
E

si∼πi,sj∼π′
j

[
Ãij(si, sj)

]
+ E

si∼π′
i,sj∼πj

[
Ãij(si, sj)

]]

=
∑

(i,j)∈E

[
E

si∼πi,sj∼π′
j

[
Ãij(si, sj)

]
+ E

si∼π′
i,sj∼πj

[
αij − Ãji(sj , si)

]]

=
∑

(i,j)∈E

αij = 0,

where the penultimate line uses (E.51), and the last line uses the fact that G̃ is also a zero-sum
polymatrix game, which satisfies

∑

(i,j)∈E

αij =
∑

(i,j)∈E

[
Ãij(si, sj) + Ãji(sj , si)

]
=
∑

i∈V
ũi(s) +

∑

j∈V
ũj(s) = 0

for any arbitrary s ∈ S.

E.3.2 Proof of Lemma 36

In view of the update rule (6.9), we have

log π
(t+1)
i = (1− ητ) log π(t)i + ηAiπ

(t+1) + ci1

for some constant ci. On the other hand, it follows from the expression of QRE in (6.5) that

ητ log π⋆i,τ = ηAiπ
⋆
τ + c⋆i1 (E.52)

for some constant c⋆i . By combining the above two equalities and taking the inner product with

π
(t+1)
i − π⋆i,τ , we have

〈
log π

(t+1)
i − (1− ητ) log π(t)i − ητ log π⋆i,τ , π

(t+1)
i − π⋆i,τ

〉
= η(π

(t+1)
i −π⋆i,τ )⊤Ai(π

(t+1)−π⋆τ ). (E.53)

Summing the above equality over i ∈ V gives

〈
log π(t+1) − (1− ητ) log π(t) − ητ log π⋆τ , π(t+1) − π⋆τ

〉

= η
∑

i∈V
(π

(t+1)
i − π⋆i,τ )⊤Ai(π

(t+1) − π⋆τ )

= η
∑

i∈V

[
(π

(t+1)
i )⊤Aiπ

(t+1) + (π⋆i,τ )
⊤Aiπ

⋆
τ

]
− η

∑

i∈V

[
(π

(t+1)
i )⊤Aiπ

⋆
τ + (π⋆i,τ )

⊤Aiπ
(t+1)

]

= η
∑

i∈V

[
ui(π

(t+1)) + ui(π
⋆
τ )
]
= 0,

where the last line follows from
∑

i∈V

[
(π

(t+1)
i )⊤Aiπ

⋆
τ + (π⋆i,τ )

⊤Aiπ
(t+1)

]
= 0 due to Lemma 35, as

well as that the game is zero-sum.
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E.3.3 Proof of Lemma 37

Recalling the definition

QRE-Gapτ (π) = max
i∈V

[
max

π′
i∈∆(Si)

ui,τ (π
′
i, π−i)− ui,τ (π)

]

≤
∑

i∈V

[
max

π′
i∈∆(Si)

ui,τ (π
′
i, π−i)− ui,τ (π)

]

= max
i∈V :π′

i∈∆(Si)

∑

i∈V

[
ui,τ (π

′
i, π−i)− ui,τ (πi, π−i)

]
,

where the inequality holds since maxπ′
i∈∆(Si) ui,τ (π

′
i, π−i)− ui,τ (π) ≥ ui,τ (πi, π−i)− ui,τ (π) = 0 for

all i ∈ V . We now proceed to decompose
∑

i∈V

[
ui,τ (π

′
i, π−i)− ui,τ (πi, π−i)

]

=
∑

i∈V

[
ui,τ (π

′
i, π−i)− ui,τ (π⋆i,τ , π⋆−i,τ )

]
− τ

∑

i∈V

(
H(πi)−H(π⋆i,τ )

)

=
∑

i∈V

[
ui,τ (π

′
i, π−i)− ui,τ (π′i, π⋆−i,τ )− ui,τ (π⋆i,τ , π−i) + ui,τ (π

⋆
i,τ , π

⋆
−i,τ )

]

+
∑

i∈V

[
ui,τ (π

⋆
i,τ , π−i)− ui,τ (π⋆i,τ , π⋆−i,τ )− τ

(
H(πi)−H(π⋆i,τ )

)]

+
∑

i∈V

[
ui,τ (π

′
i, π

⋆
−i,τ )− ui,τ (π⋆i,τ , π⋆−i,τ )

]
(E.54)

where the first line follows from
∑

i∈V (ui,τ (π)− τH(πi)) =
∑

i∈V

(
ui,τ (π

⋆
τ )− τH(π⋆i,τ )

)
= 0 by the

definition of zero-sum games. It boils down to control the terms on the RHS of (E.54).

• To control the first term, by the definition of ui,τ in (6.6) (see also (6.3)), it follows that

ui,τ (π
′
i, π−i)− ui,τ (π′i, π⋆−i,τ )− ui,τ (π⋆i,τ , π−i) + ui,τ (π

⋆
i,τ , π

⋆
−i,τ )

= ui(π
′
i, π−i)− ui(π′i, π⋆−i,τ )− ui(π⋆i,τ , π−i) + ui(π

⋆
i,τ , π

⋆
−i,τ )

= (π′i − π⋆i,τ )⊤Ai(π − π⋆τ ) =
∑

j∈Ni

(π′i − π⋆i,τ )⊤Aij(πj − π⋆j,τ ),

which each summand can be further bounded by Young’s inequality and Pinsker’s inequality
as

(π′i − π⋆i,τ )⊤Aij(πj − π⋆j,τ ) ≤ ∥A∥∞
∥∥π′i − π⋆i,τ

∥∥
1

∥∥πj − π⋆j,τ
∥∥
1

≤ 1

2
∥A∥∞

(
τ

dmax ∥A∥∞
∥∥π′i − π⋆i,τ

∥∥2
1
+
dmax ∥A∥∞

τ

∥∥πj − π⋆j,τ
∥∥2
1

)

≤ ∥A∥∞
(

τ

dmax ∥A∥∞
KL
(
π′i ∥π⋆i,τ

)
+
dmax ∥A∥∞

τ
KL
(
π⋆j,τ ∥πj

))
.

Summing the inequality over i, j gives
∑

i∈V

[
ui,τ (π

′
i, π−i)− ui,τ (π′i, π⋆−i,τ )− ui,τ (π⋆i,τ , π−i) + ui,τ (π

⋆
i,τ , π

⋆
−i,τ )

]

≤ τKL
(
π′ ∥π⋆τ

)
+
d2max ∥A∥2∞

τ
KL (π⋆τ ∥π) . (E.55)
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• Regarding the second term, we have
∑

i∈V

[
ui,τ (π

⋆
i,τ , π−i)− ui,τ (π⋆i,τ , π⋆−i,τ )− τ

(
H(πi)−H(π⋆i,τ )

)]

=
∑

i∈V

[
(π⋆i,τ )

⊤Ai(π − π⋆τ ) + τ(π⊤i log πi − (π⋆i,τ )
⊤ log π⋆i,τ )

]

=
∑

i∈V

[
(π⋆i,τ )

⊤Ai(π − π⋆τ ) + τ
(〈
πi, log πi − log π⋆i,τ

〉
+
〈
πi − π⋆i,τ , log π⋆i,τ

〉)]

=
∑

i∈V

[
(π⋆i,τ )

⊤Ai(π − π⋆τ ) + (πi − π⋆i,τ )⊤Aiπ
⋆
τ + τKL

(
πi ∥π⋆i,τ

)]

= τKL (π ∥π⋆τ ) , (E.56)

where the penultimate step follows from (E.52) and the last step invokes Lemma 35.

• Moving to the last term, we have

ui,τ (π
⋆
i,τ , π

⋆
−i,τ )− ui,τ (π′i, π⋆−i,τ ) = (π⋆i,τ − π′i)⊤Aiπ

⋆
τ − τ(π⋆i,τ )⊤ log π⋆i,τ + τ(π′i)

⊤ log π′i

= τ(π⋆i,τ − π′i)⊤ log π⋆i,τ − τ(π⋆i,τ )⊤ log π⋆i,τ + τ(π′i)
⊤ log π′i

= τKL
(
π′i ∥π⋆i,τ

)
. (E.57)

where the second line follows again from (E.52).

Plugging (E.55), (E.56) and (E.57) into (E.54) gives

∑

i∈V

[
ui,τ (π

′
i, π−i)− ui,τ (πi, π−i)

]
≤ τKL (π ∥π⋆τ ) +

d2max ∥A∥2∞
τ

KL (π⋆τ ∥π) .

Taking maximum over π′ finishes the proof.

E.3.4 Proof of Lemma 38

Taking logarithm on the both sides of (6.9), we have

log π
(t+1)
i

1
= (1− ητ) log π(t)i + ηAiπ

(t−γ+1). (E.58)

On the other hand, the definition of QRE in (6.5) gives

ητ log π⋆i,τ
1
= ηAiπ

⋆
τ .

Subtracting the two equalities and taking inner product with π
(t−γ+1)
i − π⋆i,τ , we get

〈
log π

(t+1)
i − (1− ητ) log π(t)i − ητ log π⋆i,τ , π

(t−γ+1)
i − π⋆i,τ

〉

= η
(
π
(t−γ+1)
i − π⋆i,τ

)⊤
Ai

(
π(t−γ+1) − π⋆τ

)
.

Summing the above equality over i ∈ V leads to
〈
log π(t+1) − (1− ητ) log π(t) − ητ log π⋆τ , π(t−γ+1)

i − π⋆τ
〉

= η
∑

i∈V

(
π
(t−γ+1)
i − π⋆i,τ

)⊤
Ai

(
π(t−γ+1) − π⋆τ

)
= 0,

where the final step results from Lemma 35.
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E.3.5 Proof of Lemma 39

Recall from (E.31) that

KL
(
π⋆τ ∥π(t+1)

)
= (1− ητ)KL

(
π⋆τ ∥π(t)

)
− (1− ητ)KL

(
π(t−γ+1) ∥π(t)

)
− KL

(
π(t+1) ∥π(t−γ+1)

)

+
〈
log π(t−γ+1) − log π(t+1), π(t−γ+1) − π(t+1)

〉
− ητKL

(
π(t−γ+1) ∥π⋆τ

)
.

(E.59)

When t < γ, we have π
(t−γ+1)
i = π(0). It follows that

log π
(t−γ+1)
i = log π(0)

1
= 0,

and that

log π
(t+1)
i

1
= (1− ητ)t+1 log π(0) + η

t∑

l=0

(1− ητ)lAiπ
(t−γ−l+1)

1
= η

t∑

l=0

(1− ητ)lAiπ
(0).

Therefore, we can bound the term
〈
log π(t−γ+1) − log π(t+1), π(t−γ+1) − π(t+1)

〉
as

〈
log π(t−γ+1) − log π(t+1), π(t−γ+1) − π(t+1)

〉
=

〈
η

t∑

l=0

(1− ητ)lAiπ
(0), π(0) − π(t+1)

〉

≤ η(t+ 1)dmax ∥A∥∞
∥∥∥π(0) − π(t+1)

∥∥∥
1

≤ 2η(t+ 1)dmax ∥A∥∞. (E.60)

Plugging the above inequality into (E.59) leads to

KL
(
π⋆τ ∥π(t+1)

)
≤ (1− ητ)KL

(
π⋆τ ∥π(t)

)
− (1− ητ)KL

(
π(t−γ+1) ∥π(t)

)
− KL

(
π(t+1) ∥π(t−γ+1)

)

+ 2η(t+ 1)dmax ∥A∥∞.

Applying the above inequality recursively to the iterates 0, 1, . . . , γ − 1, we arrive at

KL
(
π⋆τ ∥π(γ)

)

≤ (1− ητ)γKL
(
π⋆τ ∥π(0)

)
−

γ−1∑

l1=0

(1− ητ)γ−1−l1
[
(1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

)
+ KL

(
π(l1+1) ∥π(l1−γ+1)

) ]

+ 2η

γ−1∑

l1=0

(1− ητ)γ−1−l1(l1 + 1)dmax ∥A∥∞

≤ (1− ητ)γKL
(
π⋆τ ∥π(0)

)
−

γ−1∑

l1=0

(1− ητ)γ−1−l1
[
(1− ητ)KL

(
π(l1−γ+1) ∥π(l1)

)
+ KL

(
π(l1+1) ∥π(l1−γ+1)

) ]

+ 2ηγ2dmax ∥A∥∞.
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E.3.6 Proof of Lemma 40

Taking logarithm on the both sides of (E.37) and (E.38), we get

η
(
log π̃

(t)
i − log π

(t−1)
i

) 1
= η̃

(t)
i

(
log π

(t)
i − log π

(t−1)
i

)
,

or equivalently

log π
(t)
i

1
=

η

η̃
(t)
i

log π̃
(t)
i +

(
1− η

η̃
(t)
i

)
log π

(t−1)
i .

Taking inner product with π⋆i,τ − π
(t)
i ,

〈
log π

(t)
i −

η

η̃
(t)
i

log π̃
(t)
i −

(
1− η

η̃
(t)
i

)
log π

(t−1)
i , π⋆i,τ − π(t)i

〉
= 0.

By definition of KL divergence, we have
〈
log π

(t)
i −

η

η̃
(t)
i

log π̃
(t)
i −

(
1− η

η̃
(t)
i

)
log π

(t−1)
i , π⋆i,τ

〉

=

〈
(log π

(t)
i − log π⋆i,τ )−

η

η̃
(t)
i

(log π̃
(t)
i − log π⋆i,τ )−

(
1− η

η̃
(t)
i

)
(log π

(t−1)
i − log π⋆i,τ ), π

⋆
i,τ

〉

= −KL
(
π⋆i,τ ∥π(t)i

)
+
(
1− η

η̃
(t)
i

)
KL
(
π⋆i,τ ∥π(t−1)

i

)
+

η

η̃
(t)
i

KL
(
π⋆i,τ ∥ π̃(t)i

)
,

and 〈
log π

(t)
i −

η

η̃
(t)
i

log π̃
(t)
i −

(
1− η

η̃
(t)
i

)
log π

(t−1)
i , π

(t)
i

〉

=
η

η̃
(t)
i

KL
(
π
(t)
i ∥ π̃

(t)
i

)
+
(
1− η

η̃
(t)
i

)
KL
(
π
(t)
i ∥π

(t−1)
i

)
.

Taken together, we get

KL
(
π⋆i,τ ∥π(t)i

)
+

η

η̃
(t)
i

KL
(
π
(t)
i ∥ π̃

(t)
i

)
+
(
1− η

η̃
(t)
i

)
KL
(
π
(t)
i ∥π

(t−1)
i

)

=
(
1− η

η̃
(t)
i

)
KL
(
π⋆i,τ ∥π(t−1)

i

)
+

η

η̃
(t)
i

KL
(
π⋆i,τ ∥ π̃(t)i

)
. (E.61)

On the other hand, taking logarithm of (E.38) and making inner product with π
(κ

(t)
i )

i − π⋆i,τ gives
〈
log π̃

(t)
i − (1− η̃(t)i τ) log π

(t−1)
i − η̃(t)i τ log π⋆i,τ , π

(κ
(t)
i )

i − π⋆i,τ
〉

= η̃
(t)
i (π

(κ
(t)
i )

i − π⋆i,τ )⊤Ai(π
(κ

(t)
i ) − π⋆τ ).

Following a similar discussion in (E.3) gives

KL
(
π⋆i,τ ∥ π̃(t)i

)
= (1− η̃(t)i τ)KL

(
π⋆i,τ ∥π(t−1)

i

)
− (1− η̃(t)i τ)KL

(
π
(κ

(t)
i )

i ∥π(t−1)
i

)

− η̃(t)i τKL
(
π
(κ

(t)
i )

i ∥π⋆i,τ
)
− KL

(
π̃
(t)
i ∥π

(κ
(t)
i )

i

)

+

〈
log π

(κ
(t)
i )

i − log π̃
(t)
i , π

(κ
(t)
i )

i − π̃(t)i

〉
− η̃(t)i (π

(κ
(t)
i )

i − π⋆i,τ )⊤Ai(π
(κ

(t)
i ) − π⋆τ ).

(E.62)
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Plugging the above equation into (E.61),

KL
(
π⋆i,τ ∥π(t)i

)
+

η

η̃
(t)
i

KL
(
π
(t)
i ∥ π̃

(t)
i

)
+

(
1− η

η̃
(t)
i

)
KL
(
π
(t)
i ∥π

(t−1)
i

)

= (1− ητ)KL
(
π⋆i,τ ∥π(t−1)

i

)
− η(π(κ

(t)
i )

i − π⋆i,τ )⊤Ai(π
(κ

(t)
i ) − π⋆τ )

− η

η̃
(t)
i

[
(1− η̃(t)i τ)KL

(
π
(κ

(t)
i )

i ∥π(t−1)
i

)
+ η̃

(t)
i τKL

(
π
(κ

(t)
i )

i ∥π⋆i,τ
)
+ KL

(
π̃
(t)
i ∥π

(κ
(t)
i )

i

)]

+
η

η̃
(t)
i

〈
log π

(κ
(t)
i )

i − log π̃
(t)
i , π

(κ
(t)
i )

i − π̃(t)i

〉
.

Rearranging the terms finishes the proof.

E.3.7 Proof of Lemma 41

For notational convenience, we set

ϕ
(t)
i =

(
1− η

η̃
(t)
i

)∥∥π(t)i − π
(t−1)
i

∥∥
1

+
η

η̃
(t)
i

(∥∥π(κ
(t)
i )

i − π(t−1)
i

∥∥
1
+
∥∥π̃(t)i − π

(κ
(t)
i )

i

∥∥
1
+
∥∥π(t)i − π̃

(t)
i

∥∥
1

)

for all i ∈ V, t ≥ 0. By triangular inequality, we have ϕ
(t)
i ≥

∥∥∥π(t)i − π
(t−1)
i

∥∥∥
1
. In addition, we

denote by t1 ∧ t2 := min{t1, t2} and t1 ∨ t2 := max{t1, t2}. For 0 < t1 < t2, it holds that

∥∥π(κ
(t1)
i )

j − π(κ
(t2)
i )

j

∥∥
1

≤
∥∥π(νj(κ

(t1)
i ))

j − π(νj(κ
(t2)
i ))

j

∥∥
1
+
∥∥π(κ

(t1)
i )

j − π(νj(κ
(t1)
i ))

j

∥∥
1
+
∥∥π(κ

(t2)
i )

j − π(νj(κ
(t2)
i ))

j

∥∥
1

≤
νj(κ

(t1)
i )∨νj(κ

(t2)
i )∑

l=(νj(κ
(t1)
i )+1)∧(νj(κ

(t2)
i )+1)

∥∥π(l)j − π
(l−1)
j

∥∥
1
+
∥∥π(κ

(t1)
i )

j − π̃(νj(κ
(t1)
i ))

j

∥∥
1
+
∥∥π̃(νj(κ

(t1)
i ))

j − π(νj(κ
(t1)
i ))

j

∥∥
1

+
∥∥π(κ

(t2)
i )

j − π̃(νj(κ
(t2)
i ))

j

∥∥
1
+
∥∥π̃(νj(κ

(t2)
i ))

j − π(νj(κ
(t2)
i ))

j

∥∥
1

≤
νj(κ

(t1)
i )∨νj(κ

(t2)
i )∑

l=(νj(κ
(t1)
i )+1)∧(νj(κ

(t2)
i )+1)

ϕ
(l)
j +

η̃
(νj(κ

(t1)
i ))

j

η
ϕ
(νj(κ

(t1)
i ))

j +
η̃
(νj(κ

(t2)
i ))

j

η
ϕ
(νj(κ

(t2)
i ))

j

≤
νj(κ

(t1)
i )∨νj(κ

(t2)
i )∑

l=(νj(κ
(t1)
i )+1)∧(νj(κ

(t2)
i )+1)

ϕ
(l)
j + (γ + 1)ϕ

(νj(κ
(t1)
i ))

j + (γ + 1)ϕ
(νj(κ

(t2)
i ))

j . (E.63)
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Therefore, we have

t∑

k=κ
(t)
i

∥∥π(κ
(k)
i )

j − π(κ
(κ

(t−1)
i

)

i )
j

∥∥
1

≤
t∑

k=κ
(t)
i

{ νj(κ
(κ

(t−1)
i

)

i )∨νj(κ
(k)
i )∑

l=(νj(κ
(κ

(t−1)
i

)

i )+1)∧(νj(κ
(k)
i )+1)

ϕ
(l)
j + (γ + 1)ϕ

(νj(κ
(κ

(t−1)
i

)

i ))
j + (γ + 1)ϕ

(νj(κ
(k)
i ))

j

}
. (E.64)

Since 0 ∨ (t− γ) ≤ κ(t)i ≤ t ≤ νi(t) ≤ t+ γ for all i ∈ V , t ≥ 0, the first term can be bounded by

νj(κ
(κ

(t−1)
i

)

i )∨νj(κ
(k)
i )∑

l=(νj(κ
(κ

(t−1)
i

)

i )+1)∧(νj(κ
(k)
i )+1)

ϕ
(l)
j ≤

(t+γ−1)∨(k+γ)∑

l=(t−2γ)∧(k−γ+1)

ϕ
(l)
j ≤

t+γ∑

l=t−2γ

ϕ
(l)
j .

In addition, the mapping k 7→ νj(κ
(k)
i ) is injective when k ≥ γ (cf. Assumption 5 and 6). It follows

that

t∑

k=κ
(t)
i

ϕ
(νj(κ

(k)
i ))

j ≤
t+γ∑

l=κ
(t)
i −γ

ϕ
(l)
j ≤

t+γ∑

l=t−2γ

ϕ
(l)
j

Plugging the above inequalities into (E.64) yields

t∑

k=κ
(t)
i

∥∥π(κ
(k)
i )

j − π(κ
(κ

(t−1)
i

)

i )
j

∥∥
1

≤ (t+ 1− κ(t)i )

t+γ∑

l=t−2γ

ϕ
(l)
j + (t+ 1− κ(t)i )(γ + 1)ϕ

(νj(κ
(κ

(t−1)
i

)

i ))
j + (γ + 1)

t+γ∑

l=t−2γ

ϕ
(l)
j

≤ 2(γ + 1)

t+γ∑

l=t−2γ

ϕ
(l)
j + (γ + 1)2ϕ

(νj(κ
(κ

(t−1)
i

)

i ))
j .
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Finally, we control the term ϕ
(t)
i with ψ

(t)
i as:

(ϕ
(t)
i )2 =

((
1− η

η̃
(t)
i

)1/2
·
(
1− η

η̃
(t)
i

)1/2∥∥π(t)i − π
(t−1)
i

∥∥
1

+
( η

η̃
(t)
i

(1− η̃(t)i τ)−1
)1/2

·
( η

η̃
(t)
i

(1− η̃(t)i τ)
)1/2∥∥π(κ

(t)
i )

i − π(t−1)
i

∥∥
1

+
( η

η̃
(t)
i

)1/2
·
( η

η̃
(t)
i

)1/2(∥∥π̃(t)i − π
(κ

(t)
i )

i

∥∥
1
+
∥∥π(t)i − π̃

(t)
i

∥∥
1

))2

(i)

≤
(
1− η

η̃
(t)
i

+
η

η̃
(t)
i

(
2 + (1− η̃(t)i τ)−1

))[(
1− η

η̃
(t)
i

)∥∥π(t)i − π
(t−1)
i

∥∥2
1

+
η

η̃
(t)
i

(
(1− η̃(t)i τ)

∥∥π(κ
(t)
i )

i − π(t−1)
i

∥∥2
1
+
∥∥π̃(t)i − π

(κ
(t)
i )

i

∥∥2
1
+
∥∥π(t)i − π̃

(t)
i

∥∥2
1

)]

(ii)

≤ 2
(
2 + (1− η̃(t)i τ)−1

)[(
1− η

η̃
(t)
i

)
KL
(
π
(t)
i ∥π

(t−1)
i

)

+
η

η̃
(t)
i

(
(1− η̃(t)i τ)KL

(
π
(κ

(t)
i )

i ∥π(t−1)
i

)
+ KL

(
π̃
(t)
i ∥π

(κ
(t)
i )

i

)
+ KL

(
π
(t)
i ∥ π̃

(t)
i

))]

(iii)

≤ 8ψ
(t)
i , (E.65)

where (i) applies Cauchy-Schwarz inequality, (ii) invokes Pinsker’s inequality and (iii) is due to

η̃
(t)
i τ ≤ (γ + 1)ητ ≤ 1/2. Combining the above two inequalities finishes the proof.

E.3.8 Proof of Lemma 42

We start with verifying the claim (E.46). Recall that

ψ
(t)
i :=

(
1− η

η̃
(t)
i

)
KL
(
π
(t)
i ∥π

(t−1)
i

)

+
η

η̃
(t)
i

[
(1− η̃(t)i τ)KL

(
π
(κ

(t)
i )

i ∥π(t−1)
i

)
+ KL

(
π̃
(t)
i ∥π

(κ
(t)
i )

i

)
+ KL

(
π
(t)
i ∥ π̃

(t)
i

)]
.

We introduce the following standard Lemma (c.f., (A.34)), which allows us to bound control
KL (πi ∥π′i) properly:

Lemma 44. Given πi, π
′
i ∈ ∆(Si) and w ∈ R|Si| with log πi

1
= log π′i + w, we have

KL
(
πi ∥π′i

)
≤
∥∥log πi − log π′i

∥∥
∞ ≤ 2

∥∥w
∥∥
∞.

Therefore, it suffices to figure out the terms log π
(t)
i − log π

(t−1)
i , log π

(t)
i − log π̃

(t)
i , log π̃

(t)
i −

log π
(κ

(t)
i )

i and log π
(κ

(t)
i )

i − log π
(t−1)
i .

• Bounding KL
(
π
(t)
i ∥π

(t−1)
i

)
and KL

(
π
(t)
i ∥ π̃

(t)
i

)
. The following equations follow directly

from (E.37) and (E.38):



log π

(t)
i − log π

(t−1)
i

1
= η([Aiπ

(κ
(t)
i )]k − τ log π(t−1)

i )

log π
(t)
i − log π̃

(t)
i

1
= (η − η̃(t)i )([Aiπ

(κ
(t)
i )]k − τ log π(t−1)

i )
. (E.66)
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In addition, we have the following bound w.r.t. the order of
∥∥log π(t−1)

i

∥∥
∞, which we shall

establish momentarily.

∥∥τ log π(t−1)
i

∥∥
∞ ≤ τ log |Si|+ 2dmax ∥A∥∞ . (E.67)

This taken together with Lemma 44 yields




KL
(
π
(t)
i ∥π

(t−1)
i

)
≤ η(3dmax ∥A∥∞ + τ log |Si|)

KL
(
π
(t)
i ∥ π̃

(t)
i

)
≤ (η̃

(t)
i − η)(3dmax ∥A∥∞ + τ log |Si|)

. (E.68)

• Bounding KL
(
π̃
(t)
i ∥π

(κ
(t)
i )

i

)
. When κ

(t)
i ≥ 1, we recall from (E.40) that:

log π
(κ

(t)
i )

i − log π̃
(t)
i

1
= η̃

(t)
i

(
Ai(π

(κ
(κ

(t)
i

−1)

i ) − π(κ
(t)
i ))

+
t−1∑

l=κ
(t)
i

(1− η̃(t)i τ)(1− ητ)t−1−lAi(π
(κ

(κ
(t)
i

−1)

i ) − π(κ
(l)
i ))

)
, (E.69)

which leads to a crude bound

KL
(
π̃
(t)
i ∥π

(κ
(t)
i )

i

)
≤ η̃(t)i dmax ∥A∥∞ (t− κ(t)i + 1) ≤ η̃(t)i dmax ∥A∥∞ (γ + 1).

When κ
(t)
i = 0, we have

log π
(κ

(t)
i )

i − log π̃
(t)
i

1
= − log π̃

(t)
i

1
= −(1− η̃(t)i τ)(1− ητ)t−1 log π(0)

− η̃(t)i

(
Aiπ

(κ
(t)
i ) +

t−1∑

l=κ
(t)
i +1

(1− η̃(t)i τ)(1− ητ)t−1−lAiπ
(κ

(l)
i )

)

1
= −η̃(t)i

(
Aiπ

(κ
(t)
i ) +

t−1∑

l=κ
(t)
i +1

(1− η̃(t)i τ)(1− ητ)t−1−lAiπ
(κ

(l)
i )

)
, (E.70)

which yields

KL
(
π̃
(t)
i ∥π

(κ
(t)
i )

i

)
≤ η̃(t)i dmax ∥A∥∞ t ≤ η̃(t)i dmax ∥A∥∞ (γ + 1).

• Bounding KL
(
π
(κ

(t)
i )

i ∥π(t−1)
i

)
. Note that

log π
(κ

(t)
i )

i − log π
(t−1)
i = (log π

(κ
(t)
i )

i − log π̃
(t)
i ) + (log π̃

(t)
i − log π

(t)
i ) + (log π

(t)
i − log π

(t−1)
i ).

This yields, by equations (E.66), (E.69), (E.70) and associated bounds,

KL
(
π
(κ

(t)
i )

i ∥π(t−1)
i

)
≤ η̃(t)i dmax ∥A∥∞ (γ + 1) + η̃

(t)
i (3dmax ∥A∥∞ + τ log |Si|).
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Putting all pieces together, we conclude that

ψ
(t)
i =

(
1− η

η̃
(t)
i

)
KL
(
π
(t)
i ∥π

(t−1)
i

)

+
η

η̃
(t)
i

[
(1− η̃(t)i τ)KL

(
π
(κ

(t)
i )

i ∥π(t−1)
i

)
+ KL

(
π̃
(t)
i ∥π

(κ
(t)
i )

i

)
+ KL

(
π
(t)
i ∥ π̃

(t)
i

)]

≤ 3η(3dmax ∥A∥∞ + τ log |Si|) + 2ηdmax ∥A∥∞ (γ + 1)

= η(dmax ∥A∥∞ (2γ + 11) + 3τ log |Si|).

It remains to prove the claim (E.47):

KL
(
π⋆i,τ ∥π(2γ)i

)
= KL

(
π⋆i,τ ∥π(0)i

)
+
〈
π⋆i,τ , log π

(0)
i − log π

(2γ)
i

〉

≤ KL
(
π⋆i,τ ∥π(0)i

)
+
∥∥log π(0)i − log π

(2γ)
i

∥∥
∞

≤ KL
(
π⋆i,τ ∥π(0)i

)
+ 2

∥∥∥∥∥η
2γ∑

l=1

(1− ητ)2γ−lAiπ
(κ

(l)
i )

∥∥∥∥∥
∞

≤ KL
(
π⋆i,τ ∥π(0)i

)
+ 4ηdmax ∥A∥∞ γ,

where the third step results from log π
(2γ)
i

1
= (1 − ητ)2γ log π(0)i + η

∑2γ
l=1(1 − ητ)2γ−lAiπ

(κ
(l)
i ) and

Lemma 44.

Proof of the claim (E.67). First, we prove by induction that for any k, l ∈ Si,

log π
(t)
i (k)− log π

(t)
i (l) ≤ 2dmax ∥A∥∞

τ
, ∀t ≥ 0. (E.71)

Note that the claim trivially holds for t = 0 with the uniform initialization π
(0)
i = 1

|Si|1, ∀i ∈ V .

Assume that (E.71) holds for all t′ ≤ t− 1. Note that log π
(t)
i

1
= (1− ητ) log π(t−1)

i + ηAiπ
(κ

(t)
i ), we

have

log π
(t)
i (k)− log π

(t)
i (l) = (1− ητ)

(
log π

(t−1)
i (k)− log π

(t−1)
i (l)

)
+ η

(
[Aiπ

(κ
(t)
i )]k − [Aiπ

(κ
(t)
i )]l

)

≤ (1− ητ)2dmax ∥A∥∞
τ

+ 2ηdmax ∥A∥∞

=
2dmax ∥A∥∞

τ
,

where the second line follows from the induction hypothesis (E.71). This completes the induction
at the t-th iteration. It follows that for all i ∈ V and t ≥ 0,

log π
(t)
i (l) ≥ log

(
max
k∈Si

π
(t)
i (k)

)
− 2dmax ∥A∥∞

τ
≥ − log |Si| −

2dmax ∥A∥∞
τ

. (E.72)
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Appendix F

Proofs for Chapter 7

F.1 Proof of Theorem 12

Before proceeding to the main proof, we first a useful lemma connecting the marginalized utility
with the policy, as given below

Lemma 45. Given any π, π′ ∈ ∆(A)N , the difference in the marginalized utility (cf. (7.2)) can be
bounded by ∥∥∥rπi − rπ

′
i

∥∥∥
∞
≤
√
J(π, π′),

where J(π, π′) = KL (π ∥π′) + KL (π′ ∥π) is the Jeffrey divergence.

Proof. See Appendix F.2.

F.1.1 Step 1: quantify the policy improvement

We start by the following key lemma that gives a lower bound of the improvement in terms of the

regularized potential function Φ
(t)
τ .

Lemma 46. The independent NPG update (7.5) guarantees that

Φ(t+1)
τ − Φ(t)

τ ≥
(
1

η
−min{

√
N, 2Φmax} − τ

)
J
(
π(t+1), π(t)

)
.

Proof. See Appendix F.3.

Lemma 46 ensures the monotonic improvement of the regularized potential function Φτ when
η is not too large. Specifically, setting η ≤ 1/(2(min{

√
N, 2Φmax}+ τ)), we have

Φ(t+1)
τ − Φ(t)

τ ≥
1

2η
J
(
π(t+1), π(t)

)
,

which is guaranteed to be non-negative. Summing the above inequality over t = 0, · · · , T − 1 gives

T−1∑

t=0

J
(
π(t+1), π(t)

)
≤ 2η(Φ(T )

τ − Φ(0)
τ ), (F.1)

which controls the change of π(t) over time t via the size of the regularized potential function.
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F.1.2 Step 2: introduce the auxiliary sequence

Motivated by Cen et al. [2021, 2022b], we introduce an auxiliary sequence {ξ(t)i ∈ R|A|, i ∈ [N ]},
constructed recursively by

ξ
(0)
i (a) =

∥∥∥exp(r(0)i /τ)
∥∥∥
1
· π(0)i (a), (F.2a)

ξ
(t+1)
i (a) = ξ

(t)
i (a)1−ητ exp(ηr

(t)
i (a)). (F.2b)

Compared with the independent NPG update rule (7.5), it is clear that ξ
(t)
i ∝ π

(t)
i up to normal-

ization. In addition, we have

log ξ
(t+1)
i − r(t+1)

i /τ = (1− ητ) log ξ(t)i + ηr
(t)
i − r

(t+1)
i /τ

= (1− ητ)
(
log ξ

(t)
i − r

(t)
i /τ

)
+
(
r
(t)
i − r

(t+1)
i

)
/τ,

which implies

∥∥∥log ξ(t+1)
i − r(t+1)

i /τ
∥∥∥
∞
≤ (1− ητ)

∥∥∥log ξ(t)i − r
(t)
i /τ

∥∥∥
∞

+
∥∥∥r(t)i − r

(t+1)
i

∥∥∥
∞
/τ

≤ (1− ητ)t+1
∥∥∥log ξ(0)i − r

(0)
i /τ

∥∥∥
∞

+ τ−1
t∑

s=0

(1− ητ)t−s
∥∥∥r(s)i − r

(s+1)
i

∥∥∥
∞

≤ (1− ητ)t+1
∥∥∥log ξ(0)i − r

(0)
i /τ

∥∥∥
∞

+ τ−1
t∑

s=0

(1− ητ)t−s
√
J
(
π(s+1), π(s)

)
,

(F.3)

where the last line follows by applying Lemma 45 to the last term by setting π = π(t) and π′ = π(t+1).

F.1.3 Step 3: bound the gap

Note that by the definition of the best-response policy in (7.6), the term of interest in QRE-gap
(t)
τ

can be controlled as

ui,τ (π
⋆(t+1)
i , π

(t+1)
−i )− ui,τ (π(t+1)

i , π
(t+1)
−i ) =

〈
π
⋆(t+1)
i − π(t+1)

i , r
(t+1)
i

〉
+ τH(π⋆(t+1)

i )− τH(π(t+1)
i )

= τKL
(
π
(t+1)
i ∥π⋆(t+1)

i

)
≤ τ

∥∥∥log π(t+1)
i − log π

⋆(t+1)
i

∥∥∥
∞

≤ 2τ
∥∥∥log ξ(t+1)

i − r(t+1)
i /τ

∥∥∥
∞
,

where the first line follows from the definition (7.2), the second step results from a direct consequence
of (7.7):

〈
π
⋆(t+1)
i − π(t+1)

i , r
(t+1)
i

〉
=
〈
π
⋆(t+1)
i − π(t+1)

i , τ log π
⋆(t+1)
i

〉

with a little algebra, and the last line follows from Lemma 15. Taking maximum over i ∈ [N ], in
conjunction with (F.3), we end up with

QRE-gap(t+1)
τ ≤ 2τ(1− ητ)t+1

∥∥∥log π(0) − log π⋆(0)
∥∥∥
∞

+ 2

t∑

s=0

(1− ητ)t−s
√
J
(
π(s+1), π(s)

)
.
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Summing the inequality over t = 0, . . . , T − 1 gives

T−1∑

t=0

QRE-gap(t+1)
τ

≤ 2τ

T−1∑

t=0

(1− ητ)t+1 max
i∈[N ]

∥∥∥log π(0)i − log π
⋆(0)
i

∥∥∥
∞

+ 2
T−1∑

t=0

t∑

s=0

(1− ητ)t−s
√
J
(
π(s+1), π(s)

)

≤ 2

ητ

(
τ
∥∥∥log π(0) − log π⋆(0)

∥∥∥
∞

+

T−1∑

s=0

√
J
(
π(s+1), π(s)

))
.

The proof is thus completed by noticing

T−1∑

s=0

√
J
(
π(s+1), π(s)

)
≤

√√√√T
T−1∑

s=0

J
(
π(s+1), π(s)

)
≤
√

2ηT (Φ
(T )
τ − Φ

(0)
τ ).

Here, the second step results from Pinsker’s inequality, and the last line follows from (F.1).

F.2 Proof of Lemma 45

Given any π, π′ ∈ ∆(A)N , we have

∣∣∣rπi (a)− rπ
′

i (a)
∣∣∣ =

∣∣∣Ea−i∼π−i [ui(a, a−i)]− Ea−i∼π′
−i

[ui(a, a−i)]
∣∣∣

(i)

≤ 2 ∥ui∥∞ dTV

(
π−i, π

′
−i

)

≤
√
2dTV

(
π−i, π′−i

)2
+ 2dTV

(
π′−i, π−i

)2

(ii)

≤
√
KL
(
π−i ∥π′−i

)
+ KL

(
π′−i ∥π−i

)

≤
√
KL (π ∥π′) + KL (π′ ∥π) =

√
J(π, π′),

(F.4)

where dTV (·, ·) refers to total variation distance. Here, (i) follows from applying
∣∣∫

Ω hdµ−
∫
Ω hdν

∣∣ ≤
2dTV (µ, ν) ∥h∥∞ which holds for any probability measures µ, ν and bounded measurable function
h : Ω→ R (see e.g., [Driver, 2007, Corollary 13.4]), and (ii) results from Pinsker’s inequality.

F.3 Proof of Lemma 46

The proof is composed of two parts, each establishing the following bounds

Φ(t+1)
τ − Φ(t)

τ ≥
(
1

η
−
√
N − τ

)
J
(
π(t+1), π(t)

)
, (F.5a)

Φ(t+1)
τ − Φ(t)

τ ≥
(
1

η
− 2Φmax − τ

)
J
(
π(t+1), π(t)

)
(F.5b)

respectively. Combining the two bounds then finishes the proof.
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F.3.1 Proof of (F.5a)

We introduce

π̃
(t)
−i(a−i) =

∏

j<i

π
(t)
j (aj)

∏

k>i

π
(t+1)
k (ak) ∈ ∆(A)N−1

to denote the mixed strategy profile (except that of agent i) where the agents with index j < i follow

π
(t)
j and the agents with index k > i follow π

(t+1)
k instead. Let r̃

(t)
i be the associated marginalized

utility function, i.e.,

r̃
(t)
i (a) = E

ai=a,a−i∼π̃
(t)
−i

[ui(a)] (F.6)

=
∑

a−i∈AN−1

ui(a, a−i)
∏

j<i

π
(t)
j (aj)

∏

k>i

π
(t+1)
k (ak).

It follows from the above definition that we have

Φτ (π
(t)
i , π̃

(t)
−i) = Φτ (π

(t)
1 , · · · , π(t)i , π

(t+1)
i+1 , · · · , π(t+1)

N ) = Φτ (π
(t+1)
i+1 , π̃

(t)
−(i+1)) (F.7)

for i ∈ [N − 1].

We now decompose Φ
(t+1)
τ − Φ

(t)
τ as follows:

Φ(t+1)
τ − Φ(t)

τ = Φτ (π
(t+1)
1 , π̃

(t)
−1)− Φτ (π

(t)
N , π̃

(t)
−N )

= Φτ (π
(t+1)
1 , π̃

(t)
−1)− Φτ (π

(t)
1 , π̃

(t)
−1) + Φτ (π

(t)
1 , π̃

(t)
−1)− Φτ (π

(t)
N , π̃

(t)
−N )

(i)
=
[
Φτ (π

(t+1)
1 , π̃

(t)
−1)− Φτ (π

(t)
1 , π̃

(t)
−1)
]
+Φτ (π

(t+1)
2 , π̃

(t)
−2)− Φτ (π

(t)
N , π̃

(t)
−N )

(ii)
=

N∑

i=1

[
Φτ (π

(t+1)
i , π̃

(t)
−i)− Φτ (π

(t)
i , π̃

(t)
−i)
]

=
N∑

i=1

[
ui,τ (π

(t+1)
i , π̃

(t)
−i)− ui,τ (π

(t)
i , π̃

(t)
−i)
]

=
N∑

i=1

[〈
r̃
(t)
i , π

(t+1)
i − π(t)i

〉
+ τ

(
H(π(t+1)

i )−H(π(t)i )
)]
,

where (i) follows from (F.7), and (ii) follows from repeating the above process over all agents, and
the last line follows from (F.6). For every i ∈ [N ], we have

〈
r̃
(t)
i , π

(t+1)
i − π(t)i

〉
+ τ

(
H(π(t+1)

i )−H(π(t)i )
)

=
〈
r
(t)
i , π

(t+1)
i − π(t)i

〉
+ τ

(
H(π(t+1)

i )−H(π(t)i )
)
+
〈
r̃
(t)
i − r

(t)
i , π

(t+1)
i − π(t)i

〉
.

We control the terms separately.

• For the first two terms, recall that taking logarithm on both sides of (7.5) gives

ηr
(t)
i = log π

(t+1)
i − (1− ητ) log π(t)i + c1
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for some constant c. It follows that

⟨r(t)i , π
(t+1)
i − π(t)i ⟩+ τ

(
H(π(t+1)

i )−H(π(t)i )
)

=
1

η
⟨log π(t+1)

i − log π
(t)
i , π

(t+1)
i − π(t)i ⟩+ τ

(〈
log π

(t)
i , π

(t+1)
i − π(t)i

〉
+H(π(t+1)

i )−H(π(t)i )
)

=

(
1

η
− τ
)
KL
(
π
(t+1)
i ∥π(t)i

)
+

1

η
KL
(
π
(t)
i ∥π

(t+1)
i

)
. (F.8)

• For the third term, according to (F.4), we have

∣∣∣r̃(t)i (a)− r(t)i (a)
∣∣∣ ≤ 2dTV (π̃

(t)
−i , π

(t)
−i).

Hence,

N∑

i=1

∣∣
〈
r̃
(t)
i − r

(t)
i , π

(t+1)
i − π(t)i

〉 ∣∣

≤ 2

N∑

i=1

dTV (π̃
(t)
−i , π

(t)
−i)
∥∥∥π(t+1)

i − π(t)i

∥∥∥
1

(i)

≤ 2√
N

N∑

i=1

dTV (π
(t)
−i , π̃

(t)
−i)

2 +

√
N

2

N∑

i=1

∥∥∥π(t+1)
i − π(t)i

∥∥∥
2

1

(ii)

≤ 1√
N

N∑

i=1

KL
(
π
(t)
−i ∥ π̃

(t)
−i

)
+
√
N

N∑

i=1

KL
(
π
(t+1)
i ∥π(t)i

)

≤ 1√
N

N∑

i=1

KL
(
π(t) ∥π(t+1)

)
+
√
NKL

(
π(t+1) ∥π(t)

)

=
√
N
(
KL
(
π(t+1) ∥π(t)

)
+ KL

(
π(t) ∥π(t+1)

))
=
√
NJ(π(t+1), π(t)),

where (i) results from Young’s inequality and (ii) is due to Pinsker’s inequality.

Combining all pieces together, we have

Φ(t+1)
τ − Φ(t)

τ ≥
(
1

η
− τ
) N∑

i=1

[
KL
(
π
(t+1)
i ∥π(t)i

)
+ KL

(
π
(t)
i ∥π

(t+1)
i

)]
−
√
NJ(π(t+1), π(t))

≥
(
1

η
−
√
N − τ

)
J(π(t+1), π(t)).
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F.3.2 Proof of (F.5b)

Alternatively, we can decompose Φ
(t+1)
τ − Φ

(t)
τ as

Φ(t+1)
τ − Φ(t)

τ

= Φ(t+1) − Φ(t) + τ
N∑

i=1

[
H(π(t+1)

i )−H(π(t)i )
]

=
N∑

i=1

[
Φ(π

(t+1)
i , π

(t)
−i)− Φ(t) + τH(π(t+1)

i )− τH(π(t)i )
]
+Φ(t+1) − Φ(t) −

N∑

i=1

[
Φ(π

(t+1)
i , π

(t)
−i)− Φ(t)

]

=

N∑

i=1

[
ui(π

(t+1)
i , π

(t)
−i)− ui(π(t)) + τH(π(t+1)

i )− τH(π(t)i )
]
+Φ(t+1) − Φ(t) −

N∑

i=1

[
Φ(π

(t+1)
i , π

(t)
−i)− Φ(t)

]
.

The first term is lower bounded by (1/η − τ)J(π(t+1)
i , π

(t)
i ) as shown in (F.8). For the remaining

terms, we have

∣∣∣Φ(t+1) − Φ(t) −
N∑

i=1

[
Φ(π

(t+1)
i , π

(t)
−i)− Φ(t)

] ∣∣∣

≤
∑

a∈AN

Φ(a)π(t)(a)

∣∣∣∣∣
π(t+1)(a)

π(t)(a)
− 1−

N∑

i=1

(
π
(t+1)
i (ai)

π
(t)
i (ai)

− 1

)∣∣∣∣∣. (F.9)

To continue, we need the following elementary lemma, which will be proved at the end.

Lemma 47. For all x ∈ (−1,∞), it holds that

0 ≤ x− log(1 + x) ≤ x log(1 + x).

Invoking Lemma 47 to obtain
∣∣∣∣∣
π(t+1)(a)

π(t)(a)
− 1−

N∑

i=1

(
π
(t+1)
i (ai)

π
(t)
i (ai)

− 1

)∣∣∣∣∣

=

∣∣∣∣∣
π(t+1)(a)

π(t)(a)
− 1− log

π(t+1)(a)

π(t)(a)
−

N∑

i=1

(
π
(t+1)
i (ai)

π
(t)
i (ai)

− 1− log
π
(t+1)
i (ai)

π
(t)
i (ai)

)∣∣∣∣∣

≤
(
π(t+1)(a)

π(t)(a)
− 1

)
log

π(t+1)(a)

π(t)(a)
+

N∑

i=1

(
π
(t+1)
i (ai)

π
(t)
i (ai)

− 1

)
log

π
(t+1)
i (ai)

π
(t)
i (ai)

.

Plugging the above inequality into (F.9) yields

∣∣∣Φ(t+1) − Φ(t) −
N∑

i=1

[
Φ(π

(t+1)
i , π

(t)
−i)− Φ(t)

] ∣∣∣

≤ Φmax

∑

a∈AN

π(t)(a)

[(
π(t+1)(a)

π(t)(a)
− 1

)
log

π(t+1)(a)

π(t)(a)
+

N∑

i=1

(
π
(t+1)
i (ai)

π
(t)
i (ai)

− 1

)
log

π
(t+1)
i (ai)

π
(t)
i (ai)

]

= Φmax

∑

a∈AN

[(
π(t+1)(a)− π(t)(a)

)
log

π(t+1)(a)

π(t)(a)

]
+Φmax

N∑

i=1

∑

ai∈A

(
π
(t+1)
i (ai)− π(t)i (ai)

)
log

π
(t+1)
i (ai)

π
(t)
i (ai)

= Φmax

(
J(π(t+1), π(t)) +

N∑

i=1

J(π
(t+1)
i , π

(t)
i )

)
= 2ΦmaxJ(π

(t+1), π(t)).

199



Combining all pieces together, we have

Φ(t+1)
τ − Φ(t)

τ ≥
(
1

η
− 2Φmax − τ

) N∑

i=1

J(π(t+1), π(t)).

Proof of Lemma 47. We have x−log(1+x) = x log(1+x) = 0 and (x−log(1+x))′ = (x log(1+x))′ =
0 when x = 0. It follows that x − log(1 + x) ≥ 0 since log is concave. With straightforward
calculation, we get

(x log(1 + x))′ − (x− log(1 + x))′ = log(1 + x)

{
≥ 0 x ≥ 0

< 0 −1 < x < 0
,

which implies x− log(1 + x) ≤ x log(1 + x).

F.3.3 Proof of Corollary 1

By noting that π
⋆(0)
i ∝ exp

(
r
(0)
i /τ

)
, and with uniform policy initialization π

(0)
i ∝ 1, we can

conclude ∥∥∥log π(0)i − log π
⋆(0)
i

∥∥∥
∞
≤ 2

∥∥∥∥∥
r
(t)
i

τ
− 0

∥∥∥∥∥
∞

≤ 2

τ
.

where the first inequality follows from Lemma 15, and the second inequality is true since the payoff
is bounded by 1. On the other hand, we have

Φ(T )
τ − Φ(0)

τ = Φ(π(T ))− Φ(π(0)) + τH(π(T ))− τH(π(0))
≤ Φ(π(T ))− Φ(π(0)) ≤ Φmax,

where the first inequality uses the fact that the entropy is maximized for uniform policies, and
the second inequality uses 0 ≤ Φ(π) ≤ Φmax for any π. Combining the above two bounds with
Theorem 12, we have

1

T

T∑

t=1

QRE-gap(t)τ ≤
4

τηT
+

2

τ

√
2Φmax

ηT
.

Setting η = 1
2(min{

√
N,2Φmax}+τ)

and T = O
(
min{

√
N,Φmax}Φmax

τ2ε2

)
thus completes the proof.
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Appendix G

Proofs for Chapter 8

G.1 Analysis for the online setting

G.1.1 Proof of Theorem 13

For ease of presentation, we assume that R is finite, i.e., |R| <∞. The general case can be directly
obtained using a covering number argument, which we refer to [Liu et al., 2024a, Jin et al., 2022]
for interested readers.

We start by decomposing the regret into two parts:

Regret :=
T∑

t=1

[
J⋆(r⋆)− J(r⋆, π(t))

]

=

T∑

t=1

[
J⋆(r⋆)− J⋆(r(t))

]

︸ ︷︷ ︸
Term (i)

+

T∑

t=1

[
J(r(t), π(t))− J(r⋆, π(t))

]

︸ ︷︷ ︸
Term (ii)

. (G.1)

Step 1: bounding term (i). By the choice of r(t), we have

ℓ(r(t),D(t−1))− αJ⋆(r(t)) ≤ ℓ(r⋆,D(t−1))− αJ⋆(r⋆). (G.2)

Rearranging terms,

J⋆(r⋆)− J⋆(r(t)) ≤ 1

α

[
ℓ(r⋆,D(t−1))− ℓ(r(t),D(t−1))

]
. (G.3)

The following lemma is adapted from [Liu et al., 2024a, Proposition 5.3], whose proof is deferred
to Appendix G.1.2.

Lemma 48. Let δ ∈ (0, 1). With probability 1− δ, we have

ℓ(r⋆,D(t−1))− ℓ(r(t),D(t−1))

≤ −2
t−1∑

s=1

E
x∼ρ,

(y1,y2)∼π(s)(·|x)

[
D2

H(Pr(t)(·|x, y1, y2) ∥Pr⋆(·|x, y1, y2))
]
+ 2 log(|R|/δ). (G.4)

Here, DH(·∥·) is the Hellinger distance, Pr(·|x, y1, y2) denotes the Bernoulli distribution of the
comparison result of (x, y1) and (x, y2) under reward model r.
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Putting the above inequalities together, it holds with probability 1− δ that

Term (i) ≤ − 2

α

T∑

t=1

t−1∑

s=1

E
x(s)∼ρ,

(y
(s)
1 ,y

(s)
2 )∼π(s)(·|x(s))

[
D2

H(Pr(t)(·|x(s), y
(s)
1 , y

(s)
2 ) ∥Pr⋆(·|x(s), y(s)1 , y

(s)
2 ))

]

+ 2α−1T log(|R|/δ). (G.5)

Step 2: breaking down term (ii) with the elliptical potential lemma. The linear function
approximation form (8.18) allows us to write

E
x∼ρ,y∼πr2 (·|x)

[r1(x, y)− r⋆(x, y)] = ⟨W (r1), X(r2)⟩ , (G.6)

where X,W : R → Rd is given by

X(rθ) = 2C E
x∼ρ,y∼πrθ

(·|x)
[ϕ(x, y)] , W (rθ) =

θ − θ⋆
2C

. (G.7)

Let

Σt = εI +

t−1∑

s=1

X(r(t))X(r(t))⊤ (G.8)

for some ε > 0. We begin by decomposing term (ii) as

Term (ii) =
T∑

t=1

E
x∼ρ,y∼π(t)(·|x)

[
r(t)(x, y)− r⋆(x, y)

]

=
T∑

t=1

〈
W (r(t)), X(r(t))

〉

=
T∑

t=1

〈
W (r(t)), X(r(t))

〉
1{∥X(r(t))∥Σ−1

t
≤ 1}

+
T∑

t=1

〈
W (r(t)), X(r(t))

〉
1{∥X(r(t))∥Σ−1

t
> 1}, (G.9)

where 1{A} is an indicator function of event A. To proceed, we recall the elliptical potential lemma
for controlling the cumulative sum of min{∥X(r(t))∥2

Σ−1
t

, 1}.

Lemma 49 ([Abbasi-Yadkori et al., 2011, Lemma 11]). Let {Xt} be a sequence in Rd and Λ0 ∈
Rd×d a positive definite matrix. Define Λt = Λ0 +

∑t
s=1XsX

⊤
s . Assume ∥Xt∥ ≤ L for all t. It

holds that

T∑

t=1

min{∥Xt∥2Λ−1
t
, 1} ≤ 2 log

(det(ΛT )

det(Λ0)

)

≤ 2(d log((trace(Λ0) + TL2)/d)− log det(Λ0)).

Applying the above lemma yields

T∑

t=1

min{∥X(r(t))∥2
Σ−1

t
, 1} ≤ min

{
2d log

(4C4T/d+ ε

ε

)
, T

}
:= d(ε). (G.10)
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We now control the two terms in (G.9). • The first term of (G.9) can be bounded by

T∑

t=1

〈
W (r(t)), X(r(t))

〉
1{∥X(r(t))∥Σ−1

t
≤ 1}

≤
T∑

t=1

∥W (r(t))∥Σt∥X(r(t))∥Σ−1
t
1{∥X(r(t))∥Σ−1

t
≤ 1}

≤
T∑

t=1

∥W (r(t))∥Σt min
{
∥X(r(t))∥Σ−1

t
, 1
}

=

T∑

t=1

[
ε∥W (r(t))∥22 +

t−1∑

s=1

〈
W (r(t)), X(r(s))

〉2 ]1/2
min

{
∥X(r(t))∥2

Σ−1
t
, 1
}1/2

(i)

≤
{ T∑

t=1

[
ε∥W (r(t))∥22 +

t−1∑

s=1

〈
W (r(t)), X(r(s))

〉2 ]}1/2{ T∑

t=1

min
{
∥X(r(t))∥2

Σ−1
t
, 1
}}1/2

(ii)

≤
√
d(ε)

{ T∑

t=1

t−1∑

s=1

〈
W (r(t)), X(r(s))

〉2}1/2

+
√
d(ε)εT

(iii)

≤ d(ε)

2µ
+
µ

2

T∑

t=1

t−1∑

s=1

〈
W (r(t)), X(r(s))

〉2
+
√
d(ε)εT . (G.11)

Here, (i) is due to Cauchy-Schwarz inequality, (ii) is due to
√
a+ b ≤ √a +

√
b for ∀a, b ≥ 0, and

(iii) results from Young’s inequality. We leave the constant µ > 0 to be determined later. • The
second term of (G.9) can be bounded by

T∑

t=1

〈
W (r(t)), X(r(t))

〉
1{∥X(r(t))∥Σ−1

t
> 1} ≤ C

T∑

t=1

1{∥X(r(t))∥Σ−1
t
> 1}

≤ C
T∑

t=1

min{∥X(r(t))∥2
Σ−1

t
, 1} ≤ Cd(ε), (G.12)

where the first inequality follows from ∥X(r(t))∥2 ≤ 2C and ∥W (r(t))∥2 ≤ 1/2 since ∥ϕ(x, y)∥2 ≤ 1.
Putting (G.9), (G.11) and (G.12) together, we arrive at

Term (ii) ≤ d(ε)

2µ
+
µ

2

T∑

t=1

t−1∑

s=1

〈
W (r(t)), X(r(s))

〉2
+
√
d(ε)εT + Cd(ε). (G.13)

Step 3: continuing bounding term (ii). It boils down to control
〈
W (r(t)), X(r(s))

〉2
. We

have〈
W (r(t)), X(r(s))

〉
= E

x∼ρ,
y∼π(s)(·|x)

[
r(t)(x, y)− r⋆(x, y)

]

= E
x∼ρ,

y1∼π(s)(·|x)

[
r(t)(x, y1)− r⋆(x, y1)

]
− E

x∼ρ,
y2∼πcal(·|x)

[
r(t)(x, y2)− r⋆(x, y2)

]

= E
x∼ρ,

y1∼π(s)(·|x),
y2∼πcal(·|x)

[
δx(r

(t), r⋆, y1, y2)
]
, (G.14)
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where δx(r1, r2, y1, y2) := r1(x, y1)− r1(x, y2)− (r2(x, y1)− r2(x, y2)). Therefore,
〈
W (r(t)), X(r(s))

〉2
= E

x∼ρ,
y1∼π(s)(·|x),
y2∼πcal(·|x)

[
δx(r

(t), r⋆, y1, y2)
]2

= E
x∼ρ,

y1∼π(s)(·|x),
y2∼πcal(·|x)

[
δx(r

(t), r⋆, y1, y2)
2
]
− Var

x∼ρ,
y1∼π(s)(·|x),
y2∼πcal(·|x)

[δx(r
(t), r⋆, y1, y2)

2]

≤ E
x∼ρ,

y1∼π(s)(·|x),
y2∼πcal(·|x)

[
δx(r

(t), r⋆, y1, y2)
2
]

≤ sup
x,y

πcal(y|x)
π(s)(y|x) · E

x∼ρ,
y1,y2∼π(s)(·|x)

[
δx(r

(t), r⋆, y1, y2)
2
]

≤ sup
x,y

πref(y|x)
π(s)(y|x) · supx,y

πcal(y|x)
πref(y|x)

· E
x∼ρ,

y1,y2∼π(s)(·|x)

[
δx(r

(t), r⋆, y1, y2)
2
]
. (G.15)

Recall from (8.6) that π(s)(y|x) ∝ πref(y|x) exp(r(s)(x, y)/β). It follows that | log π(s)(y|x) −
log πref(y|x)| ≤ 2∥r(s)(x, ·)∥∞ ≤ 2C/β (see e.g ., [Cen et al., 2022b, Appendix A.2]), and hence

supx,y
πref(y|x)
π(s)(y|x) ≤ exp(2C/β). To proceed, we demonstrate in the following lemma that δ2 can be

upper bounded by the corresponding Hellinger distance, whose proof is deferred to Appendix G.1.3.

Lemma 50. Assume bounded reward ∥r1∥∞ ≤ C, ∥r2∥∞ ≤ C. We have

δx(r1, r2, y1, y2)
2 ≤ 2(3 + exp(2C))2D2

H(Pr1(·|x, y1, y2) ∥Pr2(·|x, y1, y2)).

With the above lemma we arrive at

〈
W (r(t)), X(r(s))

〉2

≤ 2(3 + exp(2C))2 exp(2C/β)κ · E
x∼ρ,

y1,y2∼π(s)(·|x)

[
D2

H(Pr(t)(·|x, y1, y2) ∥Pr⋆(·|x, y1, y2))
]
.

where we denote κ = supx,y
πcal(y|x)
πref(y|x)

. Plugging the above bound into (G.13), we get

Term (ii)

≤ d(ε)

2µ
+ µ(3 + exp(2C))2 exp(2C/β)κ ·

T∑

t=1

t−1∑

s=1

E
x∼ρ,

y1,y2∼π(s)(·|x)

[
D2

H(Pr(t)(·|x, y1, y2) ∥Pr⋆(·|x, y1, y2))
]

+ 2B
√
d(ε)εT + Cd(ε). (G.16)

Step 4: finishing up. Combining (G.1), (G.5) and (G.16), with probability 1− δ we have

Regret ≤ 2T log(|R|/δ)
α

+
d(ε)

2µ
+
√
d(ε)εT + Cd(ε) (G.17)
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as long as αµ(3+exp(2C))2 exp(2C/β)κ ≤ 2. Setting α ≍ 1
exp(2C+C/β)

√
T

κd(ε) , µ ≍ 1
exp(2C+C/β)

√
d(ε)
κT ,

and ε = 1, we arrive at

Regret ≤ Õ((exp(2C + C/β))
√
κdT )

as claimed.

G.1.2 Proof of Lemma 48

To begin, we have

ℓ(r⋆,D(t−1))− ℓ(r(t),D(t−1)) = − log
P(D(t−1)|r⋆)
P(D(t−1)|r(t)) = −

t−1∑

s=1

Xs
r(t)
, (G.18)

where we denote

Xs
r = log

Pr⋆(y
(s)
+ ≻ y

(s)
− |x(s))

Pr(y
(s)
+ ≻ y

(s)
− |x(s))

. (G.19)

To proceed, we recall a useful martingale exponential inequality.

Lemma 51 ([Zhang, 2023, Theorem 13.2],[Liu et al., 2024a, Lemma D.1]). Let {Xt}∞t=1 be a se-
quence of real-valued random variables adapted to filtration {Ft}∞t=1. It holds with probability 1− δ
such that for any t ≥ 1,

−
t∑

s=1

Xs ≤
t∑

s=1

logE [exp(−Xs)|Fs−1] + log(1/δ).

Applying the above lemma to {12Xt
r}∞t=1 along with the filtration {Ft}∞t=1 with Ft given by the

σ-algebra of {(x(s), y(s)+ , y
(s)
− ) : s ≤ t}, we conclude that it holds with probability 1− δ that

−1

2

t−1∑

s=1

Xs
r ≤

t−1∑

s=1

logE
[
exp

{
− 1

2
Xs

r

}∣∣∣Fs−1

]
+ log(|R|/δ)

≤
t−1∑

s=1

(
E
[
exp

{
− 1

2
Xs

r

}∣∣∣Fs−1

]
− 1

)
+ log(|R|/δ), (G.20)
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where the last step results from the inequality log(1+x) ≤ x for all x ≥ −1. To proceed, note that

E
[
exp

{
− 1

2
Xs

r

}∣∣∣Fs−1

]

= E



√√√√ Pr(y

(s)
+ ≻ y

(s)
− |x(s))

Pr⋆(y
(s)
+ ≻ y

(s)
− |x(s))

∣∣∣Fs−1




= E
x(s)∼ρ,

(y
(s)
1 ,y

(s)
2 )∼π(s)(·|x(s)),
(+,−)∼Pr⋆



√√√√ Pr(y

(s)
+ ≻ y

(s)
− |x(s))

Pr⋆(y
(s)
+ ≻ y

(s)
− |x(s))




= E
x(s)∼ρ,

(y
(s)
1 ,y

(s)
2 )∼π(s)(·|x(s))


∑

(+,−)

√
Pr(y

(s)
+ ≻ y

(s)
− |x(s)) · Pr⋆(y

(s)
+ ≻ y

(s)
− |x(s))




= 1− 1

2
E

x(s)∼ρ,

(y
(s)
1 ,y

(s)
2 )∼π(s)(·|x(s))


∑

(+,−)

(√
Pr(y

(s)
+ ≻ y

(s)
− |x(s))−

√
Pr⋆(y

(s)
+ ≻ y

(s)
− |x(s))

)2



= 1− E
x∼ρ,

(y1,y2)∼π(s)(·|x)

[
D2

H(Pr(·|x, y1, y2 ∥Pr⋆(·|x, y1, y2)
]
,

where we denote by
∑

(+,−) the summation over different comparison results. Plugging the above
equality into (G.20) completes the proof.

G.1.3 Proof of Lemma 50

By the mean value theorem, we have

∣∣Pr1(y1 ≻ y2|x)− Pr2(y1 ≻ y2|x)
∣∣ =

∣∣σ(r1(x, y1)− r1(x, y2))− σ(r2(x, y1)− r2(x, y2))
∣∣

=
∣∣δx(r1, r2, y1, y2) · σ′(ξ)

∣∣
=
∣∣δx(r1, r2, y1, y2)

∣∣ · σ(ξ)(1− σ(ξ))

for some ξ between r1(x, y1)− r1(x, y2) and r2(x, y1)− r2(x, y2). Since |ξ| ≤ 2C, we have

σ(ξ)(1− σ(ξ)) ≥ σ(2C)(1− σ(2C)) ≥ 1

3 + exp(2C)
. (G.21)

Putting together,

∣∣δx(r1, r2, y1, y2)
∣∣ ≤ (3 + exp(2C))

∣∣Pr1(y1 ≻ y2|x)− Pr2(y1 ≻ y2|x)
∣∣

= (3 + exp(2C))TV(Pr1(·|x, y1, y2),Pr2(·|x, y1, y2))
≤ (3 + exp(2C))

√
2DH(Pr1(·|x, y1, y2) ∥Pr2(·|x, y1, y2)).
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G.2 Analysis for the offline setting

G.2.1 Proof of Lemma 2

By definition, the objective function ℓ(r,D) + αJ(r, π) is strongly concave over π, and convex over
r. By Danskin’s theorem, we have

∇r

(
max
π

[ℓ(r̂,D) + αJ(r̂, π)]
)
= ∇r

(
ℓ(r̂,D) + αJ(r̂, π̂)

)
.

Therefore, for any r′, by convexity of the objective function we have

ℓ(r′,D) + αJ(r′, π̂) ≥ ℓ(r̂,D) + αJ(r̂, π̂) +
〈
r′ − r̂,∇r

(
ℓ(r̂,D) + αJ(r̂, π̂)

)〉

= ℓ(r̂,D) + αJ(r̂, π̂) +
〈
r′ − r̂,∇r

(
max
π

[ℓ(r̂,D) + αJ(r̂, π)]
)〉

≥ ℓ(r̂,D) + αJ(r̂, π̂).

The last line is due to the definition of r̂ (c.f. (8.23)). The other relation, ℓ(r̂,D) + αJ(r̂, π̂) ≥
ℓ(r̂,D) + αJ(r̂, π′), follows directly from the definition of π̂ (c.f. (8.20)).

G.2.2 Proof of Theorem 14

We decompose the sub-optimality gap of π̂ by

J⋆(r⋆)− J(r⋆, π̂)
=
[
J(r⋆, π⋆)− J(r̂, π⋆)

]
+
[
J(r̂, π⋆)− J(r̂, π̂)

]
+
[
J(r̂, π̂)− J(r⋆, π̂)

]

≤
[
J(r⋆, π⋆)− J(r̂, π⋆)

]
︸ ︷︷ ︸

Term (i)

+
[
J(r̂, π̂)− J(r⋆, π̂)

]
︸ ︷︷ ︸

Term (ii)

, (G.22)

where the last line is due to J(r̂, π⋆) ≤ J(r̂, π̂) according to the definition of π̂ (c.f. (8.20)). We
proceed to bound the two terms separately. Here we have written r̂ = r

θ̂
for notational simplicity.

In addition, we denote the MLE estimate by rMLE = rθMLE
.

By the definition of J(r, π) (cf. (8.4)), it follows that term (i) in (G.22) can be further decom-
posed as

Term (i) = E
x∼ρ,

y∼π⋆(·|x)

[r⋆(x, y)− r̂(x, y)]

= E
x∼ρ,

y∼π⋆(·|x)

[〈
ϕ(x, y), θ⋆ − θ̂

〉]

= E
x∼ρ,

y∼π⋆(·|x)

[⟨ϕ(x, y), θ⋆ − θMLE⟩]

︸ ︷︷ ︸
Term (ia)

+ E
x∼ρ,

y∼π⋆(·|x)

[〈
ϕ(x, y), θMLE − θ̂

〉]

︸ ︷︷ ︸
Term (ib)

, (G.23)

where rMLE(x, y) = ⟨ϕ(x, y), θMLE⟩.

Step 1: bounding term (ia). To continue, we recall a useful lemma from [Zhu et al., 2023].

Lemma 52 ([Zhu et al., 2023, Lemma 3.1]). For any λ > 0 and δ ∈ (0, 1), with probability at least
1− δ,

∥θMLE − θ⋆∥ΣD+λI ≤ O
(
(3 + exp(C))

√
d+ log(1/δ)

N
+
√
λC2

)
.
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In addition, we have
1

3 + exp(C)
ΣD ⪯

1

N
∇2

θℓ(rθ,D) ⪯
1

4
ΣD (G.24)

for all θ such that ∥rθ∥∞ ≤ C.

The first term of (G.23) can be bounded with Lemma 52 as

Term (ia) ≤ ∥θ⋆ − θMLE∥ΣD+λI ·
∥∥∥ E

x∼ρ,
y∼π⋆(·|x)

[ϕ(x, y)]
∥∥∥
(ΣD+λI)−1

≤ O
((

(3 + exp(C))

√
d+ log(1/δ)

N
+
√
λC2

)
·
∥∥∥ E

x∼ρ,
y∼π⋆(·|x)

[ϕ(x, y)]
∥∥∥
(ΣD+λI)−1

)
.

(G.25)

Step 2: bounding term (ib). For the second term of (G.23), recall that

r̂ = argmin
r∈R

{
ℓ(r,D) + αJ(r, π̂)

}
,

or equivalently

θ̂ = argmin
θ∈Θ

{
ℓ(rθ,D) + αJ(rθ, π̂)

}
,

and that

θMLE = argmin
θ∈Θ

ℓ(rθ,D).

With linear constraint (8.19), by KKT condition we have

∇θℓ(r̂,D) + α E
x∼ρ,

y∼π̂(·|x)

[ϕ(x, y)] + λ1 E
x∼ρ,

y∼πcal(·|x)

[ϕ(x, y)] = 0

for some λ1 ∈ R, and
∇θℓ(rMLE,D) + λ2 E

x∼ρ,
y∼πcal(·|x)

[ϕ(x, y)] = 0

for some λ2 ∈ R. By strong monotonicity of ∇θℓ (cf. (G.24)), we have

N

3 + exp(C)

∥∥θ̂ − θMLE

∥∥2
ΣD
≤
〈
∇θℓ(r̂,D)−∇θℓ(rMLE,D), θ̂ − θMLE

〉

=
〈
−α E

x∼ρ,
y∼π̂(·|x)

[ϕ(x, y)]− (λ1 − λ2) E
x∼ρ,

y∼πcal(·|x)

[ϕ(x, y)] , θ̂ − θMLE

〉

= −α
〈

E
x∼ρ,

y∼π̂(·|x)

[ϕ(x, y)]− E
x∼ρ,

y∼πcal(·|x)

[ϕ(x, y)] , θ̂ − θMLE

〉

≤ α
∥∥∥ E

x∼ρ,
y∼π̂(·|x)

[ϕ(x, y)]− E
x∼ρ,

y∼πcal(·|x)

[ϕ(x, y)]
∥∥∥
(ΣD+λI)−1

∥∥θ̂ − θMLE

∥∥
ΣD+λI

≤ ακD
∥∥θ̂ − θMLE

∥∥
ΣD+λI

,
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where we denote

κD =
∥∥∥ E

x∼ρ,
y∼π̂(·|x)

[ϕ(x, y)]− E
x∼ρ,

y∼πcal(·|x)

[ϕ(x, y)]
∥∥∥
(ΣD+λI)−1

. (G.26)

The penultimate step results from θ̂, θMLE ∈ Θ, which ensures

〈
E

x∼ρ,
y∼πcal(·|x)

[ϕ(x, y)] , θ̂
〉
=
〈

E
x∼ρ,

y∼πcal(·|x)

[ϕ(x, y)] , θMLE

〉
= 0

It follows that

N

3 + exp(C)

∥∥θ̂ − θMLE

∥∥2
ΣD+λI

≤ N

3 + exp(C)

∥∥θ̂ − θMLE

∥∥2
ΣD

+
N

3 + exp(C)

∥∥θ̂ − θMLE

∥∥2
λI

≤ ακD
∥∥θ̂ − θMLE

∥∥
ΣD+λI

+
NλC2

3 + exp(C)
.

The above inequality allows us to bound

∥∥θ̂ − θMLE

∥∥
ΣD+λI

≤ α(3 + exp(C))

N
κD + 2

√
λC2. (G.27)

Therefore, the second term of (G.23) can be bounded as

Term (ib) ≤
∥∥θ̂ − θMLE

∥∥
ΣD+λI

∥∥∥ E
x∼ρ,

y∼π⋆(·|x)

[ϕ(x, y)]
∥∥∥
(ΣD+λI)−1

≤
(
α(3 + exp(C))

N
κD + 2

√
λC2

)∥∥∥ E
x∼ρ,

y∼π⋆(·|x)

[ϕ(x, y)]
∥∥∥
(ΣD+λI)−1

. (G.28)

Putting (G.25) and (G.28) together, we have

Term (i) ≤ O
([

3 + exp(C)√
N

(√
d+ log(1/δ) +

α√
N
κD

)
+
√
λC2

]
·
∥∥∥ E

x∼ρ,
y∼π⋆(·|x)

[ϕ(x, y)]
∥∥∥
(ΣD+λI)−1

)
.

(G.29)

Step 3: bounding term (ii). We can decompose and bound term (ii) by

J(r̂, π̂)− J(r⋆, π̂) = J(r̂, π̂) +
1

α
ℓ(r̂,D)−

(
J(r⋆, π̂) +

1

α
ℓ(r⋆,D)

)
+

1

α
(ℓ(r̂,D)− ℓ(r⋆,D))

(i)

≤ 1

α
(ℓ(r̂,D)− ℓ(r⋆,D))

≤ 1

α
(ℓ(r̂,D)− ℓ(rMLE,D) + ℓ(rMLE,D)− ℓ(r⋆,D)),
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where (i) follows from the fact that (r̂, π̂) is a saddle point. Due to convexity of ℓ, we have

ℓ(r̂,D)− ℓ(rMLE,D) ≤
〈
∇θℓ(r̂,D), θ̂ − θMLE

〉

=

〈
−α E

x∼ρ,
y∼π̂(·|x)

[ϕ(x, y)]− λ1 E
x∼ρ,

y∼πcal(·|x)

[ϕ(x, y)] , θ̂ − θMLE

〉

= −α
〈

E
x∼ρ,

y∼π̂(·|x)

[ϕ(x, y)]− E
x∼ρ,

y∼πcal(·|x)

[ϕ(x, y)] , θ̂ − θMLE

〉

≤ ακD∥θ̂ − θMLE∥ΣD+λI

≤ α2(3 + exp(C))

N
κ2D + 2

√
λC2ακD,

where the last step is due to (G.27). On the other hand, with probability 1 − δ we have [Zhan
et al., 2023b, Lemma 1]:

ℓ(rMLE,D)− ℓ(r⋆,D) ≤ Õ(1).
Putting pieces together,

Term (ii) ≤ α(3 + exp(C))

N
κ2D + 2

√
λC2κD +

1

α
. (G.30)

Step 4: putting things together. Combining (G.22) (G.29), (G.30), with probability 1− δ we
have

J⋆(r⋆)− J(r⋆, π̂)

≤ O
(

1√
N

[
(3 + exp(C))

(√
d+ log(1/δ) + κD

)
+ C

]
·
∥∥∥ E

x∼ρ,
y∼π⋆(·|x)

[ϕ(x, y)]
∥∥∥
(ΣD+λI)−1

+
1√
N

(
(3 + exp(C))κ2D + 2CκD + 1

))
.

Here we have set α =
√
N and λ = 1/N . We conclude by bounding κD as

κ2D =
∥∥∥ E

x∼ρ,
y∼π̂(·|x)

[ϕ(x, y)]− E
x∼ρ,

y∼πcal(·|x)

[ϕ(x, y)]
∥∥∥
2

(ΣD+λI)−1

≤
∥∥∥ E

x∼ρ,
y∼π̂(·|x)

[ϕ(x, y)]− E
x∼ρ,

y∼πcal(·|x)

[ϕ(x, y)]
∥∥∥
2

2
·
∥∥∥(ΣD + λI)−1

∥∥∥
2

≤ 4(λmin(ΣD) + λ)−1.
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bandits. Advances in neural information processing systems, 24, 2011.

Yasin Abbasi-Yadkori, Peter Bartlett, Kush Bhatia, Nevena Lazic, Csaba Szepesvari, and Gellért
Weisz. Politex: Regret bounds for policy iteration using expert prediction. In International
Conference on Machine Learning, pages 3692–3702. PMLR, 2019.

Alekh Agarwal and John C. Duchi. Distributed delayed stochastic optimization. Advances in neural
information processing systems, 24, 2011.

Alekh Agarwal, Nan Jiang, and Sham M. Kakade. Reinforcement learning: Theory and algorithms.
Technical report, 2019.

Alekh Agarwal, Sham Kakade, and Lin F. Yang. Model-based reinforcement learning with a gen-
erative model is minimax optimal. In Conference on Learning Theory, pages 67–83. PMLR,
2020a.

Alekh Agarwal, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan. Optimality and approxi-
mation with policy gradient methods in Markov decision processes. In Conference on Learning
Theory, pages 64–66. PMLR, 2020b.

Andrea Agazzi and Jianfeng Lu. Global optimality of softmax policy gradient with single hidden
layer neural networks in the mean-field regime, 2020.

Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding the
impact of entropy on policy optimization. In International Conference on Machine Learning,
pages 151–160, 2019.

Ahmet Alacaoglu, Luca Viano, Niao He, and Volkan Cevher. A natural actor-critic framework
for zero-sum Markov games. In International Conference on Machine Learning, pages 307–366.
PMLR, 2022.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276,
1998.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
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Mohammad Gheshlaghi Azar, Rémi Munos, and Hilbert J. Kappen. Minimax PAC bounds on the
sample complexity of reinforcement learning with a generative model. Machine learning, 91(3):
325–349, 2013.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforce-
ment learning. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 263–272. JMLR. org, 2017.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland,
Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning
from human preferences. In International Conference on Artificial Intelligence and Statistics,
pages 4447–4455. PMLR, 2024.

Yu Bai and Chi Jin. Provable self-play algorithms for competitive reinforcement learning. In
International Conference on Machine Learning, pages 551–560. PMLR, 2020.

Yu Bai, Tengyang Xie, Nan Jiang, and Yu-Xiang Wang. Provably efficient Q-learning with low
switching cost. Advances in Neural Information Processing Systems, 32, 2019.

Yu Bai, Chi Jin, and Tiancheng Yu. Near-optimal reinforcement learning with self-play. Advances
in neural information processing systems, 33:2159–2170, 2020.

James P. Bailey. O(1/T ) time-average convergence in a generalization of multiagent zero-sum
games. arXiv preprint arXiv:2110.02482, 2021.

Amir Beck. First-order methods in optimization. SIAM, 2017.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
convex optimization. Operations Research Letters, 31(3):167–175, 2003.

Richard Bellman. On the theory of dynamic programming. Proceedings of the National Academy
of Sciences of the United States of America, 38(8):716, 1952.

212



L.M. Bergman and I.N. Fokin. On separable non-cooperative zero-sum games. Optimization, 44
(1):69–84, 1998.

Riccardo Bernardi. Interactive image segmentation using graph transduction games. 2021.

Dimitri P. Bertsekas. Dynamic programming and optimal control (4th edition). Athena Scientific,
2017.

Jalaj Bhandari and Daniel Russo. On the linear convergence of policy gradient methods for finite
mdps. In International Conference on Artificial Intelligence and Statistics, pages 2386–2394.
PMLR, 2021.

Jalaj Bhandari and Daniel Russo. Global optimality guarantees for policy gradient methods. Op-
erations Research, 2024.

Shalabh Bhatnagar, Richard S. Sutton, Mohammad Ghavamzadeh, and Mark Lee. Natural actor-
critic algorithms. Automatica, 45(11):2471–2482, 2009.

Michael Bowling and Manuela Veloso. Rational and convergent learning in stochastic games. In
Proceedings of the 17th international joint conference on Artificial intelligence-Volume 2, pages
1021–1026, 2001.

Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy opti-
mization. In International Conference on Machine Learning, pages 1283–1294. PMLR, 2020.

Yang Cai, Ozan Candogan, Constantinos Daskalakis, and Christos Papadimitriou. Zero-sum poly-
matrix games: A generalization of minmax. Mathematics of Operations Research, 41(2):648–655,
2016.

Shicong Cen, Yuting Wei, and Yuejie Chi. Fast policy extragradient methods for competitive
games with entropy regularization. Advances in Neural Information Processing Systems, 34:
27952–27964, 2021.

Shicong Cen, Fan Chen, and Yuejie Chi. Independent natural policy gradient methods for po-
tential games: Finite-time global convergence with entropy regularization. In 2022 IEEE 61th
Conference on Decision and Control (CDC). IEEE, 2022a.

Shicong Cen, Chen Cheng, Yuxin Chen, Yuting Wei, and Yuejie Chi. Fast global convergence
of natural policy gradient methods with entropy regularization. Operations Research, 70(4):
2563–2578, 2022b.

Shicong Cen, Yuejie Chi, Simon Du, and Lin Xiao. Faster last-iterate convergence of policy op-
timization in zero-sum Markov games. International Conference on Learning Representations
(ICLR 2023), 2023.

Shicong Cen, Jincheng Mei, Katayoon Goshvadi, Hanjun Dai, Tong Yang, Sherry Yang, Dale
Schuurmans, Yuejie Chi, and Bo Dai. Value-incentivized preference optimization: A unified
approach to online and offline RLHF. arXiv preprint arXiv:2405.19320, 2024.
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Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Nevena Lazic, Dong Yin, Yasin Abbasi-Yadkori, and Csaba Szepesvari. Improved regret bound
and experience replay in regularized policy iteration. In International Conference on Machine
Learning, pages 6032–6042. PMLR, 2021.

Kyungjae Lee, Sungjoon Choi, and Songhwai Oh. Sparse Markov decision processes with causal
sparse Tsallis entropy regularization for reinforcement learning. IEEE Robotics and Automation
Letters, 3(3):1466–1473, 2018.

Qi Lei, Sai Ganesh Nagarajan, Ioannis Panageas, and Xiao Wang. Last iterate convergence in
no-regret learning: constrained min-max optimization for convex-concave landscapes. In Inter-
national Conference on Artificial Intelligence and Statistics, pages 1441–1449. PMLR, 2021.

Stefanos Leonardos, Georgios Piliouras, and Kelly Spendlove. Exploration-exploitation in multi-
agent competition: convergence with bounded rationality. Advances in Neural Information Pro-
cessing Systems, 34:26318–26331, 2021.

Stefanos Leonardos, Will Overman, Ioannis Panageas, and Georgios Piliouras. Global convergence
of multi-agent policy gradient in Markov potential games. International Conference on Learning
Representations (ICLR 2022), 2022.

218



Bingcong Li, Tianyi Chen, and Georgios B. Giannakis. Bandit online learning with unknown delays.
In The 22nd International Conference on Artificial Intelligence and Statistics, pages 993–1002.
PMLR, 2019.

Gen Li, Yuting Wei, Yuejie Chi, Yuantao Gu, and Yuxin Chen. Sample complexity of asynchronous
Q-learning: Sharper analysis and variance reduction. IEEE Transactions on Information Theory,
68(1):448–473, 2021.

Gen Li, Yuejie Chi, Yuting Wei, and Yuxin Chen. Minimax-optimal multi-agent RL in Markov
games with a generative model. Advances in Neural Information Processing Systems, 35:15353–
15367, 2022.

Gen Li, Yuting Wei, Yuejie Chi, and Yuxin Chen. Softmax policy gradient methods can take
exponential time to converge. Mathematical Programming, 201(1-2):707–802, 2023.

Gen Li, Changxiao Cai, Yuxin Chen, Yuting Wei, and Yuejie Chi. Is Q-learning minimax optimal?
a tight sample complexity analysis. Operations Research, 72(1):222–236, 2024a.

Gen Li, Yuting Wei, Yuejie Chi, and Yuxin Chen. Breaking the sample size barrier in model-based
reinforcement learning with a generative model. Operations Research, 72(1):203–221, 2024b.

Tengyuan Liang and James Stokes. Interaction matters: A note on non-asymptotic local conver-
gence of generative adversarial networks. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 907–915. PMLR, 2019.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. Inter-
national Conference on Learning Representations (ICLR 2016), 2016.

Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Information and
computation, 108(2):212–261, 1994.

Michael L. Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine Learning Proceedings, pages 157–163. Elsevier, 1994.

Boyi Liu, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural trust region/proximal policy opti-
mization attains globally optimal policy. In Advances in Neural Information Processing Systems,
pages 10565–10576, 2019a.
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